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ABSTRACT 

Model-Based Design with automatic code generation 
has long been employed for rapid prototyping and is 
increasing being used for mass production deployment. 
With the focus on production usage, comes the need to 
implement a comprehensive V&V strategy involving 
models and resulting code. 

A main principal of Model-Based Design is that 
generated code should behave like the simulation 
model. It should also be possible to verify that the model 
or design was fully implemented in the code. As a result, 
the transformation of models into generated code must 
be done in a way that facilitates traceability between the 
model and code. Also automated tests should be 
performed to determine that the code executes properly 
in its final software and hardware environments.  

For example in a typical commercial vehicle application, 
the control algorithm and plant model are simulated 
together in a system simulation environment. Once the 
system model satisfies the requirements, the control 
model is checked to ensure that it has been fully 
exercised or covered. Once checked, code is then 
generated for production applications. The code is 
analyzed, tested, and compared to the original model 
results. Common model and code verification activities 
include software-in-the-loop (SIL), processor-in-the-loop 
(PIL), and hardware-in-the-loop (HIL) testing. In addition 
to functional results, it is important especially for high-
integrity systems, that the model and code have been 
checked and assessed to known standards. 

This paper describes recent advances in verification, 
validation, and test technologies involving Model-Based 
Design with production code generation. 

INTRODUCTION TO MODEL-BASED DESIGN 

A model represents a dynamic system whose response 
at any time is a mathematical function based on its 
inputs, current state, and current time. Historically, 
system engineers have used block diagrams as shown 

in Figure 1 to create models and design algorithms 
within numerous engineering areas such as Feedback 
Control and Signal Processing. In recent years, 
graphical modeling environments consisting of block 
diagrams and  
state machines have been used to analyze, simulate, 
prototype, specify, and deploy software algorithms within 
a variety of embedded systems and applications. Model-
Based Design refers to the use of models and modeling 
environments as the basis for embedded system 
development.  

 

 

 

Figure 1: Feedback controller model. 

Systems developed using Model-Based Design include: 
• Commercial vehicle electronics 
• Power plant regulators  
• Digital motor controllers 
 
Model-Based Design is used throughout the system 
development life cycle and provides design flows that 
include continuous verification and validation of 
requirements, designs, and implementations. This 
approach is important for formal software processes 
such as IEC 61508 [1] and for other projects seeking 
error prevention and early error detection. 

The main development activities that occur during 
Model-Based Design include: 
• Modeling and simulation 
• Rapid prototyping 
• Production code generation and integration 
 
Verification and validation (V&V) occurs continuously 
during Model-Based Design and includes many 



activities. This article focus on two key activities: model 
checking and processor-in-the-loop testing. 
MODEL CHECKING 

An important group of model V&V activities comprise 
different static analyses and checking tools. Model 
advisors check a model for conditions and configuration 
settings that can result in inaccurate or slow simulation, 
problematic maintenance, or generation of inefficient 
production code.  

Reports are generated that list identified suboptimal 
conditions and settings. Advice is provided suggesting 
better modeling approaches and settings. There are 
several types of checks. 

Basic Model Checks: Automated model advice is 
provided using basic checks, requirements consistency 
checks, and industry model standard checks. Basic 
checks range from support for updating the model to be 
compatible with the current product release version, to 
identifying unconnected lines and ports, to checking the 
root model interfaces.  

To invoke the advisor, select the checks and then run 
them as shown in the left- and right-hand sides of Figure 
2, respectively. 

 

Figure 2: Model advisor basic checks - invocation 

After performing the checks, results are displayed as 
shown in Figure 3. Hyperlinks are provided in the report, 
automating navigating to the dialog or menu where the 
setting can be adjusted based on the reported advice. 

The basic model checks should be performed and 
reported deviations considered before other quality 
assurance measures such as peer reviews or industry 
model standard checks are done. 
 

 
 

Figure 3: Model advisor basic checks - results  

Requirements Consistency Checks: If the model is 
linked with requirements in third-party requirement 
management tools or databases, these checks identify 
inconsistent, missing, or changed requirements. 
Requirements consistency checks can also identify and 
repair requirements with missing documents and 
inconsistent requirements descriptions. See Figure 4.  

 

Figure 4: Requirements consistency checks 

Modeling Standards Checks: Many projects use in-
house or industry specific software and modeling 
development standards.  

Model checks have already been developed for some 
industry standards including: 

• DO-178B 
• MAAB 
• IEC 61508 
 

DO-178B is an aerospace standard that will not be 
discussed here.  

MathWorks Automotive Advisory Board (MAAB) checks 
facilitate designing and troubleshooting models for 
automotive applications. A new version of MAAB was 
made available in 2007, MAAB v2.0. 



MAAB checks include:  

• Prohibited blocks inside controllers   
• Port and signal name mismatches 
• Unconnected signals   
 
IEC 61508 is a generic, application-independent 
standard for electrical / electronic / programmable 
electronic safety-related systems (E/E/PES) that is 
supposed to ease the development of sector-specific 
norms for E/E/PES. It is applied transitionally in the 
development of E/E/PES in those areas for which a 
domain-specific norm does not yet exist. IEC 61508-3 is 
concerned with the requirements for software 
development.  

IEC 61508 can be considered as a prescriptive 
standard, which provides detailed lists of techniques and 
measures with recommendations. 

IEC 61508 model checks analyze the model and report 
on items such as model usage, model metrics, and 
configuration management information as shown in 
Figure 5. 

 

Figure 5: IEC 61508 checks - report 

Model Complexity Measurement allows one to measure 
the complexity of the entire model as well as the 
individual subsystems. Cyclomatic model complexity is a 
measure of the structural complexity of a model. It is 
calculated with the IEC 61508 checks and approximates 
the McCabe complexity measure for code generated 
from the model. Model complexity measurement helps to 
achieve a modular approach on the model level and 
especially to maintain an appropriate module size limit.  

Finally, if the built-in checks are not sufficient, a model 
advisor API is available that facilitates the development 

of custom rule checks by engineers using Model-Based 
Design. 

PROCESSOR-IN-THE-LOOP TESTING 

Simulation of models is an early verification and 
validation (V&V) technique. Testing models via 
simulation is a more rigorous approach than the ad-hoc 
simulation runs used in early algorithm development. 
Model testing requires a systematic approach to test 
case creation and execution. Special blocks, such as 
signal builders and assertions, facilitate this type of 
rigorous test procedure. New capabilities for V&V on 
models now exist such as structural coverage analysis 
and test case generation.  In-the-loop testing techniques 
allow one to reuse the model test cases and test 
environment for execution with the production 
application during various stages of integration. 

Software-in-the-loop (SIL) testing involves executing the 
production code for the controller within the modeling 
environment for non-real-time execution with the plant 
model and interaction with the user. The code executes 
on the same host platform that is used by the modeling 
environment. A code wrapper of the generated code 
provides the interface between the simulation and the 
generated code. See Figure 6. 

 

 

 

 

 

 

 

 

Figure 6: Software-in-the-loop testing. 

For hardware-in-the-loop (HIL) testing, the code is 
generated just for the plant model. It runs on a highly 
deterministic, real-time computer. Sophisticated signal 
conditioning and power electronics are needed to 
properly stimulate the ECU inputs (sensors) and receive 
the ECU outputs (actuator commands). Whereas rapid 
prototyping is often a development or design activity, HIL 
serves as a final lab test phase before final system 
integration and field tests commence. See Figure 7. 

Note that an on-target rapid prototyping and production 
code example using Model-Based Design based on 
case study by John Deere was presented at the SAE 
Commercial Vehicle conference in 2007 [2]. 



Figure 7: Hardware-in-the-loop testing. 

Processor-in-the-loop (PIL) testing occurs after SIL but 
before HIL testing. As with SIL, PIL exercises the 
production code for the controller in non-real-time. 
However the code executes on the actual embedded 
processor or an instruction set simulator, using the 
embedded cross-compiler. Thus, it verifies the 
embedded object code functional behavior. 
 
With PIL, the model does a single calculation iteration. 
The inputs are calculated and passed to a PIL block. 
The PIL block serves as a conduit and passes the model 
inputs to the code running on the embedded 
microprocessor, or emulated processor if an instruction 
set simulator is used. Once the target processor 
receives the model inputs, it  executes a single time step 
and computes the output data. The outputs are then 
passed back to model using the PIL block. The model 
then continues to simulate while the target processor 
waits for new inputs. 
 
See Figure 8 for a PIL example using an Instruction Set 
Simulator (ISS). 
 
 
 
 
 
 
 
 
Figure 8: Processor-in-the-loop testing. 

 
 
 
 
 
 
 
 
Figure 8: Processor-in-the-loop testing on the host 

 
PIL testing can occur simultaneously with model testing 
or done separately. The tests can be interactive or done 
in batch mode via scripts. Batch processing is most 
convenient for repetitive, production tasks such as 
regressing testing. 

Plots comparing the model’s functional (expected) 
results to the PIL (actual) results can be developed and 
analyzed. Integer or fixed-point results should be bit-
wise accurate. Floating point results will need to be 
assessed based on an acceptable margin of error, or 
epsilon. Differences in floating point results often occur 
between host and target platform due to factors such as 
variations in floating point math library implementation. 

One may execute PIL tests on multiple target platforms 
in order to assess an algorithm’s robustness to 
variations in floating point implementations using various 
hardware, compiler, and even compiler version 
combinations. 

PIL is also useful for testing behavior that cannot be 
tested in a modeling environment. One example is the 
use of target optimized code. Some processors have 
special built-in instructions that are not ANSI or ISO-C 
compliant. These instructions may use special hardware 
on the processor that processes certain routines 
extremely fast, such as FFTs or IIRs used in signal 
processing applications. Some processors have built-in 
overflow protection for fixed-point calculations.   

When target optimized code is used within Model-Based 
Design, one cannot execute or test the final code within 
the host-based model simulation environment. With PIL, 
however, the optimized code can easily be tested using 
the modeling environment as the test harness. 

Figure 9 shows a PIL test occurring simultaneous with a 
model test and an output plot comparing the two results. 

 
 



Figure 9: Processor-in-the-loop testing example 



CONCLUSION  

Automatic code generation with Model-Based Design is 
an important technology that offers embedded system 
developers a number of advanced options for designing 
and deploying production software. Model-Based Design 
also provides a rich verification and validation 
environment for embedded systems. Recent techniques 
were described herein that support model checking and 
processor-in-the-loop tests. 
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