Synergy of UML and Simulink

Agenda

- Why should we think about multiple tools?
- Requirements or how to choose the right tool?
- Examples for synergetic application of UML and Simulink
Synergy of UML and Simulink

Complexity facts

- A Peugeot 607 contains more software than an AIRBUS A310 from 1982
- A luxury vehicle is controlled by up to 80 electronic control units
- Each of them is more powerful than the controller inside Apollo 11 on its way to the moon

Technological tendencies

- Growth of communication and networking functions and their influence, e.g. message based systems
- (Dynamically) distributed functions
- Operating systems with management functionality
- Encapsulated, parallel tasks on one ECU
Synergy of UML and Simulink

Hybrid?

- Discrete time, distributed systems
- Continuous time physics and control, signal flows

The System Engineers View

- Hybrid character of the actual system

Requirements

- Goal definition:
 - Consistent, traceable, measurable specifications
 - Early definition of quality goals and tests

- Support of the individual views of all process roles

- Organizational: OEM, Supplier, Authorities

- Process: Customer, Specification engineer, Developer, Tester, Quality assurance

- Efficient experimentation and target implementation environment
Synergy of UML and Simulink

BMW Principle

- Beschreibungmittel (Means of description)
- Methode (Method)
 - How to apply the means of description?
- Werkzeug (Tool)
 - Technical realization of means of description and method

Influencing Factors
Synergy of UML and Simulink

Solution: Divide and conquer

- System
 - Function vs. Topology
- Method
 - Support of staggered, distributed processes
- Tool & Notation

and their integration?

Hans-Martin Schulz 16.06.2004

Synergy of UML and Simulink

Partitioning und Abstraction

Abstraction
- Reduction to the essentials
- Generalization
- Leads to simplification

Partitioning
- Grouping of objects to sub-systems
- Interfaces
- Different mechanisms that have to be applied together

Hans-Martin Schulz 16.06.2004
Classification of coupling tools

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Co-Simulation</td>
</tr>
<tr>
<td>Model transformation</td>
<td>RunTime-communication platform</td>
</tr>
<tr>
<td>Detailed</td>
<td>Code integration</td>
</tr>
</tbody>
</table>

Co-Simulation Principles

- Coordination
- Synchronization
- Communication
- Information

Distributed model
Synergy of UML and Simulink

EXITE Framework

- Tool A
- Tool B
- Tool C
- Tool D
- Tool E

EXITE backplane
CORBA/
MPI

Distributed model

Flexible Experimentation Environment

- Matlab/Simulink
- Plant
- Java / Altia
- HMI
- Control
- Dymola
- UML
- ...

Quelle: STEP-X Workshop, Braunschweig, 10.02.03

Hans-Martin Schulz

16.06.2004
Synergy of UML and Simulink

Co-Simulation und Code integration

Simulink
- Plant model
 - Continuous Control
 - Discrete Control and Communication

Rhapsody in C

Real
- Plant
 - Embedded Controller
 - C-Code

Synergy of UML and Simulink

Integration platform
Both worlds (UML and Simulink) are necessary.

They can be used together leveraging strength from both sides.

Real-world application depends on processes and actual conditions. Long term strength requires also separations of concern when it comes to the definition of a tool chain.