Online Parameter Estimation with Maneuver Visuals

Dynamic System

Mathematical Model ??

Khadeeja Nusrath, Basappa Scientists
Modeling & Identification
FMCD, NAL
Content

- Modeling & Identification
- Online Estimation Process
- Maneuvers, Measurements, Methods, Models
- Recursive Parameter Estimation
- Implementation
- Maneuver Visualization
- Conclusions
Identification Algorithms

Mathematical models
- Define math models based on 6DOF equations and aircraft aerodynamics

Identification methods
- Extract unknown model parameters

Model validation
- Various criteria, Model predictive capability

Manoeuvres Selection
- Designing inputs to excite the modes

Measurement pre-processing
- Filtering, time sync, segmentation, Kinematic consistency,
Conventional vs Online

Conventional:
1. Design maneuver
2. Plan Flight testing
3. Aircraft take off
4. Execute maneuver
5. Aircraft lands
6. Analyse data
7. Results
 - Acceptable
 - stop
 - stop

Online:
1. Plan Flight testing
2. Aircraft take off
3. Execute maneuver
4. Analyse data
5. Results
 - Acceptable
 - Design maneuver
 - Aircraft lands
 - stop
 - stop
Online Estimation at Telemetry Station

- **Receiver**
- **Data Acquisition/Mater console**
- **Test Director**
- **Consoles for real time monitoring**

Communication with Test director
Data Flow
Applications of Online Estimation

- Envelope Expansion
- Immediate Manoeuvre Repetition
- Cut Down Extra Test Points
- Reconfigurable Control Laws
- Sensor/Actuator Failure Detection
- Damage of Lifting Surfaces
- Stability and Control Derivatives
- Speed Up Aircraft Certification
- Aircraft Icing
Measurements

- Time synchronization
- Sampling rates
- Signal to noise ratio
- Sensor calibrations
- Data drop outs

Typical set of Measurements

<table>
<thead>
<tr>
<th>Control Surfaces</th>
<th>elevator, aileron & rudder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerations</td>
<td>all three axes</td>
</tr>
<tr>
<td>Angular rates</td>
<td>roll, pitch and yaw rates</td>
</tr>
<tr>
<td>Flow angles</td>
<td>AOA and sideslip</td>
</tr>
<tr>
<td>Attitude angles</td>
<td>pitch and bank angle</td>
</tr>
<tr>
<td>Airspeed data</td>
<td>airspeed and Mach</td>
</tr>
<tr>
<td>Thrust data</td>
<td>engine thrust</td>
</tr>
<tr>
<td>Others</td>
<td>pressure altitude, static pressure, total pressure and outside air temperature</td>
</tr>
</tbody>
</table>
Manoeuvre Design

Flight Maneuvers

Parameter Estimation
- Short Period Pitch Stick
- Phugoid maneuver
- Bank to Bank roll
- Dutch Roll
- SHSS maneuver

Performance
- Acceleration - Deceleration
- Roller Coaster (Pull up/Push over)
- Wind up Turn
- SHSS maneuver

Important Aspects

If the information is not in the data, it cannot be modeled.

Control Inputs
Choose adequate form of input to excite the aircraft motion.

Excitation Level
- Sufficient excitation of different aircraft modes

Flight Maneuvers

Parameter Estimation
- Short Period Pitch Stick
- Phugoid maneuver
- Bank to Bank roll
- Dutch Roll
- SHSS maneuver

Performance
- Acceleration - Deceleration
- Roller Coaster (Pull up/Push over)
- Wind up Turn
- SHSS maneuver
Methods

Offline estimation after the flight test sortie
- Equation error
- Output error
- Filter error
- Neural Networks

Online /Real time estimation along with data acquisition
- Recursive Estimation (EKF/DFT/RLS)

Near Real time estimation using flight data saved for short duration during the sortie
- Equation error
- Output error
- Filter error

Equation Error
- Simple,
- one-shot, account for process noise,
- require good quality data

Output Error
- Non linear optimization
- Iterative, Accounts measurement noise
- Most routinely used

Filter Error
- State and parameter estimation
- Accounts both process and measurement noise
- complex

Recursive
- Parameter and state estimate at every sample
- Suitable for online estimation

Neural network
- Highly non linear models
- Black box modeling
Mathematical models

- Point Mass
 - Linear equations of motion
 - Short period dynamics
 - Small perturbations
 - Useful for control design
 - useful for quick checkout

- Linear Lateral/Directional Eqs.

- Linear Longitudinal Eqs.

- Rigid Body Dynamics
 - Full 6DOF nonlinear Eqs.
 - Long/Lateral motion
 - Useful for complete nonlinear simulation

L1-21
Longitudinal/Lateral Models

Short period dynamics:

\[
\dot{\alpha} = Z_o + Z_\alpha \alpha + Z_q q + Z_\delta \delta_e \\
\dot{q} = M_o + M_\alpha \alpha + M_q q + M_\delta \delta_e
\]

Dutch Roll Model:

\[
\dot{\beta} = L_o + L_\beta \beta + L_p p + L_r r + L_\delta_a \delta_a + L_\delta_r \delta_r \\
\dot{\gamma} = N_o + N_\beta \beta + N_p p + N_r r + N_\delta_a \delta_a + N_\delta_r \delta_r
\]
Implementation in MATLAB®

- Maneuver visualization using MATLAB® built in commands
- Recursive estimation involves matrix operations - easy to implement using MATLAB®
- Visuals can be saved as video files
- Easy to implement at telemetry station
Recursive Parameter Estimation

- Provides parameter estimate with every time step
- Signals measured are fed sample by sample to get the estimation results.
- Results can be displayed in real-time mode.
Maneuver Animation

Visualization of flight data for
- 3-Dimensional flight simulation
- Quality evaluation by replaying manoeuvre
- Flight state analysis.
- Analysis of accidents/incidents

Real time / Frame by Frame animation using Position and attitude information.

Video production
Animation of Windup turn Maneuver
Real-time Estimation & Maneuver Visualization
PITCHING MOTION IN REAL TIME
Concluding Remarks

- Results generated have shown that, combined with optimized inputs, online identification can yield accurate math models in real time.
- Maneuver visualization though animation provides better understanding of the flight states, leading to improved maneuver design and data analysis.

Future Work

- Future work will focus on real-time identification of global math models that can meet the FAA specified requirements under “Acceptance Test Guide”.

THANK YOU