Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis

Dakai Hu, Ph.D MathWorks Application Engineer
Haiwei Cai, Ph.D ANSYS Application Engineer
Motivation

• Traditionally, workflow of the machine design team and the control team have proceeded separately.

• DoE on a dyno setup requires an understanding of the machine characteristics and simulation can help determine a minimum number of points to test.

• Accurate torque ripple profile of a high fidelity machine model facilitates the development of torque ripple mitigation algorithms.
Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)
Content

MathWorks

• Objective and Workflow Overview
 • Three Levels of PMSM Model Fidelity
 • How to Obtain Saturation + Spatial Harmonics Data
 • Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

• Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
• Importing Raw Data from Maxwell Finite Element Result to Simulink
• Comparison between PMSM model in Simulink and Maxwell (FEA)
Objective and Workflow Overview

ANSYS Maxwell

Simulink
Objective and Workflow Overview

ANSYS Maxwell generates Model_RawData.txt file

Process raw data into proper format through MATLAB scripting

Bring processed data into Simulink saturation + harmonics motor model structure
Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)
Three Levels of PMSM Model Fidelity

- **Lumped Parameter**
- **Saturation**
- **Saturation + Spatial Harmonics**
Lumped-Parameter Model

Torque

Current
Required Parameters

Electrical Model

\[v_d = Ri_d - L_q p \omega_r i_q + L_d \frac{d}{dt} i_d \]

\[v_q = Ri_q + p \omega_r (L_d i_d + \lambda) + L_q \frac{d}{dt} i_q \]

\[\omega_e = p \omega_r \]

\[T_e = 1.5p[\lambda i_q + (L_d - L_q)i_d i_q] \]

\[T_e = K_t i_q \text{ (assumes round rotor, } L_d = L_q) \]

Mechanical Model

\[\frac{d}{dt} \omega_r = \frac{1}{J} (T_e - \text{sgn}(\omega_r)J_0 - b \omega_r - T_{load}) \]
How to Get Those Parameters?

<table>
<thead>
<tr>
<th>Motor Tests</th>
<th>Parameters Identified</th>
<th>Identification method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back EMF Test</td>
<td>Number of Pole Pairs (p)</td>
<td>Calculation</td>
</tr>
<tr>
<td></td>
<td>Flux Linkage Constant (λ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torque Constant (K_t)</td>
<td></td>
</tr>
<tr>
<td>Friction Test</td>
<td>Viscous Damping Coefficient (b)</td>
<td>Curve fitting</td>
</tr>
<tr>
<td></td>
<td>Coulomb Friction (J_0)</td>
<td></td>
</tr>
<tr>
<td>Coast Down Test</td>
<td>Rotor Inertia (J)</td>
<td>Curve fitting</td>
</tr>
<tr>
<td>DC Voltage Step Test</td>
<td>Resistance (R)</td>
<td>Parameter estimation</td>
</tr>
<tr>
<td></td>
<td>Inductance (L)</td>
<td></td>
</tr>
</tbody>
</table>

Saturation Model

Torque

Current

Calculate Flux

$\lambda_{n}[n] - \lambda_{n-1}[n] + T_r[n-1] \cdot R_s[n-1] + i_q[n-1][n-1]$

Calculate Torque

$T[n] = \frac{J_T}{2} (\lambda_{n}[n] - \lambda_{n}[n-1])$

Calculate Speed

$\omega[n] = \omega[n-1] + T_r[n] / J_T[n] - T[n] - B_s[n][n-1]$

$\omega[n] = PP \cdot \omega_{in}[n]$

$\omega[n]$
Two Ways to Obtain Saturation Data

Dyno testing

FEA
Nonlinear Flux and Current Tables
Saturation PMSM Model in Simscape

Mechanical Eqn.
Saturation + Spatial Harmonics Model
Animation: flux variation at different rotor position
Content

MathWorks

• Objective and Workflow Overview
• Three Levels of PMSM Model Fidelity
• How to Obtain Saturation + Spatial Harmonics Data
• Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

• Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
• Importing Raw Data from Maxwell Finite Element Result to Simulink
• Comparison between PMSM model in Simulink and Maxwell (FEA)
How to Obtain Saturation + Spatial Harmonics Data?

Current → Rotor Position → Sweep in FEA Tool → Flux Linkage → Torque
Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Workflow of Importing Maxwell ECE model to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)
Saturation + Spatial Harmonics Model Structure in Simulink
Content

MathWorks

• Objective and Workflow Overview
• Three Levels of PMSM Model Fidelity
• How to Obtain Saturation + Spatial Harmonics Data
• Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

• Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
• Importing Raw Data from Maxwell Finite Element Result to Simulink
• Comparison between PMSM model in Simulink and Maxwell (FEA)
Content

MathWorks

• Objective and Workflow Overview
• Three Levels of PMSM Model Fidelity
• How to Obtain Saturation + Spatial Harmonics Data
• Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

• Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
• Importing Raw Data from Maxwell Finite Element Result to Simulink
• Comparison between PMSM model in Simulink and Maxwell (FEA)
What does ANSYS Maxwell do?

- ANSYS Maxwell is a premier low-frequency electromagnetic field simulation solution which uses the highly accurate finite element method to solve static, frequency-domain, and time-varying electromagnetic and electric fields. Typical application of Maxwell includes electric machines, transformer, actuator, sensor, etc.
Objective and Workflow Overview

1. **ANSYS Maxwell generates Model_RawData.txt file**
2. **Process raw data into proper format through MATLAB scripting**
3. **Bring processed data into Simulink saturation + harmonics motor model structure**
How to obtain raw data for PMSM model by ANSYS Maxwell?

Steps to Generate ECE Model for PMSM

- **Step 1:** Create Regular FEA Model
 - Current & Position
 - Flux & Torque

- **Step 2:** Specify Model Resolution
 - ECE3_Model
 - ECER_Model

- **Step 3:** Run FEA Model to Generate Lookup Table
 - Model_RawData.txt
What is Equivalent Circuit Extraction (ECE) Model in ANSYS Maxwell

• ECE Model - A circuit model based on a lookup table from precomputed Finite Element Analysis result. It is also known as Reduced Order Model (ROM).

- Current and Rotor Position Sweeps
- Transformation for Sweeping Currents
- Field Analysis
- Transformation for Flux Linkages
- Look-up Table Extension and Creation
ECE Models Needed for PMSM – ECE3 and ECER Equivalent Circuit Extraction (ECE)

- Maxwell Circuit Components for Sweep Setup
 - ECEW_Model: ECE one winding model
 - ECE3_Model: ECE three-phase model
 - ECER_Model: ECE rotation model
 - ECEL_Model: ECE linear motion model
 - ECET_Model: ECE transformer model

- ECE Model Formats
 - ECE Simplorer model in file .sml
 - ECE Look-up table for third parties (Saber, ETAS, NI)
 - ECE VHDL model (Future)
 -- ECE Simulink Model (.txt)

Models Needed for PMSM

ECE3_Model - Setup the sweeping of currents in three-phase windings

ECER_Model - Setup the sweeping of rotor position
ECE3 Model - Setup Sweeping of Current in Three-Phase Winding

- CurrentSweep: Specify Current Range and Resolution
- PhAngIntervals: Choose Current Sweep Coordinate System
ECE3 Model - Current Sweep Coordinate System Options

- **1) DQ Coordinate System:**
 - 0: positive d & q.
 - 1: positive q, all d.
 - 2: all d & q (default)

- **2) αβ Coordinate System**

- **3) Polar DQ Coordinate System**

 e.g. PhAngIntervals=16
ECER Model - Setup Sweeping of Rotor Position

- RotAngMax: Maximum rotating angle for sweep for each Id-Iq variation. In balanced cases, a 60 elec. degree sweep is sufficient.
- Auto d-axis alignment (no need to manually adjust initial rotor position)
- Slots: enable a separate lookup table for cogging torque.
Fast Model Generation Technique - Partial Model Sweeping for Symmetric Structure

- 60 Degree Phase Symmetry - Duplicate Data from 60 degree segments:
 PhaseA Reconstruction: A, -B, C, -A, B, -C
 PhaseB Reconstruction: B, -C, A, -B, C, -A
 PhaseC Reconstruction: C, -A, B, -C, A, -B

One 60 elec. Degree Sweep

360 elec. degree Reconstructed

auto d-axis alignment
Current Sweeps: \((10*2+1)^2 = 441\) Id-Iq variations

\[
\begin{align*}
\text{Id} &= -300A, -270A, \ldots, -30A,0,30A,\ldots, 270 A, 300A \\
\text{Iq} &= -300A, -270A, \ldots, -30A,0,30A,\ldots, 270 A, 300A
\end{align*}
\]

Rotor Position Sweep: 0 \text{ deg (d-axis)}, 1 \text{ deg}, 2 \text{ deg}, 3 \text{ deg}, \ldots, 14\text{deg}. 15 rotor positions.

For each Id-Iq variation, 15 rotor positions will be swept to reconstruct a 360 elec. degree sweep.

Total number of time steps calculated = \(441 * 15 = 6615\). (About 2 second/step)
Content

MathWorks

• Objective and Workflow Overview
• Three Levels of PMSM Model Fidelity
• How to Obtain Saturation + Spatial Harmonics Data
• Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

• Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
• Importing Raw Data from Maxwell Finite Element Result to Simulink
• Comparison between PMSM model in Simulink and Maxwell (FEA)
Objective and Workflow Overview

- ANSYS Maxwell generates Model_RawData.txt file
- Process raw data into proper format through MATLAB scripting
- Bring processed data into Simulink saturation + harmonics motor model structure
Four Steps in Maxwell_to_MATLAB Script.m

Model_RawData.txt → Maxwell_to_MATLAB Script.m → Simulink Model

• Step 1: Import Original Raw Data from Maxwell ECE Model.
• Step 2: Create \((I_d, I_q, \text{Angle})\) to \((\text{Flux D, Flux Q, Torque})\) Lookup Table (3D Lookup Table) based on the raw data.
• Step 3: Create inverse lookup table to get current from flux input.
 \((\text{Flux D, Flux Q, Angle})\) to \((I_d, I_q, \text{Torque})\) Lookup.
• Step 4: Provide additional Parameters.
 Initial rotor angle, phase resistance, rotor inertia, friction coefficient.
n-D Lookup Table in Simulink

• There are three Tabs in the n-D Lookup Table block: 1) Table and Breakpoints; 2) Algorithm and 3) Data Types.

• As an example, the screen shots below show a Table and Breakpoints setup for d-axis flux 3D lookup table. Iq_index, Id_index, Angle_index and Flux_d_ofIdIqTheta are defined in Workspace already.
Set up n-D Lookup Table in Simulink

• Model Structure.

Current to Flux Lookup - Maxwell Direct Result
Current Excitation, Frequency = 2 Hz, 30 rpm
No Mechanical Dynamic
Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)
Objective and Workflow Overview

ANSYS Maxwell generates Model_RawData.txt file

Process raw data into proper format through MATLAB scripting

Bring processed data into Simulink saturation + harmonics motor model structure
Comparison between Simulink model and Maxwell FEA model: Four cases to compare current, flux, and torque waveform.

1. Open circuit
2. Sinusoidal winding current input
3. Voltage input under constant rotor speed
4. Voltage input with mechanical dynamic (Starting of PMSM)
Example – Prius IPM motor –
Open circuit – Cogging torque & Back EMF

Flux to Current Lookup - Inversed Maxwell Result
Cogging Torque Waveform Display,
Voltage = 0, Frequency = 0.4 Hz. (6 rpm),
Phase Resistance = 3.45 Ohm. NO Mechanical Dynamic

- Simulink result is compared with Maxwell result. The results are very close.
- Inverse lookup is successful.
Sinusoidal winding current input
Torque ripple

Current to Flux Lookup - Maxwell Direct Result
Current Excitation, Frequency = 2 Hz, 30 rpm
No Mechanical Dynamic

- Simulink result is compared with Maxwell result. The results are identical.
- Data transfer is successful.
Voltage input under constant rotor speed
Electrical Transient

- Simulink result is compared with Maxwell result. The results are very close.
- Motor phase resistance is considered.

Flux to Current Lookup - Inversed Maxwell Result
Electrical Transient Display
Voltage = 30 V (Steady State), Frequency = 20 Hz. (300 rpm).
Phase Resistance = 0.069 Ohm.NO Mechanical Dynamic

Simulink Result
Maxwell Result
Voltage input with mechanical dynamic
Mechanical & Electrical Transient

Flux to Current Lookup - Inversed Maxwell Result
Mechanical Transient Display
Voltage = 50, Frequency = 20 Hz (300rpm Steady State),
Load Torque = 250Nm, Rotor Inertia = 0.054
Phase Resistance = 0.069 Ohm

• Simulink result is compared with Maxwell result. The results are very close.
• Mechanical dynamic is considered.
Key Takeaways:

- ANSYS Maxwell can perform sweeping and generate raw machine data.
- Raw machine data can be processed and brought into Simulink for high fidelity machine modeling.
- High fidelity machine model is an accurate representation of the actual machine and it runs really fast in Simulink.