Numerical Data Analysis of Wind Turbine Systems

NDA of Wind Turbine Systems
Submitted by
Robert Bosch Engineering and Business Solutions Limited
Numerical Data Analysis of Wind Turbine Systems

Agenda

1. Introduction
2. Problem Statement – Wind Turbine
3. Why NDA?
4. NDA Architecture
5. Wind Data Measurements
6. NDA Flow for monitoring Systems
7. NDA Techniques for Wind Power Forecasting
8. Results
9. Infrastructure
10. Benefits
11. Future Scope of Work
Introduction

- Wind is caused by huge convection currents in the Earth's atmosphere, driven by heat energy from the Sun

- Wind energy is the kinetic energy of the large mass of air over the earth surface

- A Wind Turbine is a device that converts kinetic energy from the wind into electrical power

- Wind energy use is increasing about 2-5% of the domestic energy consumption at developed countries

- Wind power is not continuous, variable and non-dispatchable

- Industry has witnessed tremendous growth in Wind Turbine capacity & increase in wind farms across globe
Numerical Data Analysis of Wind Turbine Systems

Problem Statement – Wind Turbine

- Blades, Hub, Nacelle & Tower typically forms the main components of wind turbines. Wind Turbine components are subjected to various kinds of failures like Sensor malfunctioning & component failures.

- Performance of wind turbines is measured based on turbine power output and input wind speed.

- Voltage fluctuations across wind turbines need to be monitored by adopting suitable numerical data analysis of the past data to predict the desired quality.

- Proper maintenance & early fault detection plays an important role during Wind turbine life cycle.

- Need of data-driven approach to ensure a continuous performance monitoring to be used for turbine fault prognosis and maintenance management.
Numerical Data Analysis of Wind Turbine Systems

Why NDA?

- Overcome Limitations of DAQ systems
- Data-driven approach for performance monitoring & Forecasting.
- Techniques to reduce maintenance costs & Effort
- Sensor data Trend Analysis & Visualization
- Big Data Analysis, Wind Power forecasting & Predictive Analysis
- Data Mining & Data warehousing

Numerical analysis involves the study of methods of computing numerical data
Numerical Data Analysis of Wind Turbine Systems

NDA Architecture

Feature List

- Import Data Files
- Data Analysis
- Early Fault Detection
- Range & Limit Check
- Trend Visualization
- Covariance Method
- Export Data Sources
Numerical Data Analysis of Wind Turbine Systems

Wind Data Measurements

Model the wind data with various statistical Analysis techniques

Wind Data Measurements (SCADA) or Offline data (.txt & .csv) → Data Exchange with Matlab via OPC → Wind measurement Data @ Matlab Workspace

Wind Power Forecasting & Component Fault Prediction

Analysis Reports → Apply Statistical Analysis Techniques

Forecasting wind power and Component Fault Prediction using Wind Data
Numerical Data Analysis of Wind Turbine Systems

NDA Flow for monitoring Systems

- Sensor Data
- History Data (data measured over past few years)

Configuration setup

Trend Visualization

Apply Statistical Techniques
- FFT
- Min, Max, Mean & Stdev
- Correlation Techniques
- Persistence checks
- Distribution checks
- covariance method

Reports
- Live Indicators

Faulty Sensors

Prediction about Sensor Behavior for next few months
Numerical Data Analysis of Wind Turbine Systems

NDA Techniques for Wind Power Forecasting

- Wind power forecasting is a vital parameter in wind power operation
- Need to estimate short, medium, and long term power production
- Spectral analysis to estimate the power quality
- Forecasting are performed using time-series prediction & neural networks
- FFT & Power Spectral Density Analysis methods
- Step Change analysis techniques
- Distribution of Wind Speeds at various Hub Height
- Comparison of manufacturer's Power Curve & Calculated Power Curve
Numerical Data Analysis of Wind Turbine Systems

Results: WindSpeed vs Models
Numerical Data Analysis of Wind Turbine Systems

Infrastructure

- Matlab R2014a
- Data Acquisition Toolbox
- Signal Processing Toolbox
- Matlab Compiler
- Curve Fitting Toolbox
- OPC Toolbox
- Sensor Data
Benefits

- Reduce maintenance costs during operation
- Trend Visualization
- Early Fault detection & assisting Engineers in corrective measures
- Help design engineers to simulate the behavior with various data trends
- Easy to identify & calculate threshold values for various sensors
- Accurate results & Flexibility in handling data
Future Scope of Work

- Fitting few more probability density functions to the measured probability distributions on regular basis
- More statistical checks before predicting sensor behavior
- Interfacing with database & managing data
- More flexibility to choose wind speed in mph & m/s
- More flexibility to choose wind Power units in Watts & Kilowatts
Numerical Data Analysis of Wind Turbine Systems