

Architecting Embedded Software Using Model-Based Design

Alan Moore

The MathWorks

Overview

- Developing algorithmic models in Simulink
 - Composing algorithmic models within the Simulink algorithmic architecture
 - Deploying algorithmic models as software systems
- Integrating Simulink algorithmic models into a componentbased architecture
 - Translating algorithmic models into software components in a software architecture
 - Programming language as integrating medium
 - UML as integrating medium
 - Integrating algorithmic models as components in an AUTOSAR software architecture

A Simple Algorithmic Model

- Twanted desired temperature
- Tactual sensed temperature
- recycReq recycle air
- distReq distribute heat
- ACAct activate AC
- HeaterAct activate heater
- RequiredTemp heater temperature
- BlowerOut fan speed

Temperature Control Algorithm

MATLAB® SIMULINK®

Technologies for Algorithm Composition

Subsystems

The MathWorks

AM14

- Interface propagation supports iterative approach
- Richer interface (enabled subsystem, function trigger ports)
- For prototyping and smaller algorithms

Referenceable models

- Interface tightly specified so easier to export to other environments
- More modular and scaleable
- Standalone so easier to integrate into external CM projects
- For larger algorithms and external deployment
- Both can be organized into libraries for reuse
- Automated conversion is available between the two representations

AM14 End with stuff about reuse. also talk about smaller components/composites in choice section. Alan Moore, 6/1/2007

MATLAB® SIMULINK®

Composite Algorithmic Model

Route to Software

More simple software architectures

- Rate-monotonic schedule
- Flow-based architecture
- Generate <u>software system</u> using Real-Time Workshop Embedded Coder
- More complex software architectures
 - Service-based architecture
 - Mandatory architectural patterns
 - Error handling
 - Supervision
 - ...
 - Generate <u>software component</u> using Real-Time Workshop Embedded Coder

More Complex Software Architectures Architectural Integration Through Code

More Complex Software Architectures The Unified Modeling Language (UML)

- Maintained by the Object Management Group (OMG)
 - Version 1.0 published in 1997
 - Version 2.0 published in 2005
 - Currently at Version 2.1.1
- Highlights
 - Wide variety of diagrams to support many phases of software development, including architecture and deployment
 - UML 1.X oriented around class (object-oriented) modeling
 - UML 2.X introduced more component-based modeling concepts
 - Extensions to UML under development for real-time and embedded systems

More Complex Software Architectures UML Integration Through Code

AUTOSAR Overview

- AUTOSAR Goals
 - Implementation and standardization of a single platform as an OEM wide "Standard Core" solution
 - Enable OEM's to focus on added value
- AUTOSAR Status
 - AUTOSAR Release 2.0 specifications
 - Published in May 2006, for information only
 - Available for download www.autosar.org
 - AUTOSAR Release 2.1
 - Scheduled for end of 2006
 - Will also be published and available for download

AUTOSAR Key Technologies*

Basic Software

 Software architecture including a complete basic (environmental) software stack for an ECU as an integration platform for hardware independent SW applications

Methods of Software Integration

 Exchange formats (templates) to enable a seamless configuration process of the basic software stack and the integration of application software in ECUs

Functional API

Specification of functional interfaces as a standard for application software modules

More Complex Software Architectures **AUTOSAR Integration**

12

More Complex Software Architectures AUTOSAR Demonstration Kit (ADK)

- Uses Simulink to import and export:
 - AUTOSAR Software Component (SW-C) Descriptions, in XML
- Customizes Real-Time Workshop® Embedded Coder to generate:
 - AUTOSAR SW-C Implementations (runnables) compliant with AUTOSAR Run Time Environment, in C code
- Supports:
 - AUTOSAR v2.0 and v2.1
 - Simulink R2006b and R2007a

Is a work in progress so is subject to change

More Complex Software Architectures Temperature Control Algorithm Wrapped

MATLAB® SIMULINK®

Use of ADK Artifacts in AUTOSAR

N.B. Only part of the total AUTOSAR tool chain shown here

Conclusion

- Simulink is the established architectural environment for algorithmic development
 - Choice of architectural approaches
 - Rich design and verification environment
 - Route to production code
- Software architectures are becoming more complex
 - Need to publish algorithmic models as components for integration
 - Real-Time Workshop Embedded Coder offers flexible C/C++ generation to create software components for integration
 - A C/C++ code-based approach can also be taken where UML is used for the software architecture
- Domain-specific architectures need more specialist support
 - AUTOSAR is maturing as a component-based platform in the automotive domain
 - AUTOSAR requires additional artifacts besides code to drive the AUTOSAR tool chain
 - The AUTOSAR Demonstration Kit allows a Simulink algorithmic model to be published as an AUTOSAR software component