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ABSTRACT 

Today, many leading automotive OEMs and Suppliers 
are adopting Model-Based Design for the development 
of embedded systems applications. In this paper, the 
authors review the challenges of performing 
configuration management that is adequate for use in a 
production environment of the models and associated 
files central to Model-Based Design. 

INTRODUCTION 

A robust configuration management process allows 
teams to manage the development and use of the 
models within a large team project, including the various 
model files themselves; the configuration of a model built 
from many subcomponent models; and the model data 
(parameters and signal specifications).  

In addition to these traditional configuration 
management requirements, within a production 
environment a configuration management tool may be 
used to store artifacts that document Model-Based 
Design, including simulation results, test harnesses used 
to verify the design (both inputs and outputs), generated 
code and logs, and reports of formal coverage tests. To 
ensure reproducibility, the system may catalogue the 
work environment – that is, the versions of the OS, 
modeling tools, compilers, etc. 

Lastly, configuration management tools can be used to 
manage the many model variants that are created to 
capture both the different systems being controlled, as 
well as the complexity of the controllers. For example, 
on a given vehicle program, engineers may need to 
develop controllers for luxury-, mid-, and base-level 
vehicles, with differing requirements for the North 
American, Asian, and European markets. 

In this paper, the authors discuss how configuration 
management tools can be used throughout Model-
Based Design.  

 

 

CONFIGURATION MANAGEMENT (CM) 

A configuration can be defined as "an arrangement of 
parts or elements." In this paper, we focus on those 
parts or elements associated with Simulink models. By 
managing the configuration of a model, we hope to 
provide an example of how one might manage arbitrary 
combinations of files as a configuration. 

In particular, we aim to provide a mechanism that allows 
us to easily define sets of files that are compatible with 
each other, so that when other team members obtain 
such a configuration of files from revision control they 
are confident that the combination will work together. 
This confidence can enable the sharing of work within a 
company, and the parallel development of large Simulink 
models. Additionally, by recording additional information, 
or metadata, we aim to make it possible to extract from 
the revision control system the precise set of files that 
were sent to a supplier or customer, or which are simply 
the latest good configuration of files.  

We define a few terms before proceeding. In particular, 
we avoid the term version and instead use revision. 

• Revision Control Software: Software that stores files 
with unique revision numbers, and allows them to be 
retrieved by name and revision number. 

• Repository: The place where the Revision Control 
Software stores files. 

• Revision: A specific instance of a file stored within a 
Revision Control Software tool.  

• Configuration: A collection of specific revisions of a 
number of files that work together. 

• Root Model: We take a Simulink-centric view of 
configuration management in this paper. We 
assume that each project contains a root model, 
which is the model that a user will open to begin 
work on the project. This model may link to other 
models. 

 
An overview of a typical configuration management 
process is given in Figure 1. We note the use of the 
terms “check in” and “check out”, which we use in this 
paper. Note that the meaning of these terms varies 



between different revision control and configuration 
management tools.  

 

Figure 1: Steps in a typical configuration management 
process. 

1. Get a Configuration. Get a number of files, which 
have been denoted as forming a mutually consistent 
"configuration", from the revision control repository. 

2. Create a File. The user creates a new file on his or 
her local computer. 

3. Add to Revision Control. Make the revision control 
system aware of the new file. The only instance of 
this file is on the user's local computer. It is not in the 
repository. The user can still modify it. 

4. Check Out. The user wishes to work on an existing 
file from revision control. The instance of the file on 
the user’s computer becomes editable. Other users 
are made aware that this user is editing this file. 

5. Check-In. Place the modifications made by the user 
into the revision control repository. Give this file a 
new, unique revision number to indicate that it is 
different from its predecessors. The user's local 
copy is no longer editable. This new revision is 
available to all users. 

6. Create a New Configuration. Label a number of 
files as being a new, mutually consistent 
"configuration". Other users can get this set of files 
from the revision control system. 

 
To clarify how we differentiate configurations from 
revisions, consider the following example. We have a 
project that consists of just three files: Project.mdl, 
importantLibrary.mdl, and newFeature.mdl. 

In Figure 2, we illustrate the development progress of 
the project. We note the following points:  

• The first configuration, defined when the project was 
created and denoted Rev1, contains only 
Project.mdl, revision 1 and 
importantLibrary.mdl, revision 1. 

• The same revision of a file can appear in a number 
of different configurations: 
importantLibrary.mdl, revision 1 is part of both 
the “Project Creation” and “Release 1” 
configurations. 

• Some revisions of a file will may appear in any 
configurations: for example, newFeature.mdl 
revisions 3 and 4. 

• Configurations are being used here to denote major 
events, such as external releases of the project, as 
well to denote which is the current “good” set of files. 

importantLibrary.mdl, revision 5, is not part of 
the “current working” configuration, suggesting that it 
is perhaps untested, contains a bug, or is simply not 
compatible with the latest revisions of 
Project.mdl and newFeature.mdl. 

ject.mdl importantLibrary newFeature

The implication of Figure 2 is that 
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2: Illustration of revisions and configurations. 

LINKING TO A CM TOOL 

To implement confirmation management within Model-

The most straightforward way to put the files associated 

• Engineers have to use two tools, and remember to 

• performed within MATLAB and 

• arder to 

here are several available methods to link from 

HE MICROSOFT SOURCE CONTROL COMMON 

One published API for revision control is the Microsoft® 

roject C
Bold, Release 2 – Bold-Italics, Current Working – ALL
CAPS 
Figure 

Based Design, we need to set up an interface from 
MATLAB® and Simulink® to a revision control (RC) tool. 
There are a number of ways to do this, which depend 
upon the particular RC tool, the operating system that 
the tools will be used with, and the sophistication 
required from the interface. 

with Model-Based Design under the control of revision 
control software is to treat them as two separate tools. 
The user will have access to the full functionality of the 
revision control software through its standard user 
interface. Why might that be suboptimal? 

use them. A common failure mode is for an engineer 
to begin work in Simulink without checking out the 
required files first. 
Analysis can be 
Simulink to determine the dependencies of various 
files upon each other. A third-party RC tool is 
unlikely to understand such dependencies. 
Having two separate tools makes it h
enforce a workflow and to guide the user to do the 
correct thing. By writing a layer between the revision 
control software and the Simulink models and 
associated files, we can enforce such a process. 

 
T
MATLAB into a revision control programs. The following 
list is illustrative and is not meant to be exhaustive.  
 
T
INTERFACE (SCCI) API 

Source Code Control Interface (SCCI) API, supported on 
Microsoft Windows. This API allows communication 
between any revision control package and application 
that implements the API. MathWorks tools use this 



interface to perform basic revision control operations 
directly from the MATLAB current directory browser, 
from the Simulink file menu, and from the MATLAB 
command-line. 

Any source control package implementing this interface 

CUSTOM INTERFACE TO REVISION CONTROL 

Many revision control packages publish an API that 

The advantage of such interfaces is that the full 

HINTS, TIPS, AND COMMON STUMBLING BLOCKS 

Setting up a source control tool to work with MATLAB 

• Simulink .MDL files are stored as plain, ASCII, text. 

• B .MAT files are binary. Many 

• ay have 

 
PPLICATIONS FOR THE INTERFACE 

Once an interface exists between MATLAB and Simulink 

• Providing a GUI-interface to common RC and CM 

• a GUI to guide users through the correct CM 

• from RC tool and display it in 

 

on a Windows PC will appear in the Source Control 
section of the MATLAB Preferences User Interface. For 
a full description of this interface see the MATLAB 
documentation section entitled “Source Control Interface 
on Windows Platforms.”[1] A limitation of this interface is 
that, to the authors’ knowledge, it does not support 
tagging or labeling of a number of files to create a 
configuration set. 

TOOL 

allows other tools to interface to them directly. For 
example, The MathWorks uses the published interface 
into IBM® ClearCase® on UNIX platforms. 

functionality of the revision control software can be 
made available. There are, however, disadvantages. 
The client side interface has to be written from scratch, 
and then maintained. The interface has to checked and 
updated with each release (major, minor, or bug-fix) of 
the source control tool. Such maintenance costs can be 
high.  

and Simulink is straightforward. We note the following 
points: 

Some revision control tools will automatically 
attempt to merge changes to text files if two people 
have edited the same file. This behavior may not 
always be successful for Simulink files, and we 
recommend setting the revision control tool to not 
merge .MDL files.  
Recall that MATLA
revision control tools will recognize them as such. 
However, to ensure that the desired behavior, we 
recommend setting the revision control tool to 
explicitly not attempt to merge .MAT files. 
Some older revision control tools m
problems with MATLAB object directories – i.e., 
directory names that being with an “@” symbol. Most 
can be configured to allow this. (The “@” symbol is 
used in some CM tools for macro substitution.) 

A

and a revision control or configuration management tool 
many tasks can be performed from the MATLAB 

command line, by GUI-applications developed within 
MATLAB, or using utility functions within MATLAB and 
Simulink. A MATLAB GUI application might make 
configuration management tasks more straightforward 
by: 

tasks 
Using 
process by enabling and disabling GUI functions as 
necessary 
Extracting information 
a user-friendly manner within Simulink, without 
requiring the user to interact with, or have any 
detailed knowledge, of the RC tool. This is illustrated 
in Figure 3. 

 

Figure 3: Automatically updated revision control 

COMPONENT REUSE VIA REVISION 

The first step in using a revision control system within 

USING SIMULINK LIBRARY LINKS  

Consider the Simulink library shown in Figure 4. This 

We note that each of the subsystems in 

information available on a Simulink block. 

CONTROLLED PALETTES 

Model-Based Design is to architect the model in such a 
way that each controlled portion of the model has only 
one primary owner or editor. To accomplish this goal, 
one needs to create a balance to achieve a component 
that is large enough to be useful but small enough to be 
reusable. This task is by no means trivial and needs to 
be supported by a process that allows for the evolution 
of the components as content is added to the model 
components. Once the model architecture has been 
established, there are different mechanisms that can be 
used to store and integrate the components. 

model contains a number of alternative implementations 
of a particular control system. In general, this might be 
just one of a series of libraries of useful components, 
grouped by application or type.  

control_palette_libs is itself a library link. Each of 
these subsystems is stored in their own individual 
Simulink libraries, thus achieving the goal of “one item of 
functionality per file”. When a subsystem, such as 



Analog Control, is copied from 
control_palette_libs into a model, Simulink 
follows the link back to the file where the subsystem is 
actually implemented. Hence the model that the user 
creates contains a link back to the library where Analog 
Control is actually implemented, in this case, 
AnalogControlLib. 

 

Figure 4: Revision controlled “palette” using library links. 

This structure achieves two things: 

• An engineer can control what items go in the palette. 

•  the individual control 

 
SING MODEL REFERENCE LINKS 

An alternative to using libraries of libraries is to use a 

e recommend that Model Reference is used in 

There might be many implementations of controllers 
with revision control, but only approved ones end up 
on the palette. The palette is itself within revision 
control. (For example, in the illustration here, the 
palette is at revision 1.1.) 
The implementations of
algorithms are stored in libraries that contain just 
one item of functionality. This allows each of the 
control algorithms to be separately version 
controlled. (For example, in the illustration here, the 
palette is at revision 1.4.) 

U

library of model reference components, as illustrated in 
Figure 5. If one of the Model Reference components is 
copied from the palette into a Simulink model, then 
subsequent analysis will show only a reference from the 
item in the new model to the corresponding referenced 
file. As for the implementation using library links, there 
will be no references stored to the palette. 
 
W
preference to library links to partition a large model into 
components that are to be individually stored under 
revision control.  

 

Figure 5: Revision controlled "palette" using model 
reference. 

MODELS, DATA, AND ARTIFACTS 

There are many different answers to the question “What 
do we need to store within a revision control system?” 
The minimum requirement might be to store only the 
files required to ensure that a new user getting only 
these files from revision control would have a “fully 
functional” model. The definition of “fully functional” 
might change for a model as it progresses through a 
typical Model-Based Design process. Initially it might be 
sufficient for the model to simulate. Later it might require 
additional files or libraries to support code generation.  

To guarantee reproducibility at some point in the future, 
or for future root cause analysis or similar activities, it is 
common to additionally store “derived files” at specific 
points within the development process, such as the 
generated code, simulation or model validation results, 
linearized approximations to a non-linear model, etc.  

There can be additional benefits to storing files that 
could, in principal, be entirely reproduced. For example, 
when using Model Reference it can be useful add the 
simulation target MEX to the configuration. When 
another user gets the set of files from the configuration 
management system they will not have to wait for the 
MEX files to be rebuild. We note that if this is done then 
a straightforward mechanism must be provided to allow 
a user to ensure that these files can be made writable, 
and hence rebuilt, if required. This is typical of the type 
of trade-off that must be made between the often 
conflicting demands of the complexity of a configuration 
management system, the level of reproducibility it offers, 
and the opportunity for additional benefits. 

 
Other derivable files (“process artifacts”) relating to the 
process, rather than the primary use of the models, that 
might be stored include model checking reports used to 
demonstrate review readiness, the code generation logs, 
coverage reports, etc. The decision about what files to 
store at what stages of the process will depend upon the 
working practices of individual groups, companies and 
industries.  
 
 



 

META DATA 

In addition to the files we store, it is useful to also store 
“meta data” with the configuration. Such information is 
particularly useful for deciding which configuration to get 
from the repository without actually having to get it. Most 
revision control software automatically stores various 
items of metadata, such as who last modified a file, 
when they did it, and perhaps a comment about what 
they did.  

For a configuration management system to be relevant 
to Model-Based Design we typically store more 
information than this. What is stored depends upon the 
task the models are being used for, the stage in the 
development cycle, and can vary from company to 
company. Some examples include:  

• Project status (e.g. “current working”, “release 
candidate”, “delivered”); 

 
• Application suitability (“experimental”, “robustness 

studies”, “fixed-step solvers”, “linearization”, “Rapid-
Prototyping”, “Production Code”, etc.); 

 
• Classification (“internal use only”, “suitable for 

export”, or “imported from customer”); 
 
• The version of The MathWorks tools used to 

develop these files. 
 

COMMON TASKS 

A number of common tasks can be greatly enhanced by 
making use of the additional information available when 
a configuration management system is in use. We 
describe some of the more common tasks. 

CREATING ADDITIONAL INFORMATION FOR THE 
AUDIT TRAIL: CHECKSUMS 

It can be useful to add additional information to the 
configuration to give future users confidence that they 
have the same instances of the files as those that were 
checked in.  

To illustrate this concept, we use an MD5 checksum 
algorithm. By generating checksums automatically 

before and/or after key steps, we can make this 
information more trustworthy. For example, prior to 
creating a release or exporting a configuration we might 
create a manifest file, such as the one shown in Figure 
6. 

Exported on Sep.13,2006 14:41:57 
  

Filename:               Rev.:     Checksum: 
.sandboxroot            1.1.1.1   1e4f2a5e29cfc2806e7f758e99cf6a4b 
EngineModel.mdl         1.3       afd710f2a2bdf3b32c046f1e539e9c88 
m20060908T182816.mdl    1.3       2a36b6903e84662a65b8eb54688a6e56 
transmission.mdl        1.1       9202b54deb6642f93e95cdb3fcb61c91 
transmissionRatio.mdl   1.2       69949fe144b364035309c546c4f92531 

  
(C)The MathWorks Inc. 2006

Figure 6: Checksum Manifest File 

MD5 checksums can also be included, straightforwardly, 
into model advisor reports, test reports, coverage 
reports, etc., and even into the generated code and 
header files (using a Real-Time Workshop® Embedded 
Coder source code template). In this way, the 
traceability of the files throughout an entire Model-Based 
Design development process can be greatly 
enhanced.[2] 

CREATING VARIANTS 

A common workflow, especially in the automotive world, 
is to take a baseline configuration of a system, and to 
then create variants of it by swapping components for 
alternatives that implement the same type of 
functionality, but that are suitable for a different 
application. 

Consider the example of a vehicle engine control unit 
(ECU). One of the components of the ECU is the “idle-
speed control” component. Suppose that the baseline 
configuration of the ECU is suitable for a vehicle with 
automatic transmission and a normally aspirated engine. 
A later model of the vehicle has a manual transmission 
and a turbo-charged engine. To configure the ECU to be 
suitable for this new vehicle we might need to exchange 
the idle-speed control component for one that is suited 
to this new vehicle. We can do this by deleting the 
Simulink subsystem that implements the baseline idle-
speed control and replacing it with a more suitable 
implementation. In doing so, we have created a new 
variant of the original baseline configuration. 

In reality, many components in the ECU would have to 
be swapped to make the ECU suitable for this new 
vehicle, and the creation of a variant may require a large 
number of components to be swapped.  

One way to enable the creation of variants within the 
framework described in this paper is as follows: 



The baseline model of the ECU is created. The various 
alternative implementations of the idle-speed control unit 
are created and tested. All the models are stored within 
the same project. All the different idle-speed control 
models are placed in a revision controlled palette, which 
is also placed in the same project. The entire project is 
marked within the configuration management system as 
the baseline configuration.  

When a new team member creates a local copy of the 
project files to edit, often called a sandbox, from the 
baseline configuration, he or she has all the files need to 
create new variations. This user can check-out the ECU 
model, replace the idle-speed control unit with one of the 
alternatives from the revision controlled palette, and 
hence create a new variation of the original model.  

In a fuller implementation there might be many such 
revision controlled palettes.  

Part of the motivation of using a configuration 
management system is to be able to trace the 
development of a configuration, and to be able to 
reproduce its outputs, whether it is generated code, 
simulation results, linearized models, etc.  

PARALLEL DEVELOPMENT OF LARGE 
MODELS 

It is possible to perform a top-down design within 
Simulink. This workflow fits well with the Model-Based 
Design philosophy of starting with simple models of the 
parts of a design, and elaborating them with more detail 
as the design evolves. This section suggests some 
practical guidelines for this process. 

DEFINING THE INTERFACES 

Defining the interface of a software component, whether 
it is a C or M-code function, or a Simulink subsystem, is 
a key first step for others being able to use it. There are 
a number of reasons for this: 

• Agreeing on interfaces is an important first step in 
deciding how to break down the functionality of a 
large system into subcomponents. For example, if 
every output from a component is an electrical 
current apart from one signal, which is a pressure 
signal, then this occurrence may suggest that the 
component has missing functionality, such as a 
model of a sensor that converts pressure to current, 
or perhaps should not generate the pressure signal 
at all.  

• Once component interfaces have been agreed upon 
they can be developed in parallel. If the interface 
remains stable then integrating those components 
into a larger system is straightforward. 

• Changing the interface between components is 
expensive. To do so requires changes to at least two 
components (the source and receivers), and to their 
test harnesses. An interface change also makes all 

previous revisions of those components 
incompatible with the current and future 
configurations. 

However, the above discussion is not meant to imply 
that interfaces should be set in stone.  If an interface 
chance is required to support new design requirements, 
then the Configuration Management system can be used 
to support the interface change and minimize the impact 
on other team members.  

Consider “Component A”, revision 1, used in Project 1 
and Project 2. An engineer working on Project 1 
changes the interface of Component A to make it 
compatible with Component B, used only in Project 1. 

Without CM: The engineer from Project 1 checks the 
updated Component A, now at revision 2, back into 
revision control. The next time that the engineers on 
Project 2 perform a “get updates from revision control” 
operation, they find that they have an incompatible 
version of Component A. 

With CM: The Engineer from Project 1 behaves as 
before, but additionally creates a new configuration of 
Project 1. Engineers on Project 2 check only for new 
configurations of Project 2. They may be aware of the 
new revision of Component A, but until an engineer from 
Project 2 integrates it into their project and creates a 
new configuration of Project 2, they will not get the new 
revision. 

GUIDELINES FOR DEFINING THE INTERFACES 

We offer the following suggestions for defining the 
interfaces of subsystems for a new project: 

• Base the boundaries of the subsystems on those of 
the real systems. This guideline is especially useful 
if a model contains both physical plant and control 
system elements, and control elements run at 
different rates. 

• Keep model elaboration in mind.  For example, if the 
development process requires the addition of sensor 
models at a future step, one could start with an 
empty subsystem that either passes signals straight 
through, or performs a unit and/or name conversion 
so that the sensor interfaces are captured.  

• Review the potential reuse of the component in 
support of the current design and future designs – 
some elements will have more ubiquitous reuse 
such as “sleep state” feature. 

• Define and use a signal naming convention. 

 
Within Simulink, the process of defining interfaces is 
aided by appropriate use of Simulink Signal Buses, as 
discussed in the Simulink documentation. [3] 

DEFINING THE MODEL STRUCTURE 

As far as possible, try to avoid a mix of implementation 
detail and subsystems or components in the same level 



of a model. This philosophy makes testing, and further 
subdivision into subcomponents, straightforward. 

Getting the right level of granularity for the components 
of a model is important. We offer the following 
guidelines: 

• Pick granularity so that only one engineer is likely to 
need to edit each model at a time.  

• For interface definition, consider the suggestions 
highlighted in the previous section.  

• Group by rate of update. 
• No decision should be set in stone. Components 

can and should be subdivided as they increase in 
size and complexity.  

 
A BRIEF NOTE ON THE PARAMETERIZATION OF 
COMPONENTS IN SIMULINK 

In the following sections we discuss the various methods 
for partitioning a Simulink model into a number of 
components. We do not discuss the various methods of 
partitioning the data that each of these components 
requires. This topic could easily be the subject of a 
paper in its own right. Instead, we highlight the following 
points. 

Global Parameters 

A common approach in the automotive industry is to 
completely separate the problem of parameter storage 
from model storage. In this scenario, the parameters for 
a model come from a database of calibration data, and 
the specific calibration file used becomes part of the 
configuration. The calibration data is treated as global 
data, and resides in the base MATLAB workspace. 

Non-Global Parameters 

In this scenario, each component stores and loads its 
own parameters. Various methods exist for storing such 
local parameter data, and include: 

• Mask Workspaces, with or without the use of Mask 
Initialization functions 

• With Model Reference, Model Workspaces 
• Using parameter files (.m or .mat) and callbacks of 

the individual Simulink models (e.g., preload 
function) 

 
However, combining a number of components that store 
their own parameter data runs the risk of parameter 
name collisions. Specifically, if a naming convention for 
parameters, or alternatively a data dictionary of unique 
parameter names and definitions, is not used then there 
is the risk that two components will use a parameter 
having the same name but with different meanings. 

See the Simulink documentation [3] for more information 
on these features. Finally, we note that in Release 
2006a from The MathWorks it is possible to control the 

scope of data for a given subsystem via the SubSystem 
Parameters, Permit Hierarchical Resolution dialog. 

DEFINING COMPONENT INTERFACES 

There are various ways in which signals can be passed 
between different Simulink subsystems or components. 
The choice of which method is the most appropriate will 
vary from company to company, and project to project. 
Picking the most suitable method requires trading-off 
readability, robustness, and flexibility. We offer the 
following suggestions. 

Signal Buses 

Signal Buses have been a standard feature of Simulink 
for many releases. For more information on Signal 
Buses, see the Simulink documentation.[3] Signal 
Buses, especially when used in conjunction with Bus 
Objects, offer built-in interface checking. Signal Buses 
are particularly well-suited for use at the high levels of 
models, where components often either  

• Have a very large number of signals going into, and 
out of them; or 

• Do not use all the signals available.  
 
An additional benefit of signal buses is that, should a 
change in the interface definition be required, the 
change can be performed by modifying the Bus Object.  
As a result, one avoids the need to make structural 
changes such as the addition or removal of ports and 
signal lines to the model.  

Inports and Outports for Each Signal 

At the lower levels of a model, where the components 
are specifications or implementations of algorithms the 
use of individual inports and outports can improve 
readability compared to signal buses. 

We note that using ports to create interfaces has a 
greater risk of connection problems, because it is difficult 
to check the validity of connections, other than their data 
type, size, etc.  

CONCLUSIONS 

In this paper, the authors have illustrated a number of 
practical approaches to performing configuration 
management within Model-Based Design. We have 
discussed the different ways in which the files 
associated with Model-Based Design can be linked to 
third-party configuration management and revision 
control packages, and the mechanisms within 
MathWorks tools that allow large projects to be split into 
a number of files suitable for use with such third-party 
packages. Starting with features that are applicable to a 
single user, we have discussed features and workflows 
appropriate for small teams, through to those which are 



appropriate for larger teams working in parallel on a 
project.  
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