Fixed-Point Design in MATLAB and Simulink

Gaurav Dubey
Senior Team Lead - Pilot Engineering
Gaurav.Dubey@mathworks.in
What are you looking for?

- How can I convert an algorithm from floating-point to fixed-point representation?
- How can I compare the floating-point and fixed-point simulation results?
- How can I generate fixed-point C and HDL code for embedded implementations?
- I don’t know how to convert a floating point model/code to a fixed-point model/code?
- I hope to maintain one algorithm file for all kinds of data type, is this possible?
Fixed-Point Concepts

• What is fixed-point?
• Fixed-point targets
• Design Challenges

Introducing Fixed-Point Designer

• Fixed-Point Designer tools

Floating-Point to Fixed-Point Conversion Workflows

• Using the Fixed-Point Tool in Simulink
• Using the Fixed-Point Conversion Tool in MATLAB

Code Generation from fixed-point design

• C and HDL
Fixed-Point Concepts

- What is fixed-point?
- Fixed-point targets
- Design Challenges

Introducing Fixed-Point Designer

- Fixed-Point Designer tools

Floating-Point to Fixed-Point Conversion Workflows

- Using the Fixed-Point Tool in Simulink
- Using the Fixed-Point Conversion Tool in MATLAB

Code Generation from fixed-point design

- C and HDL
What is fixed-point?

Floating-point:
Sign bit
Exponent width (determines range)
Mantissa / Fraction bits (determines precision)
Floating radix / decimal point
- Same word size, we can increase both precision and range
IEEE 754 single-precision binary floating-point format: binary32*

Fixed-point:
Sign bit
Whole number part (determines range)
Fractional part (determines precision)
Fixed radix / decimal point
- Fixed size, trade-off between precision and range

Fixed-Point Targets

- Fixed-Point DSPs (TI, Analog Devices, etc.)
 - Fixed word lengths
 - Less expensive
 - Use less power - good for battery powered applications
 - Higher clock speeds

- FPGAs (Xilinx, Altera, etc.)
 - Designer can select word lengths
 - Every bit increased word length - more silicon area and increased power usage
Fixed Point Tradeoffs

<table>
<thead>
<tr>
<th>Consideration</th>
<th>Floating Point</th>
<th>Fixed Point</th>
<th>Fixed Point with MathWorks Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM and ROM Consumption</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Execution Speed</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Hardware power consumption</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Embedded Hardware Cost</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Development time</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Implementation complexity</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Error Prone</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
Example: Fixed-Point C hand implementation

```c
void differentialEq( void )
{
    /* Implements a fixed point first order difference equation */

    int Prod;
    long Accum;
    static short lastVal=0;

    short a=0x7eb8; // 0.99 in s16,15
    short oneminusa=0x0148; // .01 in s16,15
    short temp;

    Prod = gAlg_in1 * gAlg_in1;
    temp = Prod >> 15;
    Accum = a * lastVal + oneminusa * temp;
    gAlg_out1 = (short)(Accum >> 15);
    lastVal = gAlg_out1;
}
```

- Convert variables to integer types
- Need lots of comments to understand code
- Keep track of binary point location
- No saturation or rounding
Fixed-Point Concepts

- What is fixed-point?
- Fixed-point targets
- Design Challenges

Introducing Fixed-Point Designer

- Fixed-Point Designer tools

Floating-Point to Fixed-Point Conversion Workflows

- Using the Fixed-Point Tool in Simulink
- Using the Fixed-Point Conversion Tool in MATLAB

Code Generation from fixed-point design

- C and HDL
Fixed Point ECU Development Process
with Model-Based Design

- System Requirements
 - Simulation
- System Design
- Software Design
- Coding
- On-Target Rapid Prototyping
- Production Code Generation
- Software-in-the-Loop Testing
- Processor-in-the-Loop Testing
- Hardware/Software Integration
- Hardware-in-the-Loop Testing
- Vehicle Integration & Calibration
- Requirements Traceability
 - Configuration Management
 - Documentation
Tools for Converting a Design to Fixed Point

Fixed-Point Tool for Simulink
Requires: Fixed-Point Designer, Simulink
Works on: Simulink Blocks, Stateflow Charts

Fixed-Point Conversion Tool for MATLAB
Requires: Fixed-Point Designer, MATLAB Coder
Works on: MATLAB Code

Instrumented Code Generation Report for MATLAB
Requires: Fixed-Point Designer
Works on: MATLAB Code, MATLAB Function Blocks
Fixed-Point Concepts

- What is fixed-point?
- Fixed-point targets
- Design Challenges

Introducing Fixed-Point Designer

- Fixed-Point Designer tools

Floating-Point to Fixed-Point Conversion Workflows

- Using the Fixed-Point Tool in Simulink
- Using the Fixed-Point Conversion Tool in MATLAB

Code Generation from fixed-point design

- C and HDL
Workflow using Fixed-Point Tool in Simulink:

1. Prepare for Fixed-Point Conversion
2. Collect Range Information
3. Propose Data Types
4. Apply Data Types
5. Compare Results
6. Generate Code
Workflow using Fixed-Point Conversion Tool in MATLAB:

1. Prepare for Fixed-Point Conversion
2. Collect Range Information
3. Propose Data types
4. Generate Fixed-Point MATLAB Code
5. Test Numerics
6. Generate Code
Fixed-Point Concepts

• What is fixed-point?
• Fixed-point targets
• Design Challenges

Introducing Fixed-Point Designer

• Fixed-Point Designer tools

Floating-Point to Fixed-Point Conversion Workflows

• Using the Fixed-Point Tool in Simulink
• Using the Fixed-Point Conversion Tool in MATLAB

Code Generation from fixed-point design

• C and HDL
Code Generation
Automatically generate readable, traceable HDL and C code

Requirements

Automatically generate C and HDL code from Simulink, MATLAB and Stateflow

Full bi-directional traceability!!
Summary

- **Fixed-Point Designer**
- **Conversion Workflow**
 - MATLAB/Simulink
- **Code generation**
 - C and HDL
The Fixed-Point Advisor facilitates converting a floating-point model or subsystem into a fixed-point representation.
The Fixed-Point Tool is a graphical user interface that automates specifying fixed-point data types in a model.
Fixed Point Conversion: Simulink
Float- to Fixed- Conversion in FPA and FPT

Integrated workflow to accomplish float- to fixed-point conversion of Simulink models in FPA and FPT

- Streamline workflow from modeling preparation in FPA and autoscaling in FPT
- Support floating-, fixed-point and mixed data type designs
- Emphasize design best-practice to achieve production code generation design goals
- Integrated with features of word length selection, model-wide range analysis and multiple run management support in both FPA and FPT
Fixed Point Conversion: Simulink
Output Comparison
Fixed Point Conversion: Simulink Code Generation
Fixed Point Conversion: MATLAB

Fixed-Point Converter

![MATLAB Fixed-Point Converter](image)

MATLAB Code Example

```matlab
function [y1, y2] = mldlc_kalman_c(t)
    %Copyright 2011 The MathWorks, Inc.
    % Initialize state transition matrix
    A=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1];
    % Measurement matrix
    H=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1];
    % Initial conditions
    x0=[0; 0; 0; 0];
    % Run kalman filter
    for t=1:10
        z(t)=randn(1,4);
        [x, P] = kalman(x0, H, t, z(t), A, P);
        y1(t)=x(1);
        y2(t)=x(2);
    end
end
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Sim Min</th>
<th>Sim Max</th>
<th>Static Min</th>
<th>Static Max</th>
<th>Whole Number</th>
<th>Proposed Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>2x1 double</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y1</td>
<td>double</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y2</td>
<td>double</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent</td>
<td>6x6 double</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Run Simulation
- Compute Derived Ranges
- Function: mldlc_kalman_c
- Type Proposal
- Proposed Fraction Lengths
- Proposed Word Lengths
- Default Word Length: 16
- Validate Types
- Test Numerics
- Validate Fixed-Point Types
- Define and validate fixed-point types
- Add files
- Autodefine types

To compute proposed fixed-point types for variables, use Run Simulation, Compute Derived Ranges, or both.
Fixed Point Conversion: MATLAB
Fixed-Point Converter
Fixed Point Conversion: MATLAB
Output Comparison
Fixed Point Code Generation: MATLAB
MATLAB Coder