

(v. 1Q25)

Big Data Analysis

Deep Learning

Machine Learning

Reinforced Learning

Predictive Analytics

Internet of Things

Process Optimization

Model-Based Design

Process Automation

New Process Integration

The creators of

MATLAB[®] SIMULINK[®]

Americas
United States
Brazil
Middle Fast

Middle East UAE

Asia-Pacific

Australia China India

Japan Korea

Malaysia

Europe
Finland
France
Germany
Ireland
Italy

Netherlands
Poland
Spain

Sweden Switzerland

UK

6,500+ staff

in 34 offices around the world

140+ Toolboxes

for STEM applications

40 years in business

and profitable every year

Industrial Solutions for Energy Resources

Artificial Intelligence (AI)

Predictive analytics and machine learning for data-driven modeling, anomaly detection, failure prediction, and real-time optimization

Improve reliability, safety, decision-making

Petroleum

Minerals

Chemicals

Materials

Model-based Design (MBD)

Dynamic process simulation and optimization for process control design, digital twin development, real-time monitoring, and predictive analytics

Improve efficiency, safety, profitability

2 **MBD** SIP MATLAB[®] SIMULINK* **~** MPC O&F **APC**

Signal & Image Processing (SIP)

Seismic data analysis and interpretation with advanced filtering, denoising, spectral analysis, and machine learning-based feature extraction

Enhance subsurface imaging & characterization

Advanced Process Control (APC)

Model predictive control (MPC) for real-time process optimization, dynamic modeling & simulation, and control system design

Improve efficiency, stability, performance

SDK

Optimization & Finance (O&F)

Asset investment planning, risk analysis, and supply chain optimization for capital allocation, portfolio management, and pricing strategies

Maximize profitability and reduce uncertainties

Upstream

Midstream

Downstream

for data analysis, visualization and decision support across enterprise systems and clouds

Prompt analysis, optimization, predictability

Software Development Kit (SDK) Custom and interactive engineering applications

E&P **EOR**

CCS **Circularity**

Geothermal H₂ | Li

Upstream Energy | MathWorks Solutions in

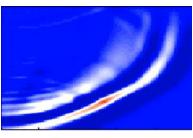
Enablers

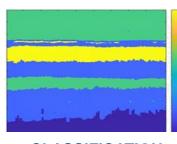
MRST

Customized Subsurface Modeling

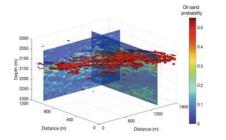
Rapid prototype custom models for unconventional, fractured, geological storage, and geothermal reservoirs

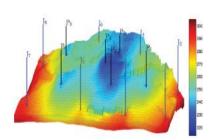
High-Performance Computing

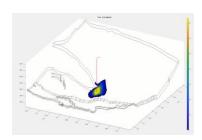

Accelerate large-scale data processing and simulation with GPU computing on-prem or on-cloud


Predictive Analytics of Big Data and Signals

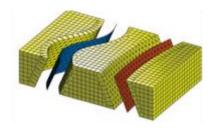
Streamline data analytics to extract value of information (VOI) timely with built-in AI/ML workflows


Workflows

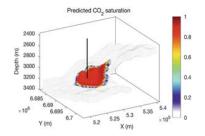

IMAGING


CLASSIFICATION

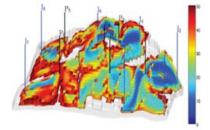
CHARACTERIZATION

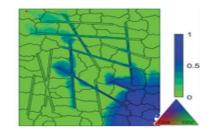


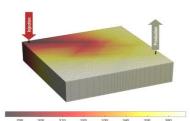
MODELING



SIMULATION


Applications


Subsurface Modeling


Geological Storage

Enhanced Recovery

Fractured Reservoirs

Geothermal Reservoirs

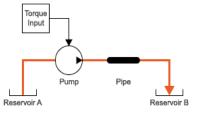
Midstream Energy | MathWorks Solutions in

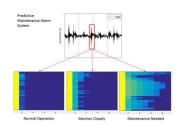
MBD

Cost-Effective Model-Based Design

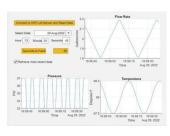
Rapid prototype, test, and verify models to reduce downtime and costs and ensure safe and reliable operations

Data Integration & Process Optimization

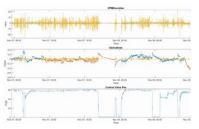

Integrate sensor data from PI & SCADA to streamline production data analytics and optimize operational processes



Real-Time Analytics & Digital Twins


Develop digital twins for real-time monitoring, predictive maintenance, and dynamic process control

MODELING

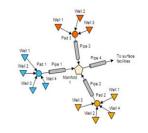

MONITORING

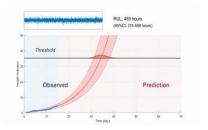
ANALYSIS

OPTIMIZATION

RT ANALYTICS

Applications




Predictive Maintenance

LNG Processing

Production Optimization

Process Reliability

Downstream Energy | MathWorks Solutions in MATLAB SIMILINIA

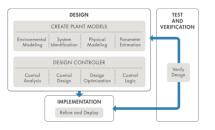
Enablers

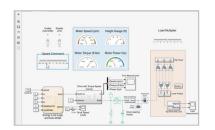
APC

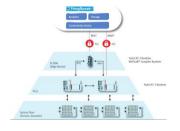
Advanced Process Control & Model-Based Design

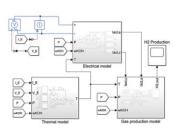
Enhance design, modeling, and control of complex production processes to ensure safety and reliability more cost-effectively

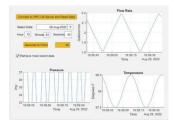
Data Integration & Process Automation


Integrate sensor data from PI & SCADA to streamline production data analytics and optimize process performance




Real-Time Analytics & Digital Twins

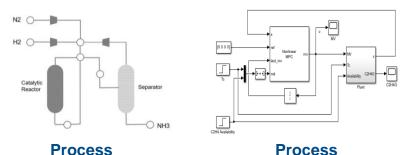

Develop digital twins for real-time monitoring, predictive maintenance, and dynamic process control

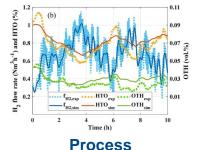

Workflows

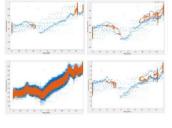
MODELING

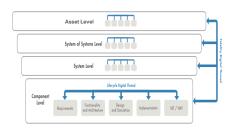
Modeling

MONITORING


Control


AUTOMATION


DIGITAL TWIN


RT ANALYTICS

Applications

Process Optimization Monitoring

Process Scalability

What Upstream customers have achieved using MathWorks products

Customer	Objective	Outcome	MathWorks solutions
	Drilling Modeling, Simulation, and Control	Improved drilling performance and automation	MATLAB & Simulink
E x onMobil	Model drill string dynamics for operational surveillance, diagnosis, and automation	 Continuously improve drilling automation process Save time selection and optimizing drilling systems 	Simscape + StateflowControl Systems
	Natural Fracture Prediction and Analysis	Efficient geomechanical modeling & simulation	MATLAB
aramco (Perform key structural geomechanics analysis in a computational and cost-efficient manner	 Accelerated reservoir geomechanics workflow for elastic dislocation and fracture prediction analysis 	Math & OptimizationApp Deployment
	Reduced-Order Reservoir Simulation	Accelerated reservoir management decisions	MATLAB
Chevron	Simulate reservoir and surface conditions in a mature oilfield to optimize production recovery	Integrated LSTM-CRM reservoir modelsSupported real-time decision making	Reservoir Modeling & SimulationOptimization & App Deployment
	Microseismic Monitoring of Carbon Storage	Accelerated CCS surveillance decisions	MATLAB
Shell	Design measuring-monitoring-verifying (MMV) plan for CO2 storage using microseismic data	Developed a risk-based MMV app for microseismic analytics to assess containment at CCS complex	Image & Signal ProcessingData Analytics +App Deployment
	Oil Production Modeling and Control	Integrated process control theory and practice	MATLAB & Simulink
ER PETROBRAS	Model oil production processes, dynamic responses, and advanced control structures	 Production methods for data processing, modeling, and simulation of oilfield control systems 	Math & OptimizationControl Systems
	Borehole Image Processing and Analysis	Enhanced DAS survey modeling & VSP imaging	MATLAB
HALLIBURTON	Model and process distributed acoustic sensor (DAS) datasets to enhance borehole images	Integrated seismic models to design DAS surveysDesign migration algorithms for VSP images	Image & Signal ProcessingMath & Optimization
s alb	Adaptive Multi-Domain Controller Design	Improved wireline logging operations	MATLAB + Simulink
SID	Model, simulate, and deploy multi-domain controller systems for operational optimization	 Customized control system model, generated embedded code, and test automation in DevOps 	Simscape + StateflowControl Systems + Simulink Test

How Energy companies benefits from MathWorks technology

- Accelerate advanced data analytics
- Real-time modeling and simulation of complex production systems

Optimize exploration, production, and refining operations

- Simulate process control systems
- Analyze large-scale sensor data
- Predictive maintenance algorithms

Improve asset reliabilityReduce operational costs

- Design multi-physics digital twins
- Integrate with existing IT/OT systems
- Execute agile, data-driven workflows

Accelerate process efficiency

Drive innovation across upstream, midstream, and downstream

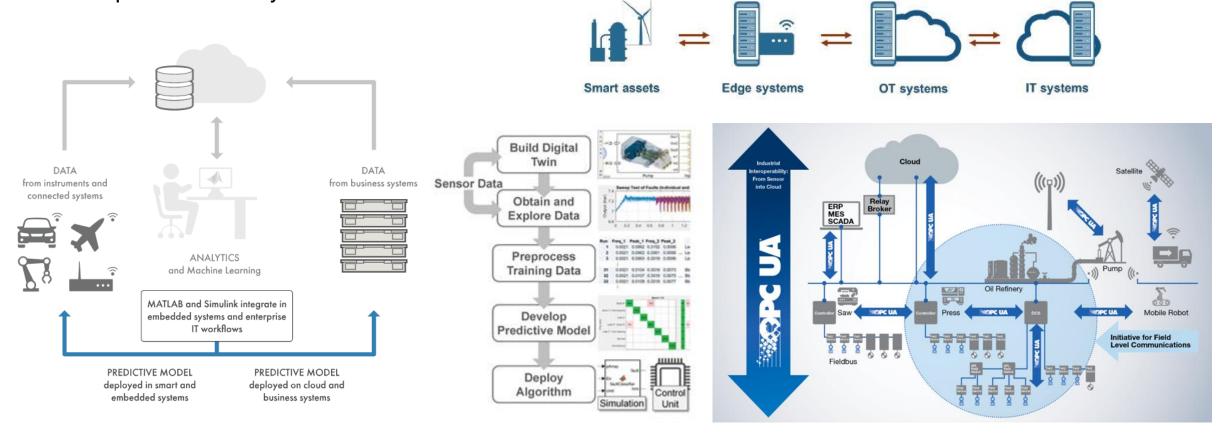
Upstream Geosciences | Big Data Science Workflows

	•				
Workflow	Imaging	Conditioning	Classifying	Inverting	Predicting
Inputs	Prestack seismic gathers Seismic velocity model	Prestack migrated gathers (after NMO or NHMO)	Seismic migrated stacks Seismic inversion volumes	Prestack conditioned AVO-compliant gathers	Seismic inversion volumes Subsurface property vols.
Key features	Prestack imaging (RTM, LSM, FWI) Parallel computing (CPU, GPU)	Reduced order modeling (AVO, AVA, AVAz) Gather flattening Spectral balancing	Structural / Stratigraphic classification Spectral decomposition PINNs (CNN, RNN)	Rock physics modeling Petroelastic inversion Geostatistical modeling Bayesian classification	Sweet spot classification Petroelastic/Geomechanical Petroelastic classification PINNs (CNN, RNN)
MATLAB® Toolboxes	Seismic GPU GIS Imaging Computing Mapping	Signal Deep GPU Processing Learning Computing	Signal Deep GPU Computing	Rock Geophysical GPU Computing	Signal Deep GPU Computing
Outputs	Prestack migrated gathers Prestack migrated stacks	Prestack conditioned AVO-compliant gathers	Structural class. volume Stratigraphic class. volume	Seismic inversion volumes Subsurface property vols.	Sweet spot geobodies Property class. volumes
Examples	Velocity Model Travelime for shot 100 \$\begin{align*} 200 400 600 800 1000 \\ \begin{align*} 2	Ralio of ray-parameter to critical ray-parameter (p/p _e	Actual Labels 6 5.5 5 4.5 4.5 4.5 4.5 9.0 1000 10 20 30 40 50 60 70 80 90	(posterior mean) well logs) The posterior mean (post logs) T	State Costs Time Bry Went from Time Bry Went
	Velocity Model Stacked Image 200 400 500 1000 200 400 500 1000 200 400 500 500 1000 200 400 500 500 1000 200 400 500 500 1000 200 400 500 500 500 500 500	0.6 PP ROM Synthetic 0.60 0.7 0.70 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	Predicted labels 6 5.5 5 4.5 4.5 4.5 900 900 10 20 30 40 50 60 70 80 90	Permonality (PIC) 100	

Upstream Engineering | Production Optimization Workflows

Modeling	Simulating	Automating	Monitoring	Optimizing
Reservoir property grids Production history data	Reduced order models Dynamic model decks	Production history data Reservoir model updates	Borehole and surface pipeline sensor data	Production history data IPR & VLP data
Reduced order modeling CRM modeling Dual-porosity modeling	Geomechanical simulation Compositional fluid sim. Sensitivity analysis	Automatic history matching (AHM) Machine learning model	Subsurface-to-surface nodal analysis Steady-state analysis	Multi-domain production optimization Steady-state analysis
Subsurface Deep GPU Computing	Subsurface Global GPU Computing	Subsurface Machine GPU Computing	Subsurface Simulation Simscape GPU Computing	Global Computational GPU Computing
History matching outputs Reservoir model updates	History matching outputs Reservoir model updates	History matching outputs Reservoir model updates	Borehole and surface dynamic properties	Production history outputs
20 Single State St	10 19 19 19 19 19 19 19 19 19 19 19 19 19	(3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Gas III Gas II	Bottomhole pressure (P ₂) VLPs
Oil Rate (stx/day) Water Rate (stx/day) Gas Rate (mst/day) 10 10 10 10 10 10 10 10 10 1	10 × 10 ⁴ — **Observed 8x8x4: 68	Water Saturation	Webse Po Pi	$q_o q_w q_g$
7000	1	2005 30 section 10 sec	Surface 1800 1770 1770 1770 1770 1770 1770 1770	Person = 150.50 page One = 28.8 mercid Water = 464.22 shot Presson = 150.50 page On = 5.00 page On = 5.00 page Presson = 150.50 page On = 5.00 page On
	Reservoir property grids Production history data Reduced order modeling CRM modeling Dual-porosity modeling Deep Learning Computing History matching outputs Reservoir model updates Oil Rate (stb/day) Oil Rate (stb/day) Water Rate (stb/day) Oil Rate (stb/day) Water Rate (stb/day) Oil Rate (stb/day)	Reservoir property grids Production history data Reduced order modeling CRM modeling Dual-porosity modeling Dual-porosity modeling History matching outputs Reservoir model updates	Reservoir property grids Production history data Production history data Reservoir model updates Reduced order modeling CRM modeling Dual-porosity modeling Dual-porosity modeling Deep Computing History matching outputs Reservoir model updates History matching outputs Reservoir model updates History matching outputs Reservoir model updates	Reduced order models Dynamic model decks Reduced order modeling CRM modeling Dual-porosity modeling Dual-porosity modeling Cepang Computing Dual-porosity modeling Dual-porosity modeling Order modeling Dual-porosity modeling Dual-porosity modeling Dual-porosity modeling Dual-porosity modeling Order of Computing Orde

MathWorks® in Energy Resources


Industrial Workflows for Midstream and Downstream Energy

Real-Time Analytics (AI, IPCV, HPC)

Sensor data analysis for production surveillance, and machine learning for predictive analytics

Process Control and Automation (APC, DCS, PLC, SCADA)

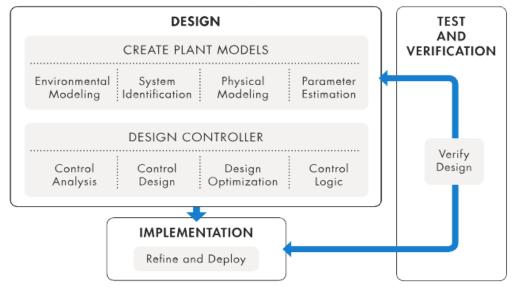
Multi-physics digital twins (MBD) for fast prototyping of complex processes integrated with process control systems and IIoT sensors

MathWorks solutions for Midstream Asset Management

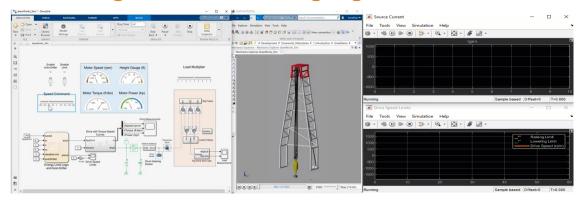
Workflow	Key Solutions	Main Objectives	Major Applications	Examples
System Design & Simulation	Simulink & Simscape	 Design and model digital twins of complex multi-domain LNG infrastructure Simulate and optimize LNG facilities design before construction Visualize and analyze dynamic interactions between LNG subsystems 	 Fluid dynamics, thermodynamics, control systems Predictive, real-time operational optimization Gas processing and compression, LNG cooling 	 Optimize and Automate Energy Assets with Digital Twins in MATLAB and Simulink Optimize Oil & Gas Production Assets with Simscape - MATLAB & Simulink
Control System Development	MPC, Control Systems & PLC Coder	 Design advanced control systems essential for LNG processes Generate structured text to deploy on PLCs and embedded controllers 	 Gas liquefaction, storage, and transportation Safe and efficient temperature & pressure control LNG facility process automation 	 <u>Digital Twins for Industrial IoT - MATLAB & Simulink</u> <u>Developing Energy Systems from Tank to Fuel Cell - MATLAB & Simulink</u>
Predictive Maintenance & Reliability Analysis	Pred. Maintenance, Machine & Deep Learning	 Design predictive algorithms using sensor data from LNG facility equipment Predict operational performance using data-driven models and data analytics 	 Proactive maintenance to avoid unplanned downtime Optimize maintenance schedules (compressors, pipelines, tanks) Predict equipment degradation 	 Introduction to Predictive Maintenance with MATLAB Digital Twins for Predictive Maintenance of Oil & Gas Processes - MATLAB & Simulink
Process Optimization & Safety Assessment	Optimization & Planning	 Optimize facility layouts, pipeline routing and LNG processing parameters Quantify risks in complex LNG operations Model safety-critical LNG systems 	 Enhanced operational efficiency, safety, and cost effectiveness Assess potential failures in pipelines, tanks, or processes 	Optimizing Operational Processes with Reinforcement Learning in MATLAB
Scalability & Enterprise Systems Integration	App Deployment Servers & Industrial Communications	 Process historical and real-time data from PI systems to fine-tune operations Integrate SCADA, ERP, and PI historians to analyze and optimize operational data Deploy enterprise-wide applications 	 Advanced process analytics to improve energy efficiency Run complex analysis, visualize data trends, and make data- driven decisions in real time 	 MATLAB Production Server – MATLAB MATLAB Web App Server – MATLAB Industrial Communication Toolbox - MATLAB

MathWorks® in Energy Resources

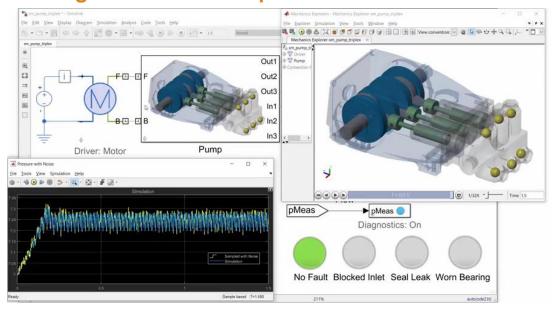
Modular Open-Systems Approach for Digital Twins


Objectives

- Monitor, predict, and automate IT/OT systems
- Integrate data science and engineering analytics


Advantages

- Efficient, secure, and high-quality outputs
- Verify, adapt, and transform before you invest


Modular Open-Systems Approach

Digital Twin for Drilling Rig Automation

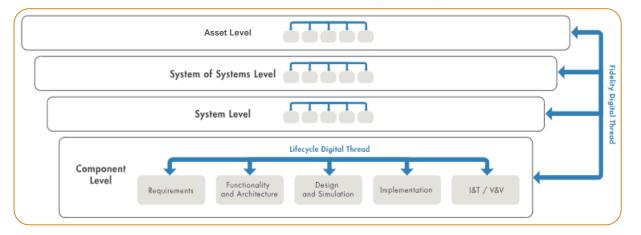
Digital Twin for Pump Predictive Maintenance

MathWorks solutions for Digital Twin Modeling of Oilfield Processes

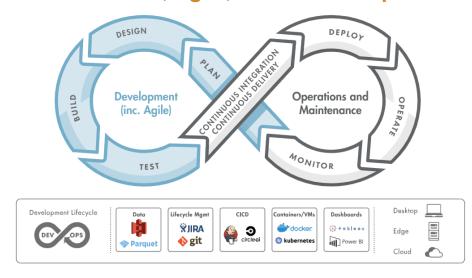
	Product	Objective	Functions	Applications	Examples
ation	Simulink	Model dynamic systems with block diagrams to represent physical processes and control systems	Model thermal flow systemsModel oilfield infrastructureModel control systems	Oilfield assets: • Borehole sensors • Pipelines	Optimize and Automate Energy Assets with Digital Twins in MATLAB and Simulink
Process Simulation	□ □ □ N Simscape	Model multi-physics processes	 Model gas and fluid flow dynamics Model condensation / evaporation Model liquefaction / regasification 	Oilfield equipmentProcessing facilitiesStorage facilities	Optimize Oil & Gas Production Assets with Simscape - MATLAB & Simulink
Proc	Sim. Real-Time	Test and deployment of models in real-time environments	 Hardware-in-the-loop (HIL) testing Testing digital twins in real-time Process safety and reliability 		Electro-Mechanical System Optimization using Simulation - MATLAB & Simulink
trol	Pred. Maintenance	Analyze equipment data from sensors, predict performance, and forecast maintenance	Detect process anomaliesPredict equipment failureOptimize maintenance schedule	 Pressure control Temperature control Flow rate regulation 	Digital Twins for Predictive Maintenance of Oil & Gas Processes - MATLAB & Simulink
Process Control	Control Systems	Design, analyze, and implement process controls in digital twins	 Model Predictive Controls (MPC) Advanced Control Systems (APC) Distributed Control Systems (DCS) 	Faulty conditionsHealthy conditions	Digital Twins for Industrial IoT - MATLAB & Simulink
Pro	PLC Coder	Deploy control algorithms onto field devices including PLCs and embedded controllers	 Automatic PLC code generation Automatic C/C++ code from Simulink model for hardware 	Multi-brand PLCsMulti-brand RTUsEmbedded controllers	Developing Hydrogen Systems from Tank to Fuel Cell - MATLAB & Simulink
Analytics	MATLAB	Develop scripts, algorithms, and predictive models to perform real-time data analysis from sensors	Data preprocessing and analysisReal-time signal processingData postprocessing	S&H Integration with: • Big data stores • PI historians	Digital Twins for New Energy Processes – MATLAB & Simulink
Data Ar	Machine Learning	Develop predictive models using machine learning algorithms	Process optimization, anomaly detection, and data analysisReal-time predictive analytics	 CaaS and SaaS RT dashboards 3rd-party applications Control systems 	Optimizing Operational Processes with Reinforcement Learning in MATLAB

MathWorks® in Energy Resources

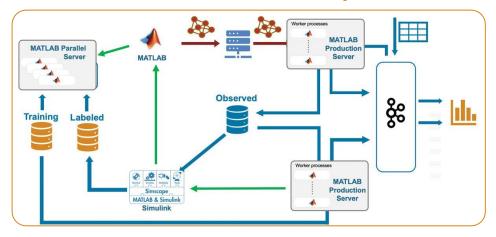
Digital Transformation of Interconnected Asset Processes


Objectives

- Optimize life-cycle of core business processes
- Simulate cost-effective operations before FIDs


Advantages

- Integrate new and complex processes
- Scale, customize, and adapt process interactions
- Virtualize potential dynamic scenarios
- Simulate, automate, and streamline CI/CD processes


Accelerated Systems Monitoring – Digital Thread

Automated, Agile, Iterative DevOps

Scalable and Customizable MLOps Architecture

MathWorks solutions for Downstream Process Optimization

- > Flexible and scalable simulation of large-scale plant designs and unit-specific optimizations
- > Advanced predictive analytics using data science and AI to optimize process operations
- > Industry-compliant tools to ensure safe and sustainable production processes

Workflow	Key Solutions	Main Objectives	Major Applications	Examples
Process Modeling & Simulation	MATLAB, Simulink & Simscape	 Build dynamic models of chemical reactors, distillation columns, and heat exchangers Simulate and optimize nonlinear and time-dependent petrochemical processes Visualize and analyze dynamic interactions between petrochemical subsystems 	 Optimize process design and operations Analyze energy and mass balances Troubleshoot processing and production bottlenecks 	 Chemicals and Materials - MATLAB & Simulink Selection of Optimum Chemical Reactor Design Controller for Distillation Column Heat Exchangers
Process Control & Automation	MPC, Control Systems & Simulink Real-Time	 Design and tune advanced controllers (MPC, PID) for distillation towers, compressors, and polymerization reactors Develop and integrate real-time models for predictive analytics using control systems Implement closed-loop control systems 	 Enhance process safety and reliability Automate fault-tolerant processes and operations Integrate DCS and SCADA systems and PI historians 	 Nonlinear Model Predictive Control of Exothermic Chemical Reactor Adaptive MPC Control of Nonlinear Chemical Reactor Use OPC UA Data to Test Binary Distillation Column Plant Model
Process Safety & Reliability	Pred. Maintenance, Machine & Deep Learning	 Develop risk assessment models (HAZOP) supported by software-in-the-loop (SIL) tests Simulate critical process scenarios Create logical alarm management frameworks Monitor equipment health in real time using machine learning 	 Simulate and mitigate hazardous scenarios for critical process units Analyze historical alarm data to identify nuisances Predict and prevent equipment failure and anomalies 	 <u>Digital Twins for Predictive</u> <u>Maintenance of Oil & Gas Processes</u> <u>- MATLAB & Simulink</u> <u>Optimizing Operational Processes</u> <u>with Reinforcement Learning in MATLAB</u>
Process Design & Optimization	Optimization & Planning	 Optimize feedstock blending and reaction conditions Improve throughput and reduce waste using data-driven modeling Evaluate economic and environmental performance of alternative processes 	 Enhance operational efficiency, safety, and cost effectiveness Assess potential failures in petrochemical facilities 	 Multivariate Analysis for Process Monitoring Fault Detection and Diagnosis in Petrochemical Processes, Part 1 HYSYS-MATLAB LINK - File Exchange - MATLAB Central

Industrial Solutions for Energy Resources

Streamlined Asset Production Management

(Geo)Sciences & Engineering

Big Data & Image Analysis

Simulation & Control

Optimization & Automation

Subsurface Geosciences & Engineering

• Customize & optimize subsurface processes with integrated solutions developed in MATLAB & Simulink to maximize asset value •

Key Applications Enhanced Recovery (EOR | IOR) **Carbon Capture & Storage** (CCS | GCS) New Energies (Hydrogen | Geothermal)

Solution	Key Features
S3I Seismic Migration & Imaging	 3D prestack migration (Kirchhoff, RTM, LSM) 3D elastic full waveform inversion (FWI) Multi-CPU and multi-GPU parallel processing
SeReM Seismic Modeling & Inversion	 Seismic convolutional and geostatistical modeling Rock-physics-informed Bayesian facies inversion Elastic, mechanical, and petrophysical properties
MRST Reservoir Modeling & Simulation	 3D reservoir modeling and fluid flow simulation Multi-fluid, multi-physics geodynamics Automatic differentiation & reduced order models

Upstream Big Data & Image Analysis

• Accelerate processing and analysis of large-scale and real-time data and images to make prompt and informed asset decisions •

Key Applications Seismic Migration & GPU Computing Velocity Model Wave Propagation t = 1.424 Current Migrated Shot 100 200 Depth (m) 400 600 Image Classification using PINNs (RNN | CNN) **Predictive Maintenance & Anomaly Detection** File Explorer Simulation Yiew Icols Window Help

Solution	Key Features
Machine & Deep Learning	 Classification, regression & clustering algorithms Deep neural networks (NN) & transfer learning Reduced order modeling & physics-informed NNs
Signal & Wavelet Processing	 Signal and wavelet analysis (time, space, freq.) Time series analysis and wavelet decomposition Multi-scale analysis for physics-informed NNs
High Performance Computing	 Multi-CPU, multi-GPU cluster & cloud computing GPU CUDA code generation & cloud deployment Run real-time analytics for process automation

Midstream & Downstream Data & Image Analysis

• Accelerate processing and analysis of large-scale and real-time data and images to make prompt and informed asset decisions •

Key Applications Chemical Production Data Analytics Plant Production Monitoring and Optimization Predictive Maintenance & Anomaly Detection File Explorer Simulation Yiew Iools Window Help

Solution	Key Features
Machine & Deep Learning	 Classification, regression & clustering algorithms Deep neural networks (NN) & transfer learning Reduced order modeling & physics-informed NNs
Signal & Wavelet Processing	 Signal and wavelet analysis (time, space, freq.) Time series analysis and wavelet decomposition Multi-scale analysis for physics-informed NNs
High Performance Computing	 Multi-CPU, multi-GPU cluster & cloud computing GPU CUDA code generation & cloud deployment Run real-time analytics for process automation

Process Simulation & Control

• Model, simulate, and monitor production processes using Simscape and Control Systems for cost-effective asset performance •

Key Applications Green Hydrogen Production Digital Twin MPC for Nonlinear Chemical Process Simulation File Tech View Simulation Help **Thermal/Fluid Process Predictive Control** File Edit View Insert Taels Desitos

Solution	Key Features
Simscape Process Simulation	 Multi-domain process modeling and simulation Fluid, chemical, thermal, electromechanical model Model-based Design (MBD) of digital twins
Control Systems Design	 Design dynamic systems and controller response Tune PID controller & SISO/MIMO compensators Detect anomalies & diagnose feedback controls
Model Predictive Control	 Design advanced process controls (ACS DCS) Linear & nonlinear MPC design and optimization Control production process & remote surveillance

Upstream Process Optimization & Automation

• Perform techno-economic assessments and generate embedded code to optimize and automate reliable production processes •

Key Applications Multi-pad, multi-well production optimization Oil & gas production forecasting & economics ANALYSIS DECLINE CURVE PREPROCESSING ECONOMIC **Drilling rig system simulation & automation**

Toolbox	Key Features
Optimization & Financial Computing	 Multi-variate process optimization and forecasting Technical and economic production optimization New energy risk and investment management
MATLAB Coder & Compiler	 C/C++ embedded code generation from MATLAB Customize, optimize, trace SIL & PIL processes Deploy on control systems for process automation
Simulink PLC Coder	 PLC & PAC structured text and ladder diagrams Support code generation for third-party IDEs Agnostic production surveillance with IIoT devices

Mid/Downstream Process Optimization & Automation

• Perform techno-economic assessments and generate embedded code to optimize and automate reliable production processes •

Key Applications Multi-pad, multi-well production optimization **Supply chain optimization & economics** Heavy Naphtha (NAP) **Chemical process optimization & co-simulation**

Toolbox	Key Features
Optimization & Financial Computing	 Multi-variate process optimization and forecasting Technical and economic production optimization New energy risk and investment management
MATLAB Coder & Compiler	 C/C++ embedded code generation from MATLAB Customize, optimize, trace SIL & PIL processes Deploy on control systems for process automation
Simulink PLC Coder	 PLC & PAC structured text and ladder diagrams Support code generation for third-party IDEs Agnostic production surveillance with IIoT devices

App Interconnectivity & Deployment

• Create, interconnect, and deploy software and hardware applications across asset's IT, OT, and IIoT infrastructure •

Key Applications

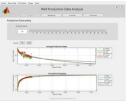
Interconnectors with 3rd-party software

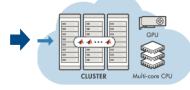
Upstream Eclipse

Vista

Petrel

<u>Interconnectors with IIoT devices</u> (PLC | DCS | RTU)





Downstream

App & Microservice Deployment in the Cloud

Solution	Key Features
Industrial Comms	 Exchange data with OPC UA, MQTT protocols Interconnect IIoT devices (PLC, DCS, RTU) Support distributed control systems (SCADA)
MATLAB Compiler SDK	 Build standalone and web apps from MATLAB Build Python, .NET, C++, and Docker packages Deploy in OT & edge devices for IIoT surveillance
MATLAB Web App Server	 Use MATLAB App Designer to create Web GUIs Deploy and host MATLAB & Simulink web apps Control access using OpenID Connect & LDAP

How to Accelerate Big Data & Image Analysis with

Industry-compliant toolboxes, technical documentation, and dedicated customer support on science & engineering applications with customized services and specialized training

(Geo)Sciences & Engineering

Big Data & Image Analysis

Simulation & Control

Optimization & Automation

- Built-in big data scalability using tall arrays and integration with Hadoop and Spark datastores
- **Advanced toolboxes** to rapidly process, analyze, and visualize large-scale data, signals, and images
- **Automated code generation** to integrate software and hardware systems for enhanced performance
- Just-in-time (JIT) compilation with optimized numerical analysis and matrix-based performance
- Built-in parallel computing using on-prem or cloud-based CPU or GPU cluster infrastructures

How to Streamline Real-Time Data Analysis with

Industry-compliant toolboxes, technical documentation, and dedicated customer support on science & engineering applications with customized services and specialized training

(Geo)Sciences & Engineering

Big Data & Image Analysis

Simulation & Control

Optimization & Automation

- Easy-to-use and scalable platform with highlevel language, intuitive syntax, and low coding
- Engineering workflows to optimize & accelerate signal processing, control systems, and AI tasks
- Specialized toolboxes for real-time analysis, testing & validation of mission-critical operations
- Automatic C/C++ code generation to deploy on embedded systems and real-time platforms
- Supports OPC, MODBUS & CAN protocols for real-time analysis using OT and IIoT devices

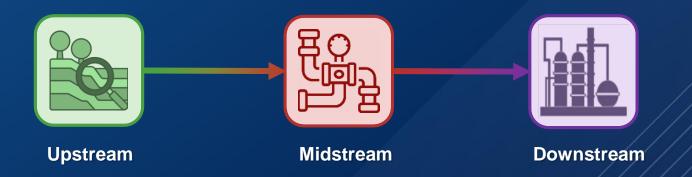
How to Ensure Process Safety & Compliance with

Industry-compliant toolboxes, technical documentation, and dedicated customer support on science & engineering applications with customized services and specialized training

(Geo)Sciences & Engineering

Big Data & Image Analysis

Simulation & Control

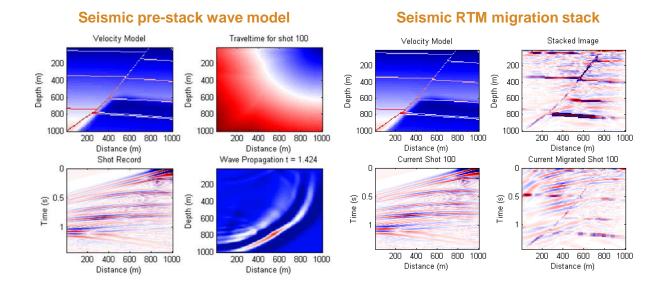

Optimization & Automation

- Built-in industry-compliant tools for automated verification, validation, and documentation generation following NIST, ISO, ICE, DO, and EN standards
- Sensitive data security & access control based on encrypted data storage, user authentication, and role-based access control (RBAC) cybersecurity standards
- Automated regulatory document generation for code, models, and data traceability and auditability
- Automated code & model testing & validation to comply with industry regulations prior to deployment

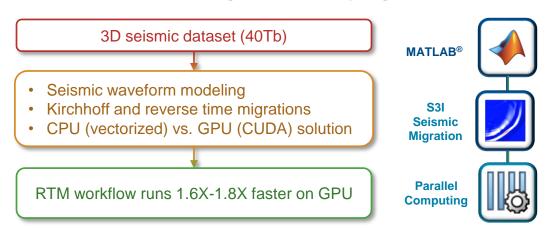
Applications for Energy Resources in

Accelerated seismic depth imaging using MATLAB GPU computing

Challenge


Accelerate seismic migration workflows in S3I using parallel computing (GPU-based).

Solution


 Implemented a MATLAB workflow for seismic migration using both Kirchhoff and reverse time algorithms and a GPU extension based on a CUDA kernel to compare CPU & GPU solutions

Benefit

- The custom CUDA kernel solution to the seismic wave equation using PDE finite differences was 1.6X faster than the vectorized CPU solution
- This early implementation of parallel computing in S3I helped to accelerate big data analysis.

MATLAB Seismic migration & GPU computing workflow

Enhanced prestack seismic quality with ROMs in MATLAB

Challenge

 Enhance and accelerate prestack seismic quality for quantitative interpretation using a short-time, minimum-resource, physics-informed solution

Solution

 Developed a MATLAB transfer learning workflow for a multi-scale reduced order model (ROM) of wave propagation in the ray-parameter domain (p)

Benefit

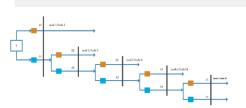
- The ROM output shows similar quality as the fullwave elastic solution but in a fraction of time
- The ROM model is suitable to include in physicsinformed neural network (PINN) models

Seismic gathers (plane wave (left); full-wave (middle); ROM (right) Ratio of ray-parameter to critical ray-parameter (p/p_) Ratio of ray-parameter (p/p_) Ratio of ray-parameter (p/p_) MATLAB seismic reduced order modeling workflow Prestack migrated gathers after NMO or NHMO **MATLAB** p-domain reflection coefficient modeling **Parallel** Mutli-scale reduced order modeling (ROM) Computing Seismic PINN cost-function development Similar prestack seismic quality as the full-Deep Learning wave solution but in a fraction of the time!

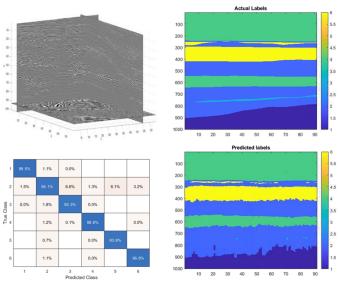
Accelerated seismic facies classification using PI-RNNs

Challenge

 Accelerate and enhance facies classification from large seismic datasets using PINNs and HPC.


Solution

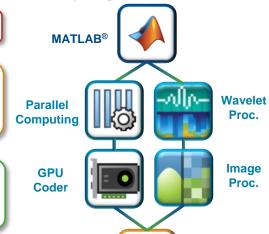
Implemented a MATLAB workflow for seismic signal processing based on a physics-informed recurrent neural networks (PI-RNN) using GRU and LSTM with discrete wavelet decomposition to accelerate and enhance seismic facies classification using a GPU CUDA kernel solution.


Benefit

- The PI-RNN workflow predicted seismic facies with 76% correlation, ~2X higher than CNN
- The CUDA kernel solution was ~70X faster (~3min) than a vectorized CPU solution (~3 hrs).

Discrete wavelet transform

Seismic facies labels and PI-RNN prediction



MATLAB Seismic facies classification & GPU computing workflow

3D seismic dataset (200Gb)

- Signal-based RNN model using GRUs
- Discrete Wavelet Transform (DWT)
- CPU (vectorized) vs. GPU (CUDA) solution

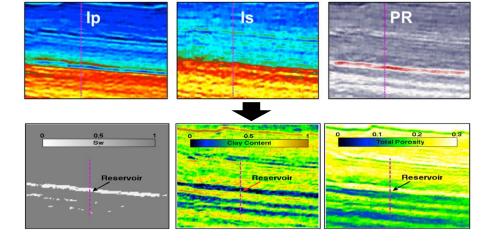
Facies correlated 76% with 93% trained data RNN correlation ~2X higher than CNN (40%) GPU time: 2.5 min vs. CPU time: 3 hours

Rock Physics and Seismic Petrophysics Modeling using MATLAB

Challenge

 Automate sensitivity analysis of prestack seismic response to changes in petrophysical properties

Solution


- Developed a MATLAB app to interactively assess seismic responses to changes in petrophysical properties to quantify variations in seismic inversion
- Incorporated geomechanical properties to assess compressibility and rigidity under compaction (mechanical, chemical) mechanisms

Benefit

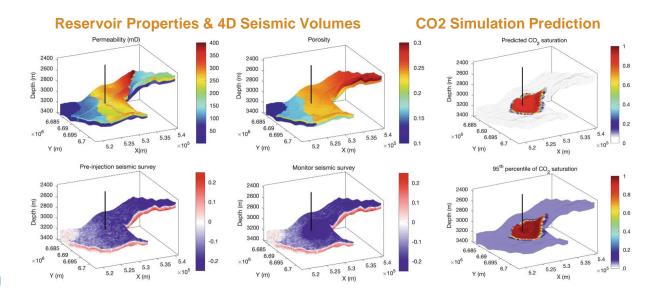
- Enhanced sensitivity analysis of seismic changes in rock properties and missing log prediction
- Workflow was fully implemented in MATLAB using SeReM & MRPI toolboxes.

Seismic Petrophysics (above) and Rock Physics (below) Modeling 10.8 SHALE 10.1 10.1 10.2 10.1 10.2 10.3 10.4 10.2 10.3 10.4 10.2 10.3 10.4 10.4 10.2 10.4 1

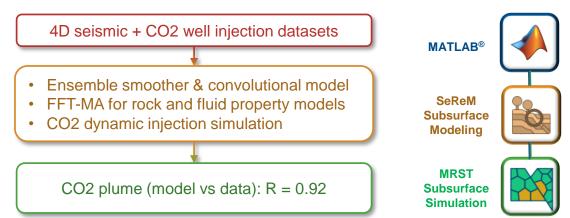
Seismic Elastic (above) and Petrophysical (below) Inversion

Integrated CO2 storage monitoring and simulation

Challenge

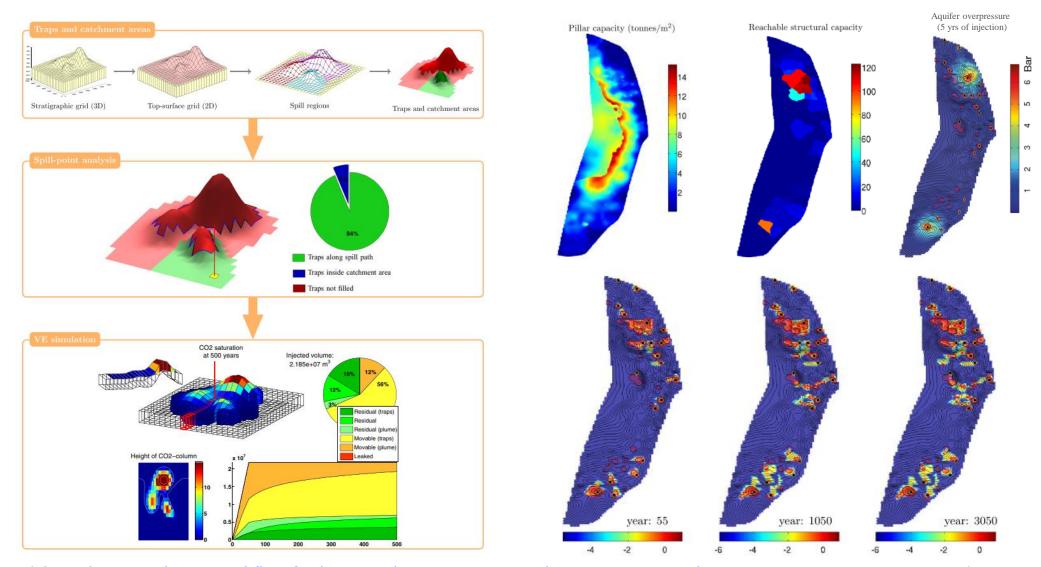

 Integrate 4D seismic monitoring and CO2 flow simulation workflows in one software platform.

Solution


 Implemented an integrated MATLAB workflow for seismic inversion and CO2 flow simulation using an ensemble smoother with multiple data assimilation and a convolutional autoencoder from SeReM to compare against CO2 saturation simulated in MRST

Benefit

- Modeled CO2 saturation was predicted from 4D seismic data with a correlation of 92%.
- Workflow was fully implemented in MATLAB using SeReM & MRST toolboxes.


MATLAB 4D Seismic Inversion & CO2 Flow Simulation workflow

Large-scale CO2 storage simulation in Norwegian North Sea

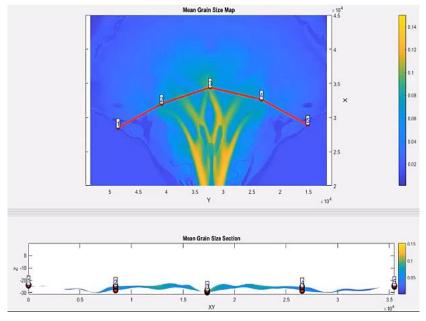
Lie et al (2016). <u>A simulation workflow for large-scale CO2 storage in the Norwegian North Sea</u>. Computer Geosciences, Vol. 20, pp. 607-622. Springer International Publishing. SINTEF (NOR).

© 1994-2024 The MathWorks, Inc.

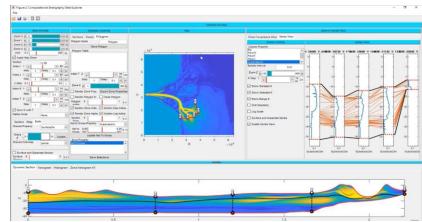
Accelerated Digital Stratigraphic Modeling with MATLAB

Challenge

 Conventional reservoir modeling tools lack interactive visualization and analysis of stratigraphic models and depositional systems


Solution

- Developed an interactive application in MATLAB to analyze geologically-plausible reservoir analogues by simulating sediment transport and deposition, and generating reservoir N/G and thickness analogues
- Deployed both executable applications and dynamic libraries to read in other applications like PETREL


Benefit

- Efficient software development using MATLAB
- Integration of geoscience disciplines using one app
- Iterative software improvement

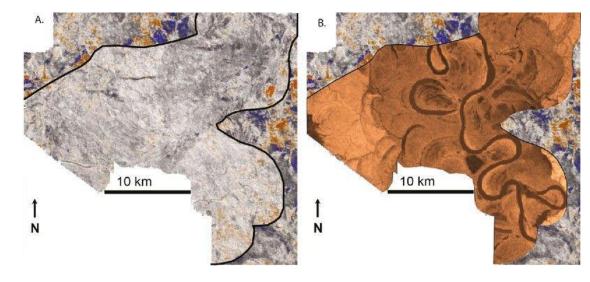
Computational Stratigraphy Explorer (CSE)

Computational Stratigraphy Explorer (CSE) App GUI

Accelerated Reservoir Characterization with Image Learning

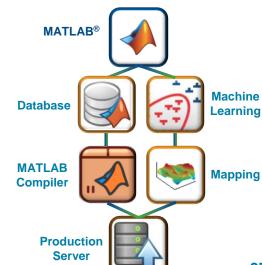
Challenge

- Reduce oil and gas exploration costs and increase well production by constructing accurate models of the subsurface
- Sharing algorithms so they can be used worldwide


Solution

 Use machine learning to develop and deploy algorithms that use seismic data, known scaling relationships, and a database of geologic metrics to quantitatively characterize subsurface features with MATLAB

Benefit


- Month-long projects replaced by simple queries
- Drilling prognosis accuracy substantially improved
- Software updates instantly deployed

3D seismic image slices before (left) and after (right) Image Learning

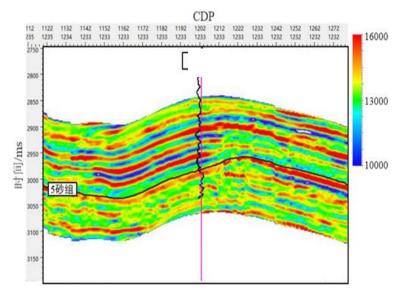
MATLAB Image Learning Workflow

Ourvature analysis using Curve Fitting Image database (topography, bathymetry) Stratigraphic image training & visualization Enterprise app GUI deployment Reduced image analysis turnaround time Streamlined app updating company-wide

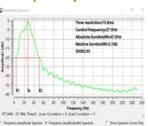
High Accuracy Intelligent Seismic Inversion with Deep Learning

Challenge

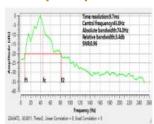
- Seismic has limited resolution for thin-bed imaging
- Seismic inversion methods assume zero-phase data

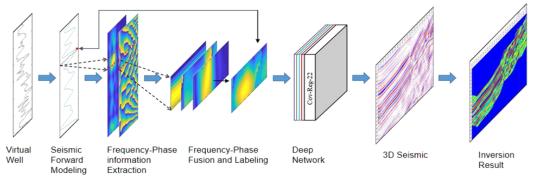

Solution

- Developed a frequency-phase intelligent seismic inversion algorithm combined with deep learning
- Use MATLAB signal processing and optimization toolboxes to construct, optimize, and train models


Benefit

- Seismic frequency-phase intelligent inversion results showed a broader bandwidth compared to input data
- Thin beds beyond seismic resolution were resolved in the seismic impedance inversion result


Intelligent seismic impedance inversion result


Input Spectrum

Output spectrum

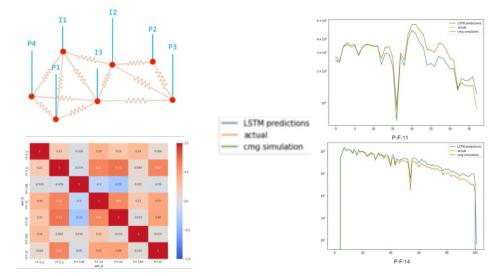
Intelligent frequency-phase seismic inversion workflow

Reservoir Capacitance-Resistance Model (CRM) using PINNs

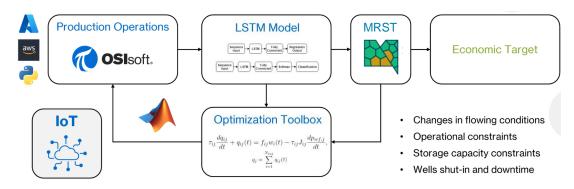
Challenge

 Simulate reservoir and surface conditions (well shut-in, plug-in & abandonment, new infills) in a mature oilfield to optimize production recovery.

Solution


 Developed an integrated MATLAB workflow for reservoir simulation using a physics-informed neural network (PINN) based on long-short term memory (LSTM) and optimized with a capacitance-resistance model (CRM) using the MATLAB Reservoir Simulation Toolbox (MRST)

Benefit


This reduced-order PINN model (LSTM+CRM)
 accelerated reservoir simulation and supported
 real-time decision making using a workflow fully
 implemented using MATLAB capabilities.

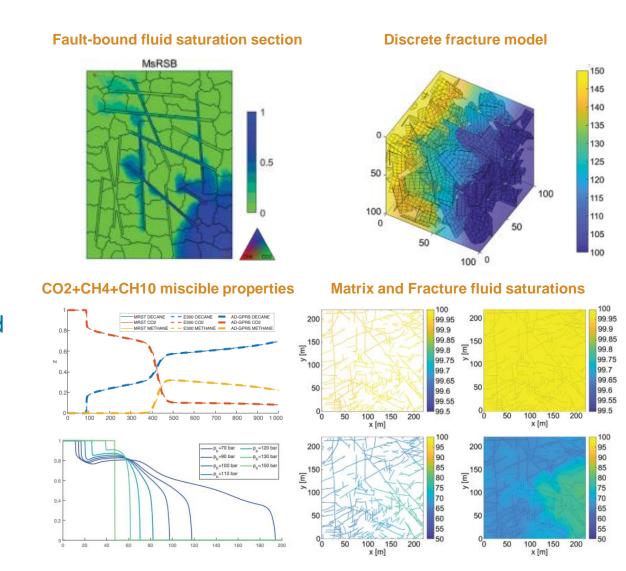
Injector-Producer Pairs & Correlation Matrix

rix Reservoir Simulation Results

MATLAB Reduced-Order Modeling & Real-Time Decision-Making workflow

Geomechanical simulation of CO2 flow in a fractured reservoir

Challenge


 Simulate a discrete fracture network with compositional flow dynamics to simulate fluid transmissibility through structural faults to assess sealing integrity after CO2 storage.

Solution

Implemented a MATLAB workflow for fracturebound compositional fluid dynamics under miscible CO2 conditions to model both matrix and fracture saturations and assess fault-bound fluid transmissibility using MRST.

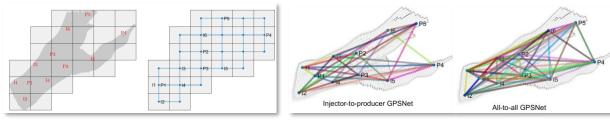
Benefit

- MRST outputs matched fault-bound saturations predicted by Eclipse (E300) and AD-GPRS.
- Workflow was fully implemented in MATLAB.

Accelerated reservoir simulation with reduced order models

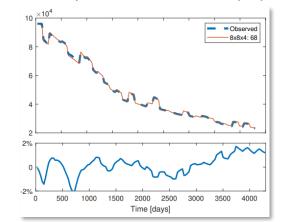
Challenge

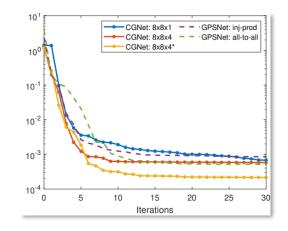
- Sensitivity analysis of dynamic parameters for reservoir simulation is a time-consuming task.
- Data-driven models using machine learning methods do not guarantee results accuracy.


Solution

 Designed a data-driven proxy model in MRST (MATLAB reservoir simulator) via reducedorder modeling to accelerate simulation time.

Benefit


- The proposed CGNet model is easy to setup and runs faster than most simulation models.
- CGNet model is quick to calibrate and fast to evaluate for parameter optimization purposes.


CGNet model & grid mesh (left) vs GPSNet models (injector-to-producer & all-to-all) (right)

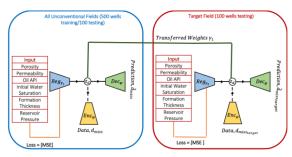
	CGNet			GPSNet				
setup	$8 \times 8 \times 1$	$8 \times 8 \times 4$	$8 \times 8 \times 4^*$	inj–prod	all-to-all			
# parameters	99	305	204	71	121			
# nodes	35	94	68	300	550			
* – mesh cells containing 70 fine-cell centroids or less are culled								

CGNet oil production rates & misfit (left) and Levenberg-Marquardt minimizations (right)

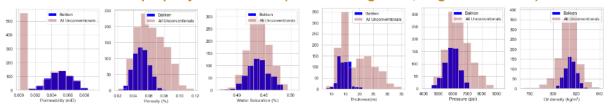
Unconventional production prediction using transfer learning

Challenge

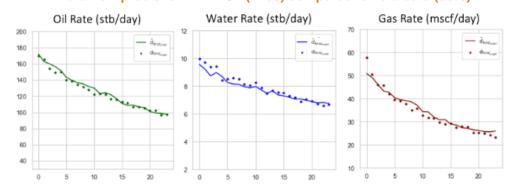
 Enhance prediction of fluid flow in tight oil, hydraulically fractured formations using unconventional reservoir simulation models.


Solution

- Used MATLAB to develop a physics-assisted transfer learning methodology combining both physics-based and data-driven models.
- Used MRST (MATLAB reservoir simulator) to model a horizontal hydraulically-fractured well to compare results against average data from several unconventional plays.


Benefit

 A robust transfer learning model provided a more reliable, consistent fluid flow prediction.


Transfer learning workflow in MRST

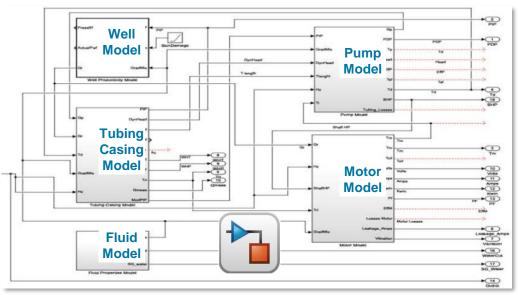
Reservoir property distributions (all fields in light red; target field in blue)

Fluid flow prediction in MRST (lines) compared to field data (dots)

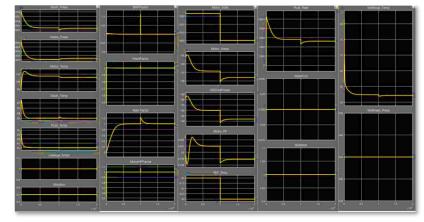
Electrical Submersible Pump (ESP) Digital Twin

Challenge

 Develop a digital EPS system for artificial lift equipment monitoring and failure prediction.


Solution

- Used Simulink to design and model simulations of multi-domain dynamic systems: heat transfer, electrical, hydraulic, and mechanical (vibration).
- Added digital controls to capture and visualize outputs from downhole & wellhead sensors, VSD, and flowmeter using Al-driven outputs.


Benefit

 Digital twin was calibrated with physical model, allowing automatic equipment sizing, virtual well modeling, and capture deviations related to failure detection and performance diagnostics.

Simulink® ESP Digital Twin

Simulink® ESP Borehole & Welhead Sensor Outputs

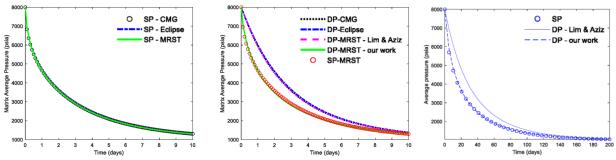
Dynamic transfer simulation in ultra-tight, dual-porosity systems

Challenge

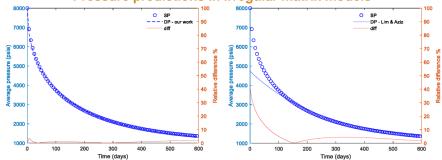
 Enhance mass transfer dynamics in dualporosity reservoirs to predict pressure response under ultra-tight conditions.

Solution

 Compared MATLAB reservoir simulator (MRST) with CMG and ECLIPSE outputs based on three fracture geometry models to describe different diffusion-type processes.


Benefit

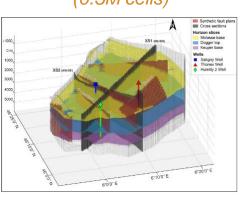
- The Vermeulen dynamic transfer function predicts early and late pressure accurately in ultra-tight, dual-porosity reservoirs.
- MRST outputs fully resemble the dynamic outputs from ECLIPSE and CMG models.

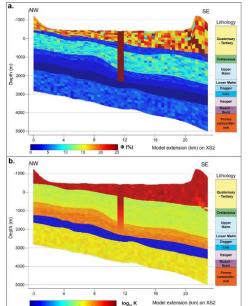

Vermeulen dynamic transfer model: Processes, parameters, and applications

	D	Ψ	Application
Viscous flow	Hydraulic diffusivity	Pressure	Tight oil/gas
Diffusion	Diffusion coefficient	Concentration	Unconventional EOR
Heat conduction	Thermal diffusivity	Temperature	Geothermal

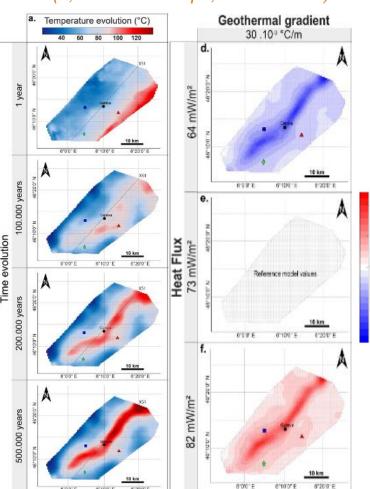
MATLAB® MRST vs. ECLIPSE and CMG comparisons Pressure predictions based on Single (SP) and Dual (DP) porosity models

Pressure predictions in irregular matrix models

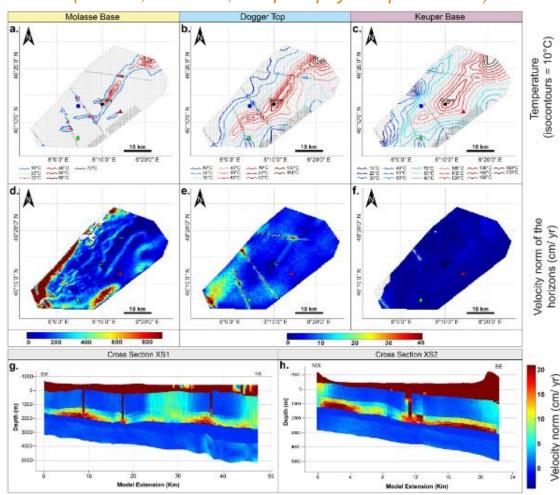




Geothermal Reservoir Simulation in MATLAB



3D Geological Model (0.5M cells)



Geothermal Gradient & Heat Flow Models (4,000 time stamps, 3 formations)

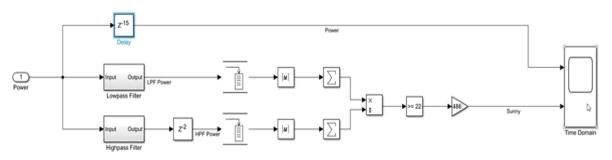
Final Geothermal Simulation Models (thermal, structural, and petrophysical parameters)

Source: Alcanie, M., Collignon, M., Moyner, O., and Lupi, M. 2021. <u>3D Basin-Scale Groundwater Flow Modeling for Geothermal Exploration</u>. Geochemistry, Geophysics, Geosystems, Vol. 22, e2020GC009505. https://doi.org/10.1029/2020GC009505

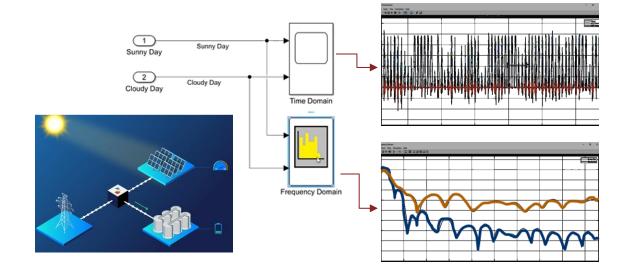
Real-time Sensor Signal Processing of Energy Systems in Simulink

Challenge

 Model, simulate, and test real-time digital signal processing (DSP) from energy sources.


Solution

- Used Simulink to design a signal processing system to predict multiple energy conditions and optimize power generation from a solar grid.
- Used DSP Toolbox to analyze sensor signals, design filters, and generate embedded code for hardware deployment.


Benefit

 Simulink enabled the design of an integrated system to analyze real-time signals from energy sensors and deploy code on embedded systems automatically.

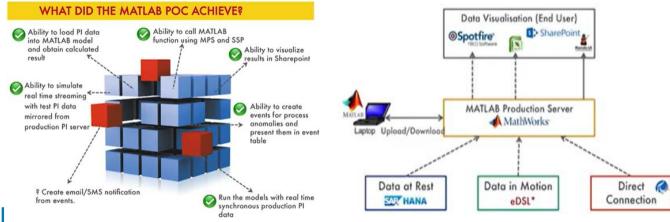
Digital Signal Processing (DSP) Simulink model

Comparison between energy signal responses in Time (above) and Frequency (below) domains

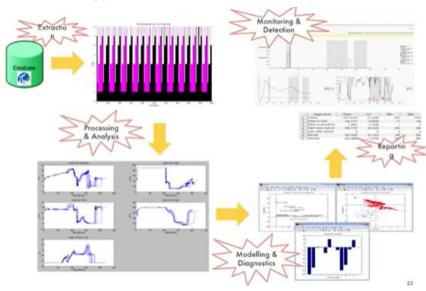
Event detection in chemical plants with predictive analytics

Challenge

 Detect events and abnormalities from big data in real time using predictive analytics.


Solution

- Used MATLAB toolboxes for data extraction, processing, analysis, modeling, diagnostics, monitoring, and detection in real time.
- Supported real-time streaming of data from PI server, created events for process anomalies, and modeled real-time production data.


Benefit

- MATLAB helped to integrate production data from PI server for synchronous predictive analytics in real time.
- MATLAB enabled generating notifications of process anomalies and visualize events in end user applications and dashboards.

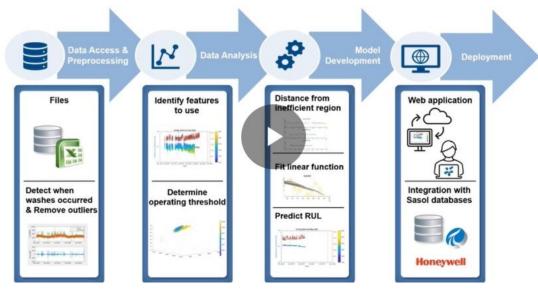
MATLAB for Real-Time Predictive Analytics

MATLAB-supported Real-Time Predictive Analytics Workflow

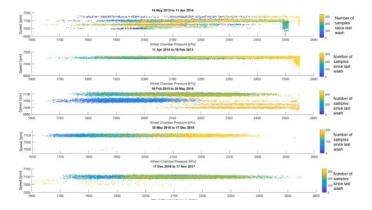
Sasol

Challenge

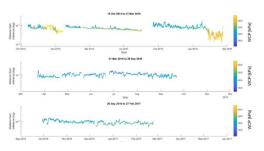
 Analyze performance of past maintenance to detect patterns and predict future efficiencies.


Solution

- Used MATLAB Machine Learning to develop a predictive model for efficient maintenance scheduling.
- Developed a MATLAB app for operations to identify ineffective maintenance outcomes.


Benefit

- MATLAB predictive model established a new best practice to schedule maintenance.
- MATLAB app supported closer monitoring of steam turbine operations, limitations, and anomalous conditions in production.

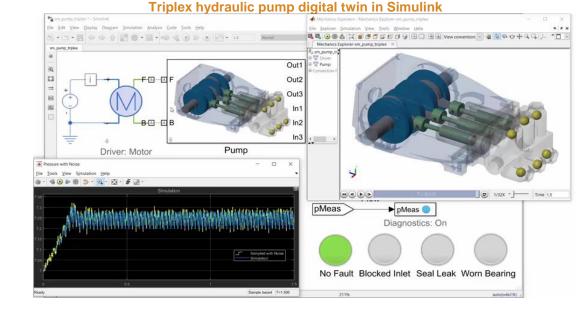

MATLAB-supported workflow for Predictive Maintenance

Steam Turbines Data Analysis

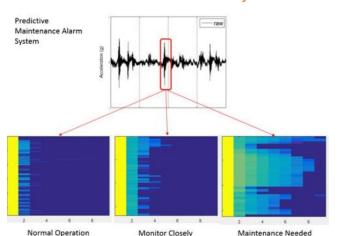
Predictive Model Development

Equipment Fault Detection and Predictive Maintenance

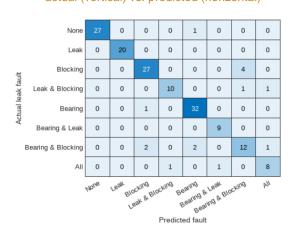
Challenge


 Detect and anticipate potential equipment failure conditions for predictive maintenance.

Solution


- Used Simulink to detect leak, blocking, and bearing faults in a triplex reciprocating hydraulic pump using a multi-class classifier.
- Simulated datasets as time and frequency signals for multiple fault combinations and healthy conditions.

Benefit


 The Simulink model successfully detected and predicted simulated pump responses under both faulty and healthy conditions to use for predictive maintenance.

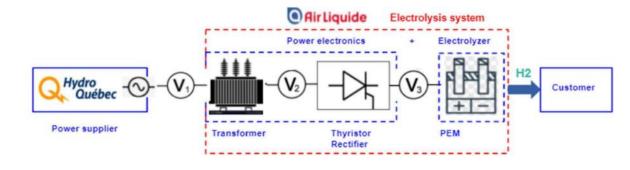
Predictive Maintenance Alarm System

Pump faults detection
actual (vertical) vs. predicted (horizontal)

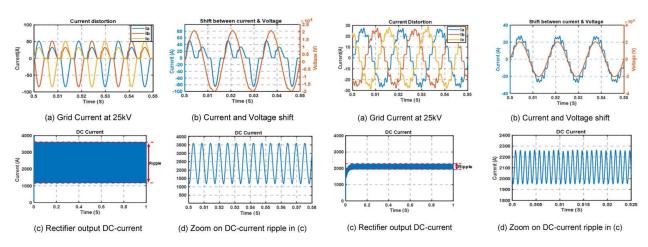
Electrolyzer simulation of the world's largest PEM hydrogen plant

Challenge

 Assess power consumption from proton exchange membrane (PEM) technology in large-scale, green-hydrogen electrolyzers.


Solution

- Used Simulink and Simscape to model multiple topologies from an industrial 20 MW PEM water electrolysis system.
- Compared simulated results against existing 20 MW PEM with AC and DC power supply.


Benefit

 Simulink model resembled experimental results under multiple topologies and enabled reducing power losses under partial loads to support efficiencies during industrial design.

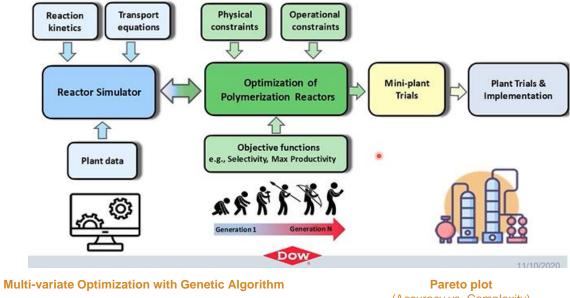
Water electrolysis processes modeled in Simulink

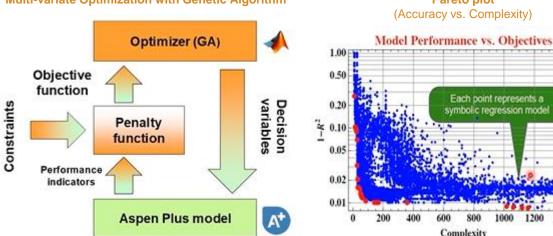
Thyristor outputs with 20% load with 6 pulses (left plots) and 3-phase buck rectifier (right plots)

Polymerization Process Co-Simulation & Optimization in MATLAB

Challenge

 Model complex polymerization process to optimize production under multiple scenarios.


Solution


- Used Aspen Plus to define a distillation model for polymerization reactor optimization.
- Used MATLAB to execute a genetic algorithm, to optimize process parameters running multiple simulation realizations automatically.

Benefit

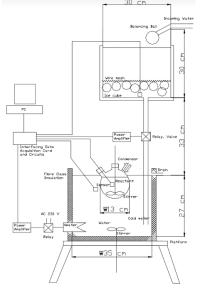
- MATLAB interconnection with Aspen Plus enabled running thousands of co-simulations to optimize the process in a few hours.
- Results enhanced equipment designs and optimized asset performance at minimum cost

Process Simulation and Optimization Workflow for Polymerization Reactor

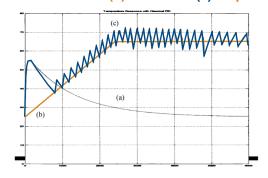
Control and automation of polymer manufacturing processes

Challenge

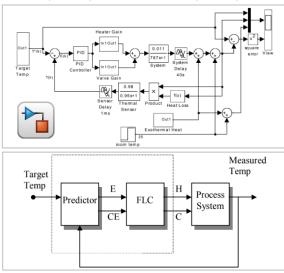
 Simulate and control an exothermal process to avoid material damage during phenolformaldehyde manufacturing.

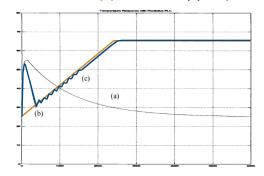

Solution

- Used Simulink and Fuzzy Logic (FLC) toolbox to simulate the process and design a sensorbased process control system.
- Compared a predictive FLC structure against a PID model to assess temperature control.


Benefit

 The FLC model developed in Simulink was reliable and useful to control, predict, and automate temperature changes during polymer manufacturing.


Reactor System Model


PID Simulated (b) vs. Actual (c) responses

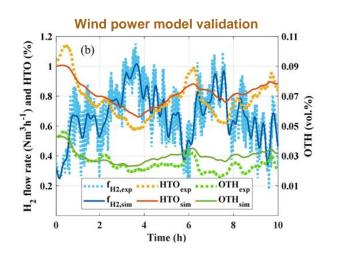
Simulink: Fuzzy Logic Control (FLC) model (above) and PID model (below)

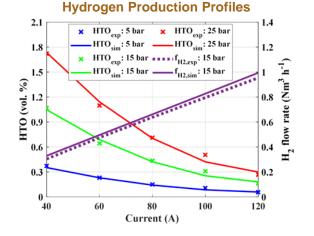
FLC Simulated (b) vs. Actual (c) responses

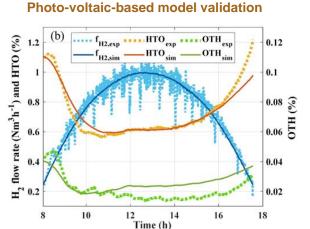
Simulation of Water Electrolyzer for Green Hydrogen Production

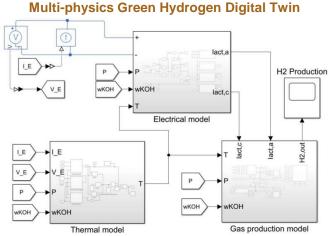
Ingeteam

Challenge


 Maximize hydrogen production using multiple renewable energy sources (wind, solar)


Solution


 Used Simulink and Simscape to model a multi-physics digital twin (electrochemical, thermodynamics, multi-fluids) for water electrolysis with intermittent energy sources.


Benefit

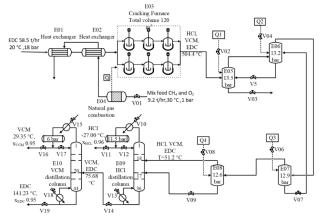
- Simulink results replicated actual green hydrogen production process with high accuracy and predictability.
- Digital twin enabled fast prototyping of what-if scenarios of a water electrolyzer for green hydrogen ahead of plant modifications.

Model predictive control (MPC) of vinyl chloride monomer process

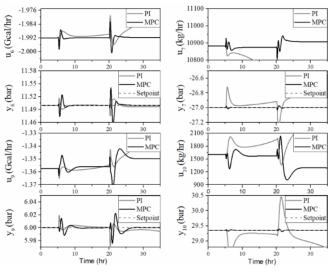
Chinprasit et al | Kasetsart University (TH)

Challenge

 Control and predict vinyl chloride monomer (VCM) process with complex nonlinear interactions between reactors and separators.


Solution

- Used Simulink, MPC & System Identification toolboxes with AspenPlus to co-simulate the VCM process using a multivariate model.
- Assessed proportional-integral-derivative (PID) and MPC controller performance under multiple input/output configurations.


Benefit

- Simulink enabled performing a thorough sensitivity analysis of the VCM process.
- MPC showed better performance than PID.

VCM process diagram

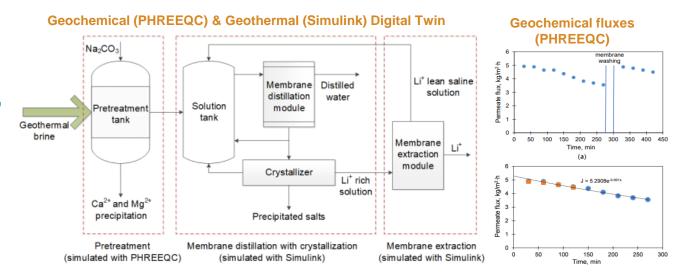
Results of PID vs MPC controller outputs

Simulink and Aspen Plus co-simulation model

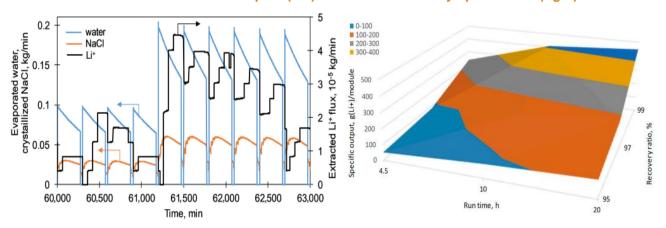
MATLAB/Simulink MATLAB/Simulink MPC Integral controller Setpoint MPC AMSimulation AMSimulation

Lithium Recovery Optimization from Geothermal Brine

Challenge


 Optimize lithium recovery by simulating a multi-stage system of distillation, evaporation, crystallization, and precipitation processes and assessing membranes performance.

Solution


 Used Simulink and Simscape to simulate membrane distillation and crystallization for lithium extraction using thermal and fluid subsystems of polynomial equations.

Benefit

 Simulink enabled the simulation of complex geothermal processes for effective lithium extraction and confirmed experimental results about optimal membrane design and fluid thermodynamic conditions.

Geothermal simulation outputs (left) and Lithium recovery optimization (right)

Technoeconomic assessment of blue hydrogen plant using CO2 hydrogenation

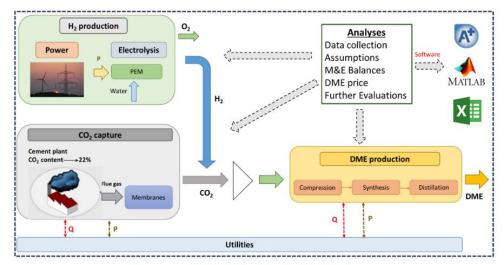
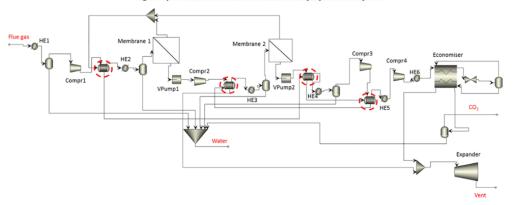
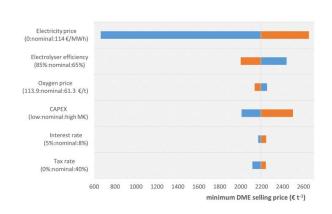


Fig. 1. System elements and boundaries of the proposed DME plant.




Fig. 2. Process flow diagram for CO2 capture though multistage membrane and cryogenic separation.

MATLAB was interconnected with Aspen Plus via COM to:

- Model both sensitivity and probabilistic analyses
- Solve nonlinear equations for CO2 membrane separation
- Control stream flowrates on Aspen black box in real time

Economic indicator results of the plant.

	CO ₂ capture plant	Electrolysis	DME synthesis	Utilities	Total
CAPEX (M€)	237	197	488	272	1195
OPEX (M€)	17	382	23	13	436
CAPEX per tonne of DME (ε t ⁻¹)	106	88	218	121	533
OPEX per tonne of DME ($\mathbb{C} t^{-1}$)	71	1556	96	51	1774
DME Production cost (€ t ⁻¹)	177	1644	313	173	2307
Revenues from O_2 ($\in t^{-1}$)	_	_	_	_	195
Net DME production cost (€ t ⁻¹)	_	_	_	_	2112
Minimum DME selling price (€ t ⁻¹)	-	-	-	-	2193

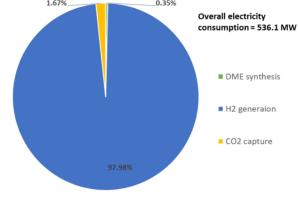


Fig. 10. Electricity cost breakdown.

Source: Michailos et al (2019). Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment. Energy Conversion and Management, Vol. 184, pp. 262-276. https://doi.org/10.1016/j.enconman.2019.01.046.

CO2 recycling model for syngas production based on chemical looping

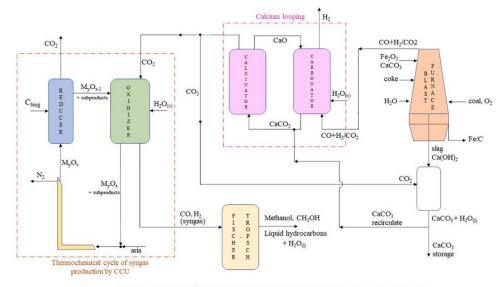


Fig. 1. Industrial integration scheme for a syngas production cycle coupled with CO2 treatment.

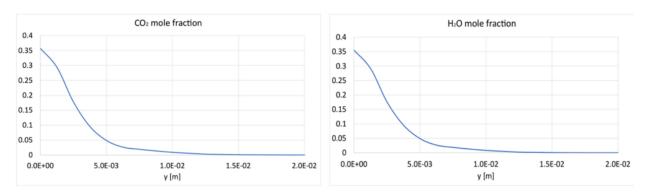


Fig. 5. Gases mole fractions of H_2O and CO_2 at t=15 s along oxidizer's centerline.

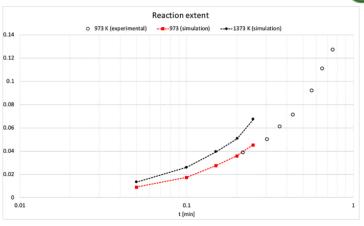


Fig. 4. Reaction extent comparison between experimental values and simulation results.

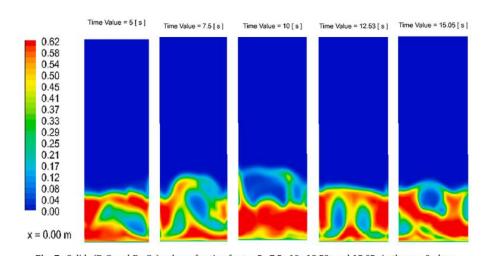


Fig. 7. Solids (FeO and Fe₃O₄) volume fraction for t = 5s, 7.5s, 10s, 12.53s and 15.05s in the x = 0 plane.

Source: Hoxha et al (2022). Development of a novel carbon capture and utilization approach for syngas production based on a chemical looping cycle. Fuel, Vol. 325, No. 124760. https://doi.org/10.1016/j.fuel.2022.124760.

CO2 post-combustion capture modeling & optimization using machine learning

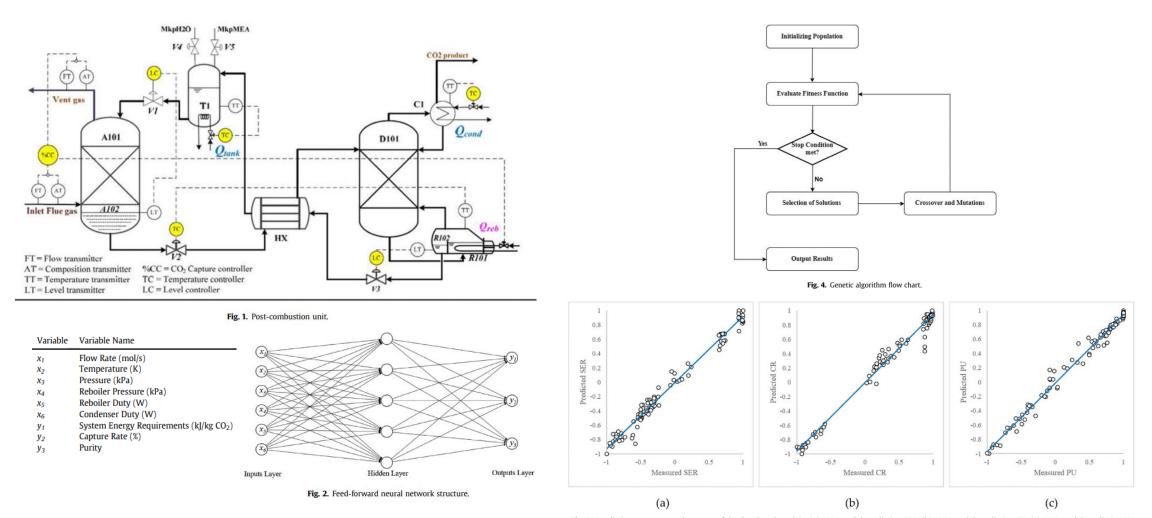


Fig. 3. Predictions vs. measured outputs of the developed models: (a) ANN model predicting SER; (b) ANN model predicting CR; (c) ANN model predicting PU;

Source: Shalaby et al (2021). A machine learning approach for modeling and optimization of a CO2 post-combustion capture unit. Energy, Vol. 215, No. 119113. https://doi.org/10.1016/j.energy.2020.119113.

MATLAB® SIMULINK®

Artificial Intelligence

Big Data Analysis

Deep Learning

Machine Learning

Reinforced Learning

Predictive Analytics

Internet of Things

Process Optimization

Model-Based Design

Process No Automation I

New Process Integration

https://www.mathworks.com/solutions/energy-production/energy-resources.html

