
Automatically Generating VST Plugins from MATLAB Code
Charlie DeVane

MathWorks, Natick, MA, USA
charlie.devane@mathworks.com

Gabriele Bunkheila

MathWorks, Cambridge, UK
gabriele.bunkheila@mathworks.co.uk

June 4, 2016

ABSTRACT

We describe the automatic generation of VST audio plugins from MATLAB code using the Audio System
Toolboxfrom MathWorks. We provide MATLAB code for three complete example plugins, discuss problems that
may be encountered, and describe a workflow to generate VST plugins as quickly and easily as possible.

1 Introduction

Many audio researchers and product developers design
their algorithms in MATLAB R© and then for various rea-
sons re-write their prototypes in C++ as VST plugins.
Re-writing algorithms is at best tedious and error prone,
even when using plugin frameworks. Short-circuiting
this process by generating VST plugins directly from
MATLAB code using the Audio System ToolboxTM

from MathWorks R© can substantially accelerate algo-
rithm development. In this paper we provide three com-
plete example plugins to demonstrate the fundamental
programming constructs required to process audio, cre-
ate plugin parameters, manage internal state, and react
to parameter changes. We then discuss problems that
may be encountered, and a workflow to generate plug-
ins as quickly and easily as possible.

2 Writing A Plugin

In this section we walk through three complete example
plugins. If you are accustomed to writing traditional
MATLAB programs that read in all the input data, pro-
cess all the data, then write out results, then this style

This paper was presented at the 140th Convention of the Audio
Engineering Society, as Engineering Brief 238. The full published
version can be found at www.aes.org/e-lib/browse.cfm?elib=18142.

of code may look new to you. An audio plugin only
does processing, while the DAW does all the work of
getting data in and out. Furthermore, in normal opera-
tion audio plugins do not have access to the entire input.
They must process data one frame at a time.

Plugins use MATLAB class syntax, but you do not
need to understand classes and object oriented pro-
gramming to successfully write powerful audio plugins
in MATLAB. Follow the patterns in these examples.
They contain all you need to know to get started.

2.1 The simplest plugin: Stereo Wire

We begin with the hello, world of audio plugins, the
stereo wire, shown in Figure 1. This is the bare mini-
mum to create a plugin in MATLAB. It just copies its in-
put to its output. This plugin is named stereoWire.

classdef stereoWire < audioPlugin
methods
function out = process(plugin, in)
out = in;

end
end

end

Fig. 1: Stereo wire plugin

DeVane and Bunkheila VST Plugins from MATLAB

Every plugin must have an audio processing function
named process. This is the heart of the plugin. You
can rename arguments plugin, in, and out if you
wish, but the function must be named process. By
default process has one stereo input and one sterero
output, but other arrangements are possible. Despite its
simplicity, this plugin is useful if we put a more inter-
esting algorithm inside process. We can make this
plugin even more useful if we add plugin parameters
so we can tune the algorithm we put inside process.

2.2 Plugin parameters: Stereo Width

In this example, shown in Figure 2, we use simple
mid-side processing to tamper with a signal’s stereo
image. The technique is to convert the audio from left-
right format to mid-side, adjust the level of the side
channel, and then convert back. Attenuating the side
channel narrows the stereo image, while boosting the
side channel widens the image. Thus we need a plugin
parameter to control the level of the side channel.

To create the plugin parameter we add a property named
Width to hold the parameter value. Object properties
hold their value across function calls. Then we add
a plugin interface specification to tell the plugin gen-
erator, generateAudioPlugin, that the generated
plugin should have a parameter tied to the property
Width. Property PluginInterface specifies the
appearance of the plugin’s dialog as it will appear in a
DAW.

classdef stereoWidth < audioPlugin
properties

Width = 1
end
properties (Constant)

PluginInterface = ...
audioPluginInterface(...
audioPluginParameter(’Width’))

end
methods

function out = process(plugin, in)
mid = (in(:,1) + in(:,2)) / 2;
side = (in(:,1) - in(:,2)) / 2;
side = side * plugin.Width;
out = [mid + side mid - side];

end
end

end

Fig. 2: Stereo width plugin

Now we can use Width inside process to control
the algorithm. By default, the Width parameter varies
linearly between 0 and 1; so this plugin can only ad-
just the image between mono and the original stereo.
Adding a mapping to the parameter will improve this
range:

audioPluginParameter(’Width’, ...
’Mapping’, {’lin’, 0, 4}))

This mapping enables Width to vary linearly between
0 and 4, so the control can adjust the image between
mono and hyper-wide, with the original stereo when
the control is at the 25% position. The control is more
intuitive if the original stereo is at the 50% position,
which we can do with a different mapping:

audioPluginParameter(’Width’, ...
’Mapping’, {’pow’, 2, 0, 4}))

Now Width will still vary between 0 and 4, but it will
follow a square law so that Width is 1 at the control’s
midpoint. Figure 3 shows what the final stereo width
plugin dialog looks like in Reaper.

You can add any number of plugin parameters in this
fashion.

Fig. 3: Stereo width plugin dialog in Reaper

2.3 Internal state: High Pass Filter

Most algorithms require internal state to be carried over
from one frame to the next. Efficiency considerations
may also require internal state, such as caching results
to avoid redundant computation.

To illustrate correct handling of internal state we create
a high pass filter with a cutoff frequency that varies
over a four octave range from 20 Hz to 320 Hz. We
will use a second-order biquad filter, which gives us a
slope of 12 dB/octave. The completed plugin is shown
in Figure 4.

To control the cutoff frequency, we create a plugin
parameter much like the stereo width control, using a

Page 2 of 4

DeVane and Bunkheila VST Plugins from MATLAB

classdef highPass < audioPlugin
properties

% public interface
Fc = 20

end
properties (Constant)

PluginInterface = ...
audioPluginInterface(...
audioPluginParameter(’Fc’, ...
’DisplayName’, ’High Pass’, ...
’Label’, ’Hz’, ...
’Mapping’, { ’log’, 20, 320}))

end
properties

% internal state
z = zeros(2)
b = zeros(1,3)
a = zeros(1,3)

end
methods

function out = process(p, in)
[out,p.z] = filter(p.b, p.a, in, p.z);

end
function reset(p)

% initialize internal state
p.z = zeros(2);
Fs = getSampleRate(p);
[p.b, p.a] = highPassCoeffs(p.Fc, Fs);

end
function set.Fc(p, Fc)

p.Fc = Fc;
Fs = getSampleRate(p);
[p.b, p.a] = highPassCoeffs(Fc, Fs);

end
end

end

Fig. 4: High pass filter plugin

% Butterworth high pass filter coefficients
function [b, a] = highPassCoeffs(Fc, Fs)
w0 = 2*pi*Fc/Fs;
alpha = sin(w0)/sqrt(2);
cosw0 = cos(w0);
norm = 1/(1+alpha);
b = (1 + cosw0)*norm * [.5 -1 .5];
a = [1 -2*cosw0*norm (1 - alpha)*norm];

end

Fig. 5: Computing high pass filter coefficients based
on [1]

Fig. 6: High pass filter plugin dialog in Reaper

property named Fc. To create a more usable dialog
we have added DisplayName and Label strings to
the plugin interface specification and used a different
mapping, log, which gives a more natural control for
frequencies. Figure 6 shows what the high pass filter
plugin dialog looks like in Reaper with the slider moved
to the center.

To do the actual filtering, process uses the standard
MATLAB filter function:

[y, z] = filter(b, a, x, z)

where b and a are filter coefficients, x and y are audio
input and output, and z is the state of the internal filter
delays.

We create a property z to carry the filter state from
one process call to the next. Property z is a 2 x 2
matrix because our second-order filter requires 2 delay
elements per channel.

The filter coefficients are computed by a separate func-
tion, highPassCoeffs (Figure 5), using equations
adapted from [1]. A naive implementation might call
highPassCoeffs directly in the process func-
tion, but this is unnecessary and may cause excessive
CPU loading or dropouts if the computation is expen-
sive. Instead we will cache the coefficients in two new
properties a and b, and only recompute them when the
cutoff frequency or sample rate change.

We have declared properties z, a, and b in a separate
properties section1, to remind ourselves that these
are internal plugin states, conceptually very different
from Fc which is part of the plugin’s interface.

Internal states like properties z, a, and bmust be initial-
ized before processing begins, and again if the sample
rate changes. This is performed by the function reset.
In general, every plugin with internal state should have
a reset function, and anything that depends on the
sample rate should be re-computed in reset.

1Good software engineering practice recommends making this
separate section private, but debugging is easier if we leave it public.

Page 3 of 4

DeVane and Bunkheila VST Plugins from MATLAB

To recompute the coefficients when Fc changes we use
the property access function set.Fc, which is called
any time Fc is modified.

3 Workflow

In this section we discuss several kinds of errors you
may encounter when developing an audio plugin in
MATLAB, and a workflow designed to create a work-
ing plugin as quickly and painlessly as possible.

The kinds of errors you may encounter while creating
a VST plugin include:

MATLAB programming errors These include syn-
tax errors and runtime errors thrown by MATLAB
when your code runs.

The solution to these errors is testing your code
thoroughly in MATLAB. Use the many testing
and debugging tools available in the MATLAB
environment. Exercise all code paths and data
conditions that might throw an error.

Algorithm errors Your algorithm doesn’t produce
the results you expect.

The solution here is also testing your code thor-
oughly in MATLAB. Use the many tools available
in MATLAB for generating, visualizing, and an-
alyzing data. Use the Audio Test Bench app to
interactively explore your algorithm’s behavior
by listening to the output and viewing analyses
while tuning parameters in real-time with a MIDI
control surface.

Audio plugin constraint errors To work correctly in
a DAW, MATLAB plugins must obey constraints
imposed by the VST plugin API. For example,
the plugin must produce the number of output
columns it declared it would, and the number of
output rows must match the number of input rows.
A plugin that fails to follow these constraints may
crash the DAW.

Run validateAudioPlugin to diagnose au-
dio plugin constraint errors. It also checks for
many code generation errors.

Code generation errors These errors are thrown by
generateAudioPlugin while generating the
VST plugin. MATLAB Coder technology, which
is used to generate plugins, supports most of the

MATLAB language, but some constructs that can-
not be translated into efficient, embeddable code
are not supported. These limitations are described
in the product documentation.

There is no single solution for all of these errors. Mul-
tiple approaches are required. We recommend the fol-
lowing workflow:

1. Write the plugin in MATLAB, following the cod-
ing patterns in the example plugins.

2. Test the plugin MATLAB code in MATLAB for
programming and algorithm errors.

3. Run validateAudioPlugin to find plugin
constraint errors and some code generation errors.

4. Run generateAudioPlugin to generate the
VST plugin.

5. Test the VST plugin in a DAW.

This workflow is designed to find problems as early
and painlessly as possible. For example, many
MATLAB programming errors can be found by run-
ning generateAudioPlugin, but they are often
easier to detect and debug by testing in MATLAB. So
the order of steps in the workflow is important.
The fastest path to success is usually to write a plugin in
small increments, running through all (or at least most)
of the above process at each increment. Problems are
much easier to debug if you only change a small amount
of code at a time.

4 Summary

Using three complete plugin examples, we demon-
strated the programming constructs required to process
audio, create parameters, manage internal plugin state,
and react efficiently to parameter changes. We noted
that by following the patterns in these examples users
can create powerful plugins even if they are unfamiliar
with object oriented programming. We described sev-
eral kinds of problems that may be encountered, and a
workflow to generate plugins as quickly and easily as
possible.

References

[1] Bristow-Johnson, R., “Cookbook formulae
for audio EQ biquad filter coefficients,” 2004,
http://www.musicdsp.org/files/Audio-EQ-
Cookbook.txt.

Page 4 of 4

