

The Role of Real-Time Workshop® Embedded Coder in Supporting Cummins Inc. Vision for Model Based Development

MathWorks Automotive Conference
June 19-20, 2007
Dearborn, Michigan

Agenda

- Introduce Cummins
- Analysis Led Design Strategic Initiative
- Vision For Embedded Controls Development
- Meeting the Need:
 - Model Based Development
 - Product Line Architectures
- Challenges
- Why Real-Time Workshop® Embedded Coder?
- Future of Real-Time Workshop Embedded Coder
- Conclusions

Cummins is a Worldwide Diesel Engine Leader

- Cummins at a glance (2006)
 - Engines & power generation since 1919
 - 33,500 employees
 - \$11.4 billion in sales revenues
- Engines cover a wide range of applications
 - Engines to equip from Dodge RAM SUV to 200 tons mining truck
 - Heavy-duty trucks, buses, marine equipment, and power generation
- Cummins serves customers in over 160 countries

Why Analysis Led Design at Cummins?

- Cummins is a major producer of diesel engines in the automotive, industrial, power generation, & marine markets.
- Cummins is under constant pressure to deliver excellent fuel economy, emissions compliance, & durability at the lowest possible cost.
- EPA emissions mandates are driving increases in the complexity of controls' algorithms, and hence, the embedded controller code.
- Analysis is key to getting the highest quality products into customer's hands as rapidly as possible - "cut and try" is not efficient.
- Even after careful analysis, Cummins requires tools & processes to allow the more efficient development & testing of new designs.
- Anything Cummins can do to streamline & dovetail all phases of the V-cycle helps reduce cycle time and error.

Cummins' Vision for Embedded Controls Development

Cummins generates
models of the **Func. Design & Rapid Prototyping**
controller . . .

& test these models in simulation . . .

Target Code Generation

that is tested on actual hardware which is >95% bug free.

to produce automatic C-code straight from the controller model . . .

Meeting the Need

- Model Based Development (development side):

- Create system design environment
- Design, develop, & analyze a controller for managing a plant
- Generate C code automatically from Simulink® diagrams

- Product Line Architecture (software side):

- Realize similar core software throughout multiple product lines
- Define interfaces to allow addition/deletion of SW without compromising system integrity (plug-&-play)

Merging of Model Based Development & Product Line Architecture

MBD: Solution to Controller Complexity **WITHIN** a Product Line

PLA: Solution to Controller Complexity **ACROSS** Product Lines

Automatically Generate Embedded Code

Produce Embedded Controller

Without Sacrificing Simulation Capability

Challenges

- Product Lines are currently not pervasive throughout industry.
- Current 3rd party code generation tools are not based on this paradigm → *but they are getting there!*
 - Biggest roadblock is less about code generation & more about simulation:
 - e.g., function calls → how to realize in simulation?
 - e.g., pointers → how to realize in simulation?
 - Modifications are needed to allow current tools to meet requirements.
- Embedded controller design spans many different organizations within the company.
 - Workflows are different
 - End products are different
- Burden of proof rests with showing/proving benefits.

Why a Code Generator Now?

- Our workflows, existing tools & current processes foster the divergence of models → This divergence will only grow!

2002 controller was complex. 2007 is more complex. 2010 is even more complex.

- Industry is adopting Model Based Development methods to design controllers.
- New code generation tools are becoming capable of meeting our architecture requirements.
- There is a synergy to do this now & it is a corporate technical productivity strategy.

Embedded Controller Development V-Cycle

Goal:

- Single Simulink model of controller for entire V-cycle

Bridging the Gap to Reach Goal:

- Synergistic embedded controls culture
- Fully integrated tool base

Bridge-the-Gap

Why Real-Time Workshop Embedded Coder?

- MATLAB® and Simulink® are already workhorses of Cummins controls development organization.
- The MathWorks has demonstrated a superior support environment.
- Real-Time Workshop Embedded Coder . . .
 - Links code generation directly to simulation
 - Provides greater flexibility in the design of controller models
 - The MathWorks pilot team provides support packages allowing the “bending” of the tool to meet our needs.

Current Status of Real-Time Workshop Embedded Coder

- The support packages help to meet our basic architectural needs.
- Key SW parameters (throughput, memory, code size) are being monitored & early results look promising.
- Targeted component models are being converted & integrated into our total system simulation modeling framework.
- Model Based Development using Real-Time Workshop Embedded Coder is beginning to be embraced by upper management.
- Process & workflow changes are being pushed throughout company.
- Other tools are being modified to integrate with Real-Time Workshop Embedded Coder.

Future of Real-Time Workshop Embedded Coder

- **Cummins Key Initiatives**
 - PLA is key to success of software
 - MBD is key to success of controller algorithm development
- **Real-Time Workshop Embedded Coder must**
 - embrace PLA
 - as well as MBD
 - continue to foster a collaborative relationship with Cummins

Product Line Architecture

Model Based Development

Conclusions

- The design of embedded controllers has become more challenging due to EPA rules & regulations.
- Cummins has been pursuing Model Based Development for last decade.
- Our major challenge is closing the gap between development & code generation.
- Cummins selected Real-Time Workshop Embedded Coder to close this gap.
- Preliminary analysis shows great promise both in realizing simulation and in code generation.
- The MathWorks has given us excellent support so far.
- Real-Time Workshop Embedded Coder must continue to evolve to meet demands of SW created by Product Line architected systems.