Challenge
Implement FPGA based radio signal processing in a small team mainly consisting of people with signal processing and programming background

Solution
Use HDL Coder to generate VHDL for signal processing

Results
- Successful implementation running on FPGA
- Generated code easy to integrate into main design
- Very short lead time for changes in design
RADIO TEST BED DESIGN USING HDL CODER
OUTLINE

› Introduction
› Challenges in test bed design
› Solutions enabled by using HDL Coder
› Experiences made along the way
› Conclusions
BIOGRAPHY

Tomas Andersson

› Licentiate of Engineering in Communications and Information Theory, KTH, 2006
› Working at Ericsson since 2008
 - Test bed development
 - Base band signal processing
 - Implementations in C and Assembly
 - Limited prior experience with FPGA:s and VHDL
› Runs a small horse farm in the spare time
SYSTEMS & TECHNOLOGY

› Department at Ericsson
› Responsible for technology leadership
› Involved in
 – Standardization
 – Concept development
 – Pre-studies
 – Radio technology strategic work
› Test bed activities
 – Demonstrate new technology
 – Proof of concept
 – Pre commercial testing
TEST BED DEVELOPMENT

› Done in small teams (<10 persons)
 - Highly skilled in programming and signal processing
› Short lead times
 - Typical project duration ~1 year
› Important to be first
 - Constant race against competitors
› Cost optimization not a priority
CHANGING SCOPE

› Previous test beds
 – Focus on system level or base band features
 – Commercial front end radio, re-banded to test frequency
 – Drawback: Difficult to add features to radio front end

› New test bed
 – Develop front end radio within test bed organization
 – Possible to implement features in front end FPGA
 – New development required
In a short time frame
Develop signal processing for an FPGA
In a team with little experience in writing VHDL
Use HDL Coder for VHDL generation
FRAMEWORK

Code generation for signal processing

Manual implementation of a few interfaces

FPGA vendor supplied IP cores

FPGA vendor high-level integration tool
DESIGN GUIDELINES

› Use HDL supported blocks in simulation
› Use fixed point from start of design
› Simulink primitives for low level algorithm design
› Matlab function blocks for control logic
› Subsystems to raise abstraction level
INTRODUCING HDL CODER INTO WORKFLOW

› Training period, ~2 months
 – Learning Simulink
 – Testing HDL Coder
 – Finding limitations in synthesis
 – Finding workarounds for limitations

› Implementation, 1 month
 – Design of custom components
 – High level design of signal processing chain

› Integration, 1 week
 – Include generated code in FPGA framework
 – Resolve timing issues
BENEFITS

› A single model for simulation and code generation
 – No hand offs between systemization and implementation
 – Ready for FPGA as soon as simulation works
› Short iterations for changes in design
› Simulink block diagram resembles “manager level” power points
 – Drawback: makes it look a bit too easy
› FPGA implementation done by person with limited VHDL competence
CHANGING SCOPE AGAIN

› New ideas emerge
 – Other carrier configurations
 – Wider bandwidths

› Need for major changes in design
 – New systemization
 – Re-tuned algorithms
 – Changed implementation

› Using HDL Coder we were able to demonstrate that the change was possible

› Working demonstration in less than one week!
CONCLUSIONS

› Code generation is well suited for test bed purposes
› A single model for simulation and code generation significantly shortens design lead time
› Generated code is well structured, readable and accurate

› HDL Coder has been a key factor in this project