Automatic Validation of Simulink/Stateflow Models
Formal Verification of Safety-Critical Requirements

Dr. Udo Brockmeyer
OSC - Embedded Systems AG

The Challenge...

Innovation dominated by electronic components and SW
- exponential increase of functionality
- distribution of functions
- new technologies, e.g. X-by-wire, demand new complex technologies

Increased level of failures

The Challenge...

to manage complexity within tough cost and time constraints!
Model-based Development Process

- Model-based development processes to cope with complexity
 - executable specifications
- Typical use cases
 - virtual system integration
 - concept validation
 - prototyping
 - auto code generation
- Matlab/Simulink/Stateflow wide-spread design tool for modeling, simulation, and code generation
 - improvements in quality while saving time
- Testing gap still exists!
 - classical testing approaches fail even in model-based processes
 - costs for testing and also failure rates still raise

The Testing Gap

Testing processes are based on skills of test engineers
- functional complexity grows exponentially
- design space for test generation grows exponentially

→ Test engineers need tool-support for V&V activities

Design of good and rich test suites is critical!
The Enhanced Model-based Development Process

- Requirement Capturing
- Specification
- Design
- Implementation
- Unit Testing
- Integration Testing
- System Test

Automatic Validation
- EmbeddedValidator
 to formally verify SL/SF models

Automatic Validation of SL/SF Models

- Requirements
- Simulink/Stateflow Model
- EmbeddedValidator
 + Automatic Simulation
 - Model violates requirement
 - Model fulfills requirement
- Functional Requirements

IAC 2004 Stuttgart, June 2004
EmbeddedValidator – Integration in Matlab/Simulink

- drag-and-drop the EmbeddedValidator block from the Simulink library
- drag-and-drop selects subsystem to be verified
- launches EmbeddedValidator

EmbeddedValidator – Feature Support

- full support of Stateflow
- set of Simulink blocks for open-loop control
- EmbeddedValidator operates on C-Code generated from TargetLink (dSPACE)
EmbeddedValidator – Certification Mode

- Analysis and Proof Dictionaries
- Result management
- Report generation
- Powerful Pattern Library
- Automatic Matlab simulation to debug failures

Powerful Pattern Library

- large set of pre-defined patterns for requirement specification
- intuitive pattern usage based on forms
- used to specify functional and safety-critical requirements
EmbeddedValidator – Static Failure Analysis

- automatic waveform generation
- displaying input / output scenarios
- easy static failure analysis

EmbeddedValidator – Dynamic Failure Analysis

- fully automatic generation of test benches
- automatic generation of test m-scripts
- automatic simulation into failure situation
- easy dynamic failure analysis
EmbeddedValidator – Debugging Mode

- set of standard analysis for SL/SF models provided
- variable range violation, reachability of states, reachability of configurations

Summary

- Automatic Validation with formal verification is another key method to improve model-based processes
- EmbeddedValidator is smoothly integrated into Matlab
- EmbeddedValidator helps to find design failures early
- saves time, costs and increases quality
- EmbeddedValidator supports requirement certification and model debugging
- Automatic Validation with EmbeddedValidator can be complemented by model-based Automatic Test Generation and model-based Safety Analysis
Thank You for Your Attention!