Model Based Design: development of Electronic Systems

Stuttgart
16 June 2004

Agenda

- Model Based Design: purposes and process
- Model Based Design: vehicle development process
- Tools
- Functional Requirements:
 - Structure
 - Link to simulation models
- M.A.R.S.: a method to model and simulate
- Test Pattern: development and utilization
- Rapid Prototyping: purposes and process
- Rapid Prototyping: V.C.S. Project
Model Based Design: purposes and process (1)

- To validate Functional Requirements of the following Electrical and Electronic Systems:
 - Body Electronics
 - Infotainment
 - Driver Assistance
 - Integration of PowerTrain strategies
 - Integration of Chassis strategies
- To analyze the logics and strategies behavior in “typical” and “worst case” conditions
- To analyze and / or design the “diagnostic” and “recovery” strategies
- To develop new algorithms.
- To verify the integration of different functions
- To supply “executable models” to not-technical Fiat Auto departments (i.e. Marketing), in order to evaluate the behavior of the functionality.

Model Based Design: purposes and process (2)

- Textual Specification: MS Word, MS Excel, DOORS
- Simulation Model: Matlab, Simulink, Stateflow
- Test Pattern: Development And Utilization
- Textual Specification Validated Executable Model
Model Based Design: Vehicle Development Process

Main Goal:
To validate the functional requirement before using them in the project development.

Tools

- Database: DOORS
- Simulation Models: MATLAB, SIMULINK, STATEFLOW
- Graphic Interfaces: ALTIA DESIGN, ALTIA DEEPSCREEN
- Automatic Software Generation: REAL TIME WORKSHOP, R.T.W. Embedded
- Rapid Prototyping: dSPACE, xPCtarget
- Change Management: ECPS (SYNERGY)
Functional Requirements
Organizations

Vehicle Function
AREA

Comfort & Convenience

External Signaling
And Lighting

Infotainment

Vehicle Function
GROUP

Electric Sun Roof

Power Mirrors

Power Windows

Horn

External Lights

Vehicle Function

Rear Fog Light

Main Lights

Turn Lights

Functional Requirements:
An example
Functional Requirement: Link to Simulation Models

- **Vehicle Function AREA**
- **Vehicle Function GROUP**
- **Vehicle Function**

M.A.R.S.: Modeling Automotive Requirements Specification

- **Main Purposes:**
 - To define the **validating process flow**
 - To define a **common approach** to model, simulate and validate the functional requirements.
 - To define the **set of tools** used in the validating process
 - To define which **type of information** is possible to exchange with the Supplier

- **Main Topics:**
 - Structure of the simulation model
 - Basic blocks
 - Styling rules
 - Link to Functional Requirements
 - Functional integration
 - Functional partitioning
Test Pattern: Development & Utilization

- The main purposes are:
 - To verify and validate the logics / strategies modeled, at system (VFA) and sub-system (VFG) level.
 - To verify the logics / strategies modeled from “user point view”
 - To discover all working conditions of the logics / strategies.
 - To defines the relationship between the logics / strategies with the environment (fault injection).
 - To automate the application of the Test Patterns and the analysis of the results.

Test Pattern: Process Flow

The automatic activities are:
- Test Pattern Application
- Output Comparison
- Report Generation (from output comparison)
Rapid Prototyping Goals

- To verify / validate the functional logics / strategies modelled and simulated in a real environment (bench or vehicle).
- To verify the functional partitioning and integration.
- To validate the networks on vehicle.
- To evaluate functional logics present only in a real environment and not simulated on computer (i.e. debouncing, network management, output management, recovery logics, etc.).
- Not to generate software for production.

Rapid Prototyping: Process

- **Textual Specification**
 - MS Word
 - MS Excel
 - DOORS

- **Simulation Model**
 - Matlab
 - Simulink
 - Stateflow

- **Rapid Prototyping Environment**
 - CAN

Textual Specification Validated + Validation on real prototype

Functional Requirements Completely Validated
Virtual Component Simulator (VCS)

- NBC: Body Computer Module
- NPG: Driver Door Module
- NPP: Passenger Door Module
- NVB: Trunk Module

- Functional Logics
- I/O management

- NBC
- NPG
- dSPACE
- NPP
- NVB

- dSPACE autoBOX
- CAN TX / RX
- Functional Logics

- No Functional Logics
- I/O management

Thank You!

Fiat Auto
P&PE – ACEE – E&SI - Software Engineering
Corso Settembrini, 40
10100 - TORINO

edoardo.sivera@fiat.com
+39 011 0038837