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INTRODUCTION 
From complex controls problems like STOVL or VTOL manned aircraft, to fully autonomous 

systems, there is a definite growth trend in both the quantity and complexity of embedded 
software in today’s aircraft systems. At the same time that the quantity of embedded software 
used in the aerospace industry is on the rise, so too is the required rigor with which this software 
must be developed. External software process certifications such as Federal Aviation 
Administration (FAA) DO-178B, previously required exclusively for commercial aviation 
projects, have greatly grown in influence. As a result, the importance of architecture has grown as 
the size and complexity of embedded software systems increases to meet these expanding 
requirements. Software architecture is typically defined as the hierarchical organization of the 
software necessary to accomplish the task at hand. Model-Based Design is well suited to support 
this task, as it extends the idea of a hierarchical organization further up the design process.  

In a traditional design flow, requirements documents lead to algorithm development, which is 
then translated into code and embedded on the target processor. The software architecture in this 
case tends to be the first instance where hierarchy, order of computation, and interface 
dependencies between larger subsets of the software are defined. With Model-Based Design, 
these definitions can be made earlier in the process, such that the algorithms themselves are 
developed in a hierarchical manner. Using Model-Based Design, engineers can begin with a 
hierarchical organization in the model that exactly mimics the desired architecture of the target 
software environment. Accordingly, many of the architectural decisions for the project could be 
made earlier in the model environment.  

This paper discusses the idea of model architecture and some of the factors to be considered 
when defining a model architecture. Establishing modeling practices for large models will 
address the ability for a large team to work on a model as well as simulation performance for a 
large model. The paper will also cover model architecture decisions for high integrity software 
development, including some stylistic considerations and considerations for configuration 
management and source control.  

 

MODEL-BASED DESIGN 
At the heart of Model-Based Design is the model, which is elaborated throughout the 

development process. The model provides an executable specification. “Executable” implies that 
the model exists as more than just a document, but as a functional part of the design process. As 
such, making the model functional is the first major influence on model architecture. This 
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functionality is particularly important as the size and complexity of a model increases. With 
increasing size, this functionality includes organization to manage a large number of blocks as 
well as the execution performance of the simulation.  

The “specification” in executable specification implies that the model, aside from being an 
environment in which an algorithm is developed and tested, serves as documentation of the 
algorithms. The documentation aspect of this idea has a distinct influence on the model 
architecture, to address readability, reusability, and annotation. Furthermore, as with other 
documents, the model must be compatible with configuration management and source control 
procedures determined by the process architecture. These considerations will also impact the 
model architecture. 

The fundamental idea behind the architecture introduced in this paper is that the model should 
be a self-contained, fully specified, deterministic, hierarchical description of the algorithm. This 
idea impacts the tools used to componentize the model, how parameters are specified in the 
model, how signals are used in the model, and other modeling decisions. As with all engineering 
decisions, choosing a model architecture involves tradeoffs. The advantage to choosing a rigorous 
model architecture is the increased level of clarity and determinism in the model. The 
disadvantage is that working within such a model architecture requires a strict set of rules, greatly 
reduces the flexibility of the model, and significantly increases the required effort to complete the 
model. Thus, the algorithm developer must determine where the task at hand fits on the spectrum 
of modeling tasks. One side of this spectrum is modeling for rapid prototyping, where speed and 
flexibility are of great importance. The other end of the spectrum is modeling for a high integrity 
software development process, where adaptability is unacceptable, and determinism and 
repeatability are essential. For the most part, the suggestions contained herein are for tasks on the 
high integrity extreme of the spectrum, where to a certain extent an increase in effort is an 
acceptable tradeoff for rigor. 

 

HIERARCHICAL COMPONENTIZATION AND MODULARIZATION 
In the context of the model as an executable specification, model architecture is greatly 

influenced by the functional aspect of Model-Based Design. As with traditional software 
development, organization is necessary for understandability, clarity, reusability, and ability to 
debug. A truism for embedded systems is that when writing code, it is possible to write the entire 
necessary functionality for an embedded control system in a single contiguous line of code. 
However, this is also universally accepted as bad practice. Thus, code is broken into functions. 
The lowest-level functions perform the actual algorithms. Higher level functions create a 
hierarchy that determines the order of execution of these lower-level functions. The model 
environment should be subject to these same considerations. Similar to the single contiguous line 
of code, it is possible to fully define an immensely complex algorithm in a model via thousands 
of blocks with no hierarchy. However, this is also universally accepted as bad practice. For the 
same reasons as in the code environment, it is highly desirable to use subsystems like functions, 
to include some hierarchal organization of the functionality.  

Like a function-call hierarchy, subsystems can be best thought of as a hierarchical organization 
tool, where all of the actual algorithmic functionality happens at the lowest levels. This 
hierarchical organization is perfectly suited to componentization and modularization of the model. 
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The terms componentization and modularization are often used interchangeably. However, in this 
particular case the definition of the terms will have a distinct difference. Componentization is the 
idea of subdividing a model into functional groupings. These functional groupings, or 
components, are exactly like functions in a code environment. Modularity relates to the level of 
isolation and/or interchangeability of a component. In a code environment, a highly modular 
component would be a reusable or reentrant function, with the function being completely self-
contained and having no data dependencies beyond the specified inputs and outputs. Conversely, 
a less modular function would rely heavily on global data. The Simulink software environment 
has a number of constructs to support componentization and modularization of the model. Which 
constructs are most appropriate depends on model size and complexity, organizational influences, 
and required level of rigor. The following sections discuss the varying options for 
componentization, in order from least to most modular. 

Virtual Subsystem 

The first and most basic level of model componentization is the virtual subsystem. A virtual 
subsystem is simply that, a virtual boundary. Once a model update or Update Diagram (Ctrl-D in 
Simulink) is performed, these virtual boundaries disappear, essentially flattening the hierarchy of 
the model and putting all of the functionality at one level. Only after this flattening is the data-
dependency sort for execution order performed, meaning that the virtual subsystem’s graphical 
componentization of the model has absolutely no functional meaning, particularly in terms of 
block execution order. Though extremely useful for graphical organization, it is easy to imagine 
for models consisting of thousands of blocks how this construct alone might be problematic. Thus, 
for larger models some additional thought must be put into how the model is organized.  

Atomic Subsystem 

The next level of componentization, and the first with implications on modularity, is the atomic 
subsystem. Atomic subsystems allow not only graphical organization of the model, but also a 
functional componentization. The key difference is that atomic subsystems execute as a unit, and 
all functionality contained within that atomic subsystem will execute to completion before 
another part of the model is executed. Thus, unlike virtual subsystems, during a model update an 
atomic subsystem is treated as a functional group, exactly like a function in a code environment. 
This functional boundary allows the hierarchical organization in the model to also represent a 
functional hierarchy for simulation and for the generated code. In fact, atomic subsystems allow 
several different options when generating code, including the generation of reusable functions. 
For many applications this level of componentization is sufficient. However, when dealing with 
large simulations, other issues may arise.  

Model Referencing 

One of these issues is how to enable many people to work on a large model at the same time, 
without causing significant configuration management challenges. One way to address this issue 
is to find a way to modularize the model beyond the capability provided by atomic subsystems. 
Recalling the idea of the model as an executable specification, model referencing provides some 
significant advantages from the specification perspective. Model referencing is the idea of 
embedding an independent model file within another model. Model referencing requires that the 
external interfaces of the embedded model be fully defined such that the parent model can 
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understand the input/output (I/O) structure and thus communicate with the referenced model. This 
definition means that at a minimum every signal’s data type, size, and sample time must be 
defined a priori (i.e. not inherited). From a high integrity point of view, this I/O definition is not 
only highly desirable, but in most cases is required. Furthermore, model referencing also allows 
independent configuration control of the referenced models. Well-defined functional boundaries 
also allow many engineers to work on independent portions of the model without interfering with 
each other’s work.  

A second issue that can be addressed by model referencing is simulation performance. From a 
functional perspective, model referencing also provides significant advantages for simulation 
performance. A referenced model can be run in one of two modes. Normal mode executes the 
referenced model as a model, where the Simulink solvers operate on the blocks inside the model 
reference boundary. Accelerated mode generates code for the blocks within the referenced model, 
then compiles and interfaces this code with the rest of the parent model. Because execution of 
compiled code is inherently faster than the solver operating on Simulink blocks, model 
referencing operating in Accelerated mode can greatly increase simulation performance. However, 
there are two major costs for this simulation performance. The first cost is that the process of 
generating and compiling the code for a referenced model in Accelerated mode can significantly 
increase the time required to update a model. Thus, the trade is a longer update time in exchange 
for a faster simulation. The second cost is that the compiled code implemented in Accelerated 
mode does not offer the internal visibility available when executing Simulink blocks. This cost is 
addressed by Normal mode. However, in Normal mode, the simulation performance benefits are 
not realized. Furthermore, Normal Mode is still subject to the hard boundary definitions required 
by Model Reference, so any changes that require altering this interface can be more cumbersome 
than when using a subsystem implementation. 

With this in mind, much thought must be put into choosing how to implement model 
referencing in a successful model architecture. The specification-related influences on model 
referencing want to push the model referencing boundaries down the model hierarchy to take 
advantage of the modularity provided. However, the functional-related influences want to push 
the model referencing boundaries up the model hierarchy to maximize simulation performance. 
These opposing influences coupled with the fact model referencing requires hard boundary 
definitions can cause confusion on how best to use model referencing.  

To manage this conflict, the capability exists to switch from an atomic subsystem to a model 
reference, and vice versa. This capability can be used to move the model reference boundaries up 
and down the hierarchy depending on the task at hand. Thus, when dealing with configuration 
management, or the need for many team members to work on the model at the same time, the 
model referencing boundaries can be pushed to the lowest levels of the hierarchy to take 
advantage of the modularity provided by model reference. The algorithm designer can revert to 
subsystem boundaries for the part of the model requiring design and/or analysis where the 
interfaces may change, while using model reference for the rest of the model for increased 
simulation performance. For integration testing, this approach allows algorithm designers to 
optimize the model configuration based on the part of the model under consideration. Finally, for 
system-level testing or for code generation, these model referencing boundaries can be moved up 
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the model hierarchy to maximize the performance benefits of model referencing in Accelerated 
mode.  

Ultimately, model referencing boundaries should correspond to software component 
boundaries architected by software engineers for the target software environment. This does not 
mean that hierarchical model referencing is not suggested. In fact, for high integrity software 
development seeking certifications such as DO-178B Level A, using hierarchical model 
referencing can significantly reduce the amount of work involved for regression testing. In this 
type of environment, each time code is generated from a model it must be reviewed again and 
tested. Because the model reference represents a hard boundary, once the code from that 
referenced model is verified, treating it as a black-box function prevents the need to re-verify that 
function as a result of changes elsewhere in the model. Thus, even if a change is made up the 
model hierarchy requiring changes to the code that calls the model referencing function, this 
function itself need not be regenerated.  

Libraries 

Whenever the concept of model references is discussed, invariably the topic of libraries closely 
follows. Libraries are an extremely useful way to deal with block constructs that have many 
instances in a model as they allow the ability to link all of these instances to a single source. In 
doing so, the process of making a change to multi-instanced construct is simplified to altering the 
library source block only. The idea of a single source linked to many instances in the model 
seems to be a good place to start the application of configuration management and source control 
within a large model. However, as the above discussion suggested, model referencing and the 
modularity it provides is the proper tool for subdivision of a model for configuration management. 
So what is the most appropriate use of model referencing as opposed to libraries? At its absolute 
core, as with all of the topics discussed herein, this decision is ultimately based on the engineer’s 
preference. That said, the discussion above provides a significant amount of insight into when to 
use libraries and when to use model referencing. Recall that a library is simply a subsystem. This 
subsystem has some additional properties in that it can be linked to some library version, but at its 
core it is still a subsystem. Thus, it provides none of the advantages achieved with model 
referencing with respect to modularity or simulation performance. It is quite common that 
libraries, rather than model referencing, are seen as the first step to apply some kind of 
configuration control within a large model. Interestingly, when not used carefully, libraries can 
negatively compromise the ability to configuration manage a large model. The ideas of 
modularity and configuration management go hand in hand.  

As discussed above, libraries (being inherently subsystems) provide little capability for 
modularity. In fact, they provide the opposite capability when used hierarchically. Consider a 
hierarchy of linked libraries of considerable depth. An algorithm designer needs to make a change 
at the lowest level of this hierarchy. To do so, that designer must update the library block. 
However, because this block resides in a subsystem that is also a linked library, the parent 
subsystem has also changed and thus the library block must also be updated. This parent 
subsystem is also part of another subsystem going up the hierarchy, requiring that that parent 
subsystem’s library block also be change. This cycle continues until you reach the top level of the 
hierarchy. In this architecture, making a change at the lowest level forces a change in every block 
in the hierarchy, including that low-level block. Furthermore, to make that initial change, the 
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designer must break every library link in the hierarchy. This approach is neither modular nor 
conducive to configuration management. This is not to say, however, that libraries do not provide 
a very useful capability. In the case where an algorithm developer creates a functional grouping 
of blocks that will be used many times throughout the model, implementing this grouping as a 
library makes sense. Typically such a functional grouping would rarely require editing, thus 
avoiding the issues discussed above. However, if a change is ever required to this functional 
grouping, the change can be made in a single place (the library block) and this change will then 
propagate to all instances of this function in the model. Furthermore, this library block can be 
included in a user-defined library that appears in the Simulink library browser, allowing a team to 
essentially build a customized blockset for their specific application. Such an arrangement is 
highly useful. Thus, libraries, in general, are extremely useful for creating small reusable 
functional groupings. However, they do not offer any capability to modularize a model. It should 
be noted that the ability to place referenced models within a library provides some advantages 
with respect to configuration management. This is a topic that will be covered in depth in a 
different paper specifically on this topic. 

 

CONTROLLING EXECUTION ORDER 

The above discussion showed that the ideal model hierarchy includes a combination of atomic 
subsystems, referenced models, and libraries depending on the rigor of the software development 
process. By opting for one of the more modular approaches, the algorithm designer procures the 
additional benefit of being able to begin to specify the order of execution of the algorithms as 
expressed in the model. As mentioned above, with virtual subsystems the model hierarchy is 
flattened and execution order is determined solely by a built-in data dependency sort. Conversely, 
with atomic subsystems the algorithm designer has much more control. Though the ability to 
explicitly define block execution order does not currently exist, there are practices, and more 
importantly model architectural decisions that can be used to specify this behavior. In fact, it 
would seem highly desirable if the model architecture enforces some rules about how the signal 
flow should be modeled, such that the block execution order is intuitive and completely 
deterministic based on the model itself. This would prevent the need for the capability to 
explicitly set execution order, a capability that is only necessary if the algorithm is modeled in a 
nondeterministic manner. Whether it is possible to define the execution order via the model is 
highly dependent on the algorithm being modeled, but there are some block constructs and 
stylistic guidelines that make this approach easier.  

Before attempting to control execution order, however, it is helpful to understand how 
Simulink makes this determination. The concept of signal flow is how the data represented by 
signal lines in Simulink moves from block to block. In other words, it is an expression of the 
external data dependencies of each block. Figure 1 shows an extremely simple model, consisting 
of only two virtual subsystems in a feedback loop. 
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output
10:5

Subsystem 2Subsystem 1

input
1

double doubledouble

double double

Figure 1: Simple discrete model 
Notice the sorted order displayed in the upper-right corner of the blocks. In this case the 
execution order is: 

1. Subsystem 1: Gain 
2. Subsystem 2: Gain 
3. Subsystem 1: Constant 
4. Subsystem 1: Sum 
5. Subsystem 2: Gain1 
6. output 

 
This execution order may seem surprising to some algorithm designers, who expect Simulink to 
do better job of “understanding” the model and its intent. In fact, some users may go so far as to 
say that this execution order is simply wrong. However, recall the discussion of virtual 
subsystems above, where it was stated that they are solely for graphical organization and have no 
functional meaning. This is the perfect example of that fact. Further insight can be gained by 
looking at this exact same algorithm with only some graphical changes that make the signal flow 
much more apparent. Figure 2 shows this case.  

output
10:50:3

Gain 2

4
0:4

Gain 1

2
0:1

Gain

1
0:0

Constant

3
0:2

input
1

double

double double double double double

 
Figure 2: Sample discrete model, graphical changes only 

 

Comparing Figures 1 and 2 shows that indeed the algorithm is exactly the same, only the virtual 
subsystem boundaries have been removed. Furthermore, the sorted order is exactly the same. 
However, if Figure 1 had not been seen, one might indeed think that the sorted order shown for 
the model in Figure 2 is perfectly proper. This example illustrates the single most important 
suggestion for a successful model architecture: make the model fully self-contained, deterministic, 
and intuitive. However, this suggestion first requires a fundamental understanding about Simulink, 
one shown by the preceding example. In Simulink the graphical layout of the blocks has no affect 
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on the algorithm being modeled, particularly with respect to execution order. More simply, in 
Simulink, block position has nothing to do with execution order! (Note that this is different than 
with Stateflow.) This fact may seem counterintuitive because many engineers, instinctively and 
regardless of experience, want relative block positions in the model to be a meaningful 
representation of relative execution order. This example demonstrates why the most important 
suggestion for a successful model architecture is to make the model fully self-contained and 
intuitive. In other words, if it is commonly expected that the relative positions of blocks within a 
model should depict the execution order, then the signal flow of the algorithm should be modeled 
such that this is the case. Giving the subsystem boundaries shown in Figure 1 some functional 
meaning is accomplished in Figure 3 using atomic subsystems. Because the atomic subsystems 
act as a functional group, the algorithmic meaning of the model in Figure 3 is completely 
different than in Figure 1 despite the fact that no signals or blocks other than the subsystems were 
altered (a unit delay is required on the feedback path to avoid an algebraic loop). Though their 
functional meanings are different, in both Figure 2 and Figure 3 the sorted order is completely 
deterministic due to proper modeling of the signal flow. Furthermore, the sorted order conforms 
to the expectation derived from the relative block positions. 

output
10:3

Unit Delay
z

1 0:0

Atomic Subsystem 2

0:2{2}

Atomic Subsystem 1

0:1{1}

input
1

double doubledouble

double double

double

 
Figure 3: Sample discrete model, functional boundaries 

 

Deterministically modeling the signal flow in the model environment is especially pertinent when 
working in a high integrity environment, where determinism is essential. By not clearly modeling 
the signal flow, as in Figure 1, the algorithm designer forgoes any understanding or control over 
the relative execution order of the algorithm. Furthermore there is some ambiguity about the 
intended algorithm. Consider a more traditional software development process, where a software 
engineer would take the block diagram in Figure 1 and write code by hand to implement that 
algorithm. Depending on the interpretation, the code could implement the algorithm in Figure 2 
or the algorithm in Figure 3! Luckily, this issue is avoided by automatically generating code from 
a model.  When automatically generating code from the model in Figure 1, the only way to have 
the same functionality is to generate a single function for the entire model. Obviously for large 
models in a high integrity environment the verification aspect of such a process is prohibitive. 
Avoiding generation of a single function by attempting to use the subsystem boundaries in Figure 
1 as code generation boundaries would prove disastrous. If code were generated individually from 
the subsystems in Figure 1 and then integrated in a software environment, the resultant algorithm 
in the code would behave exactly as the algorithm modeled in Figure 3. This is clearly different 
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than the algorithm modeled in Figure 1. This illustrates the importance of consistency between 
the model architecture and the software architecture. The above example also illustrates that the 
most effective way to control execution order in a model and provide the same functionality in 
the generated code is by deterministically modeling the signal flow. 

The ability to set block priority is another capability in Simulink to help specify execution order. 
We note that setting block priority is not recommended as a substitute to modeling the signal flow, 
but as a best practice in conjunction with signal flow modeling. With atomic subsystems, the 
algorithm designer has the capability to set an execution priority for that subsystem. This priority 
is essentially a tie-breaker for the built-in data-dependency sort algorithm in Simulink. Simulink 
will still decide execution order based on the signal flow expressed in the model. However, in the 
event that two atomic subsystem’s relative execution order cannot be fully determined by the 
signal flow, Simulink will refer to the aforementioned priority to decide which atomic subsystem 
to execute first. This practice, therefore, allows the designer some control over the block 
execution order, subject to the constraints of the signal flow expressed in the model. Thus, the 
ideal model architecture should enforce some rules about how the signal flow should be modeled 
such that the block execution order is completely deterministic based on the model itself.  

 

CONCLUSION 

This paper covered topics related to componentization and modularization of a model, and how 
these topics influence issues like execution order. Clearly, there is a great deal to consider within 
the large topic of model architecture. However, the practice of using a combination of model 
referencing and atomic subsystems in a flexible but hierarchical manner provides a significant 
amount of capability to address these issues as well as some configuration management and 
simulation performance issues. Furthermore, the fundamental concept for a successful model 
architecture was introduced: The model must be a self-contained, fully-specified, deterministic, 
hierarchical description of the algorithm. 

 

 

© 2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See 
www.mathworks.com/trademarks for a list of additional trademarks.  Other product or brand names may be trademarks 
or registered trademarks of their respective holders. 

http://www.mathworks.com/trademarks

