Obyjectively Speaking

OOPS is not an apology

by Cleve Moler

Here is a MATLAB one-liner that produces the graphs

accompanying this article:

plot(eig(randn(1024, 1024*p)), '.")

This example computes and plots the eigenvalues of a
1024-by-1024 matrix with normally distributed random
elements. You can see that the eigenvalues lie in a disc in the
complex plane with radius about 32, which is the square root
of 1024. If you issue the command repeatedly, you will get
different random eigenvalues, but they will always be in nearly
the same disc.

Here’s another MATLAB one-liner, which, at first glance,
has no relation to our first one:

convert(units('microcentury'), '‘minutes’ )

The output is:
ans =

52.5949 minutes

This tells us that a microcentury is a little less than an
hour. It’s the optimum length for the lecture in a Monday,
Wednesday, Friday class.

What is the point of these examples? Look at them again.
What is that lone p lurking in the first one? Where did that
minutes in the output for the second one come from? They
came from objects. We introduced objects with MATLAB 5 two
years ago. We haven’t made a big deal out of them. You

haven’t seen any ads proclaiming, “MATLAB is now

object oriented.” But MATLAB objects are proving to
be quite powerful and interesting.
Objects allow anyone to add new data types
to MATLAB. By writing a handful of M-files,
you can have your MATLAB do operations
we never dreamed of at The MathWorks.
When you get your next release of
MATLAB and its various toolboxes, you’ll see

" * extensive use of objects. Objects are defined

‘ by constructor functions in directories whose
o
..'l. LX)
°
P

names begin with an @ sign. The full Release 11

will have dozens of @ directories.

6 Winter 1999 MATLAB News & Notes

Our first example, the one with the isolated p, comes from
a research project at MIT lead by Professor Alan Edelman and
involving grad students Parry Husbands and Charles Isbell.
They plan to call their system MATLAB*P, for “MATLAB in
Parallel.” (For details, see http://math.mit.edu/~edelman,
where you can also find out why those random eigenvalues
live in a disc.) There is an object named p implemented in a
directory named @p, which includes a constructor function
p.m. The expression 1024*p returns the value 1024, stored in a
structure that tags the result to be of class p. This may be the
only place where p appears in the entire program.

When functions like randn and eig are invoked on a p
object, the MATLAB system looks for functions, or methods, in
@p which overload the traditional functions with those names.
This allows the matrices to be constructed and stored, and the
computations carried out, on an external parallel computer
system. The matrix never exists on the front-end computer.
The actual eigenvalue computation is done by SCALAPACK,
a distributed memory version of LAPACK. An eigenvalue
computation of this size can be done on a system with eight
processors in slightly more than one-eighth of the time
required by a single processor. More importantly, because
large matrices can be distributed across multiple memories,
huge problems can be tackled.

In the MIT system, MATLAB is serving as a convenient and
familiar interface to a parallel computing environment.
MATLAB*P is not a general-purpose parallel MATLAB, but it
is an interesting use of the object technology.

The units object in our second example is another
experimental project. The idea is to have MATLAB do
arithmetic operations and conversions on quantities involving
units of measurement. The constructor, @units/units. m, '
does most of the work. It recognizes several dozen key words,
including meter, kg, second, milli, foot, volt fmd lightyear.
The resulting structure has three fields: a matrix containing
the numerical values, a cell array of key words denoting units,
and a vector of powers of those units. For example, the
acceleration of gravity in MKS metric units is

g = units('g")




The numerical value of g is 9.8066. The basis array consists
of 'meter' for length, 'second" for time, and six other key
words for mass, temperature, current, molarity, light, and
rotation. The powers vector includes 1, -2 and six zeros. This
allows the display functions in @units to output

g=
9.8066 m/s"2

To convert g to traditional English units,
convert(g, 'English')
ans =

386.0886 in/s"2

To add disparate units,
g + 100*units('yard/nanocentury*2')
ans =

18.9889 m/s"2

This last statement uses the overloading provided by
@units/plus.m, which is called to evaluate A + B whenever
either A or B is a units object.

function C = plus(A, B)
A
B

units(A);

1]

units(B);

if ~isequal(A.bas, B.bas)
B = (B, A);

end

if ~isequal(A.pow, B.pow)
error('Incompatible for addition.')

end

C=A;

C.val = A.val + B.val;

We first ensure that both input arguments are units
objects. We then check that they use the same basis. If not, the
second argument is converted to the basis used by the first
argument. We then check that the powers are the same. If not,
they can’t be added. Finally, after conversion, both arguments
have the same basis and powers, so their numerical values can

simply be added.

The units object is not part of Release
11, but the code is available from our Web site
at www.mathworks.com/publications/newsletter/
winter99.cleve.shtml. Please give it a try and let me
know if you find it useful.

Overloading is used by both the MIT parallel object and
our units object to extend the definition of MATLAB
operations to new data types. Inheritance is another important
aspect of object-oriented programming. The LTI object,
which is used by several of the control toolboxes to
manipulate Linear Time-Invariant systems of ordinary
differential equations, provides an example of inheritance.
The LTI object itself is known as the base class. It carries out
operations that are independent of any particular
representation of the system. Bode plots and Nichols charts
are LTI methods. Detailed operations that depend upon a
particular representation are done by the derived classes. These
include “tf” for transfer function, “ss” for state space, “zpk”
for zero-pole-gain and “frd” for frequency response data.
Each of the derived classes has a plus method, which
corresponds to connecting the systems in parallel.

This is just a glimpse at the world of MATLAB objects.
MATLAB 5.3 has over a dozen objects, including uints, char,
inline and cell. The Symbolic Toolbox is now based on the
sym object. The Financial Toolbox has a financial time
series object. The new Database Toolbox described on page
4 has database and cursor objects. The list goes on. You can

make it even longer. W

MATLAB News & Notes

Cleve Moler is chairman
and co-founder of

The MathWorks.

His e-mail address is

moler@mathworks.com.

Winter 1999 7




