Page &

Volume 4, No. 1

The MathWorks Newsletter

nical Note - Double-Rounding and Implications for

Numeric Computations
by Cleve Moler

Here is a test of floating-point rounding:

eps = the distance from 1.0 to the
next larger floating-point number,
= 2" (-52) for IEEE long arithmetic
e = a small multiple of eps
Compute ((l+e)*(1.5+e)-1.5)/e

With exact computation, the result would be 2.5 +
e, s0 with roundoff error one might expect to get 2. 5.

Here is a MATLAB code segment that runs this test
with three different values of e:

roundoff errors, and so the final result “should be” 3
instead of 2. 5.

This is what happens on the Titan, which has IEEE
floating-point format and follows IEEE rounding
rules, but which does not have some of the fancier
features of the IEEE standard and its optional
extensions.

What about the Sun-3 and the PC whene = eps?
They both produce 2. 0, rather than 2. 5 or 3. 0.
Why? The Sun-3 uses the Motorola floating-point
chip and the PC uses the Intel floating-point chip.

format compact Bo,th of these
format hex chips adhere
e = [0.5 1 2]*eps | Ardent Titan: faithfully to the
a=1+e e = [3ca0000000000000 3cb0000000000000 3cc0000000000000] IEEE floating-
b=1.5+ e a = [3f£0000000000000 3££0000000000001 3££0000000000002] point standard,
c = a.*b b = [3££8000000000000 3££8000000000001 3££8000000000002] including the
d=c - 1.5 c = [3££8000000000000 3£f8000000000003 3££8000000000005] optional
format short d = [0000000000000000 3cc8000000000000 3cd4000000000000] extended
4./ e ans = [0 3.0000 2.5000] precision. The
crucial
The chart at right Sun-3: intermediate
shows the results on e = [3ca0000000000000 3cb0000000000000 3cc0000000000000] quantity 1.5 +
three different a = [3££0000000000000 3£f£0000000000001 3££0000000000002] 2.5*%eps can
machines. b = [3££8000000000000 3fF8000000000001 3££8000000000002] be represented
c = [3££8000000000000 3££8000000000002 3£F8000000000005] in extended
Whene = 0.5%eps, d = [0000000000000000 3cc0000000000000 3cd4000000000000] precision, and it
we see on all three ans = [0 2.0000 2.5000] appears that
machines that it gets both of these
lost when added to PC compatible: machines do so.
1.0 orl.5,sothe e = [3ca0000000000000 3cb0000000000000 3cc0000000000000] A second
final result is zero. a = [3f£0000000000000 3££0000000000001 3FF0000000000002] rounding is
This would happen b = [3f£8000000000000 3££8000000000001 3f£8000000000002] required to
for any value of e less c = [3££8000000000000 3£f£8000000000002 3££8000000000005] produce a long
than eps. d = [0000000000000000 3cc0000000000000 3cd4000000000000] precision
ans = [0 2.0000 2.5000] number, and
Whene = 2.0%eps, now the IEEE

we see that each

round-to-even

machine produces the expected final result of 2. 5.
This should happen on any reasonable machine for
any value of e greater than a few eps.

The interesting case is when e is exactly equal to eps.
Then 1+e and 1.5+e canbe expressed as floating-
point numbers, so there is no roundoff error involved
in computing a or b. In fact, the only roundoff occurs
in computing the product, c = a.*b. With exact
computation c wouldbe 1.5 + 2.5%e + e"2,
which is almost exactly halfway between the two
floating-point numbers 1.5 + 2*epsand 1.5 +
3*eps. But the e~ 2 term makes the exact result a
little closer to 1.5 + 3*eps, so that is what “perfect”
rounding should produce. There are no further

ruleleadsto 1.5 + 2*eps, rather than the “correct”
1.5 + 3*eps.

This phenomenon is known as “double-rounding”. It
does not occur on machines like the Ardent Titan,
that are intended to have fast IEEE floating-point and
so do not have extended precision. The Sun Fortran
compiler, f77, has many “float options”, some of
which affect the handling of extended precision. I am
not sure which options would change the behavior of
a Fortran version of this program. Iam even less sure
about what would happen with C compilers on the
Sun-3, or with either language on a SPARCstation or
other machine. ¢

Cleve Moler is co-founder and chairman of The MathWorks, Inc.

