Today’s Topics

- Introduction
- Computer Vision
 - Feature-based registration
 - Automatic image registration
 - Object recognition/Rotation correction with SURF and RANSAC
 - Face detection with Viola-Jones
 - Histogram-based tracking with CAMShift
 - Stereo image rectification
- Video processing
- Summary
Computer Vision

Using images and video to detect, classify, and track objects or events in order to “understand” a real-world scene

Image Processing
- Remove noise
- Adjust contrast
- Measure
 …

Computer Vision
- Detect
- Identify
- Classify
- Recognize
- Track
 …

Interpretation
- Pedestrian
- Bicyclist
- Truck
- Car
- Traffic violation
- Accident
 …
Examples of Computer Vision with MATLAB
Typical Computer Vision Challenges

- Variable lighting conditions
- Unknown scene depth or perspective
- Background clutter
- Partially hidden objects (occlusion)
- Differences in scale, location, and orientation
Technical Computing with MATLAB

Access
- Files
- Software
 - Code and Applications
- Hardware

Explore and Discover
- Data Analysis and Modeling
 - For k=1:max
 - \(x = \text{fft}(\text{data}) \)
 - \(y = 20 \times \text{log10}(y) \)
- Algorithm Development
 - Application Development
 - Option 1
 - Option 2

Share
- Reporting and Documentation
 - PDF
 - .doc
 - .html
- Outputs for Design
- Deployment
 - MATLAB
 - Excel
 - .NET
 - .exe
 - C/C++
 - Java
 - .dll
Key Products for Computer Vision

- Computer Vision System Toolbox - NEW
- Image Processing Toolbox
- MATLAB
- Statistics Toolbox
Computer Vision System Toolbox

Design and simulate computer vision and video processing systems

- Feature detection
- Feature extraction and matching
- Feature-based registration
- Stereo vision
- Video processing
- Motion estimation and tracking
- Video file I/O, display, and graphics
Features are Critical to Computer Vision

- Edge
- Corner
- Template
- SURF
- MSER
Feature-Based Registration

- Workflow
 - Feature detection
 - Feature extraction
 - Feature matching
 - Geometric transformation estimation with RANSAC
RANSAC

- Random Sample Consensus
 - Iterative estimation of parameters to a mathematical model from a set of observed data that contains outliers

- Our uses of RANSAC
 - Estimate Geometric Transformation
 - Estimate Fundamental Matrix (useful for stereo vision)
Rotation Correction with SURF

- **Workflow**
 - SURF Feature detection
 - SURF Descriptor extraction
 - Feature matching
 - Geometric transformation estimation with RANSAC
Object Recognition with Features

Workflow
- Use SURF features to represent object
- Detect features in video
- Match features from two sources
- Use RANSAC to estimate object location
Viola-Jones Face Detection

Algorithm details
- Haar wavelet features using integral image
- Adaboost classifier for feature selection
- Cascading of classifiers to quickly weed out negative candidates
- Use several modes together to overcome false positives
Histogram-based Tracking

Workflow
- Detect face and nose – get ROI
- Use Hue channel from HSV space
- Initialize histogram tracker
- Reacquire face if track lost
Stereo Image Rectification
Recovering Scene Depth with Stereo Cameras
Epipolar Geometry
Fundamental Matrix

\[X_L^T F X_R = 0 \]
Video Processing

- Video file I/O and display
- Video pre-processing
- Motion estimation and analysis
Motion Estimation and Analysis

- Techniques
 - Block matching
 - Optical flow
 - Template matching
 - Background estimation using Gaussian mixture models

- Applications
 - Object tracking
 - Interpolation
 - Compression
Typical Parts of a Computer Vision Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Toolboxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Image/video acquisition</td>
<td>Image Acquisition Toolbox</td>
</tr>
<tr>
<td>2</td>
<td>Image/video pre-processing</td>
<td>Image Processing Toolbox</td>
</tr>
<tr>
<td>3</td>
<td>Feature detection</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feature extraction</td>
<td>Computer Vision System Toolbox</td>
</tr>
<tr>
<td>5</td>
<td>Feature matching</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Using features</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Stabilization, mosaicking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Stereo image rectification</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Feature classification</td>
<td>Statistics Toolbox</td>
</tr>
</tbody>
</table>
Review: Key Products for Computer Vision with MATLAB

- Computer Vision System Toolbox
- Image Processing Toolbox
- Image Acquisition Toolbox
- Statistics Toolbox
Statistics Toolbox

Perform statistical analysis, modeling, and algorithm development

- **Clustering**
 - Principle components analysis
 - K-means
 - Gaussian mixture models

- **Classification**
 - Naïve Bayes
 - K-nearest neighbor search
 - Boosted decision trees
 - AdaBoost, GentleBoost, LogitBoost,…
Why Use MATLAB for Computer Vision?

- Comprehensive environment
 - Analysis, algorithm development, visualization, etc.
- Broad library of algorithms
 - Computer vision
 - Image processing
 - Classification and clustering
- Documentation, examples, and technical support
- Increased productivity over C/C++ programming
For More Information

- mathworks.com/products/computer-vision
- Relevant demos:
 - Barcode Recognition
 - Image Rectification
 - Traffic Warning Sign Recognition
 - People Tracking
 - Video Mosaicking
- Documentation
- Contact your sales representative
Questions and Answers