Numerical Computational Modeling using Electrical Networks for Cerebral Arteriovenous Malformation

By
Y.Kiran Kumar
Philips Electronics India Ltd.
Bangalore.
Agenda

- Problem Statement
- Introduction – AVM & Clinical Challenges
- Methodology
- Results
- References
Problem Statement

- The problem is to identify the blood vessel in an AVM

- Why it is important:
 - Beneficial for the doctors to do improve in the therapy planning.
 - A proper Segmentation of Vessels help for correct diagnosis
Introduction – AVM & Clinical Challenges

- A cerebral Arteriovenous malformation (AVM) is an abnormal connection between the arteries and the veins in the brain.
- An Arteriovenous malformation is a tangled cluster of vessels, typically located in the supratentorial part of the brain, in which arteries connect directly to veins without any intervening capillary bed.

DSA - AVM
Introduction – AVM & Clinical Challenges

• A Nidus is the central part of AVM. It is made up of abnormal blood vessels that are hybrids between arteries and veins.

• Challenges:

Segmentation of Complex Structure

Clustering of Various Vessels

NIDUS Segmentation
Methodology

Acquisition of Datasets

Automatic Segmentation of image is performed into various compartments as Arteries, Veins at different levels [4].

Design of the electrical circuit for each segmented vessel of the compartment using R,L,C – Electrical Networks [5-10].

Input transient voltage will be varied parameters based on the clinical input measurements range for each compartment.
Automation Segmentation Algorithm

- **OTSU Segmentation** –
 - *Otsu's method* is used to automatically perform histogram shape-based image/Global image threshold,
 - Otsu's method is named after Nobuyuki Otsu

Input Data

Outputs
Region Growing & Threshold Technique

- Threshold based segmentation: Computation based on the appropriate threshold to use to convert the grayscale image to binary.

 Region Growing: A recursive region growing algorithm for 2D and 3D grayscale image sets with polygon and binary mask output. The main purpose of this function lies on clean and highly documented code.

- Implementation difficulties:
 - Data Loading and Processing require more steps to implement in c/c++/c#
 - Issues in bridging the Managed (UI) and UnManaged Code (Algorithms)

- Advantage of using Matlab:
 - Ease of Use
 - Simple commands
 - Execution is easier than other tools
Region Growing & Threshold Technique

Results

Input Data

Output Segmentation

Input Data

Output Segmentation
Level Set Segmentation

- Implemented for 2-D interface (curve) evolution.
- Used for implementing a 2-D curve evolution or a diffusion of a 2-D function $\phi(x,y)$, e.g. anisotropic diffusion on a gray-scale image.
Level Set Segmentation Results

Input Data

Output Segmentation
References

References

- Yubing Shi, Patricia Lawford and Rodney Hose. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. Medical Physics Group, Technical report, Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK.

