
2009-01-1041

Robust Design of Control Systems with Physical System Variances

Tom Egel
The MathWorks, Inc.

Copyright © 2009 SAE International

ABSTRACT

Today's automotive control system engineering requires
precision and accuracy. The cost of a controller
designed with conservative margins may increase
significantly, causing the design, when produced and
marketed, to be less competitive. On the other hand, a
design with too little margin may lead to system
malfunction under marginal environment conditions or
due to component aging. A robust design is one that is
immune to the effects of component variance due to
tolerance, temperature, and aging, among other factors.
Achieving a robust design involves careful analysis of
the controller and plant operating together. This paper
discusses how MATLAB and Simulink can be leveraged
to ensure the robustness of a mechatronic system
design. The merits of the network approach as a
technique for modeling physical systems as an
alternative to the signal flow (block diagram) approach
are also discussed. Finally, the advantages of integrating
these methods within Simulink as the environment for
Model-Based Design for mechatronic systems are
presented. An example involving Monte Carlo simulation
on a simple multidomain mechatronic control system is
used as a case study.

INTRODUCTION

Mechatronics[1] is a commonly used term for describing
the combination of electromechanical physical systems
with computer controls (see Figure 1). Designers of
embedded controls for mechatronic systems face difficult
challenges. Completion of a successful mechatronic
system design requires the integration of multiple
engineering domains and collaboration between the
engineering teams. For example, exhaustively testing
the software control algorithm for an antilock brake
system requires accurately representing the physics of
the electronics, hydraulics, and mechanics. In addition,
as embedded controls continue to become more and
more part of the core functionality of the modern
automobile, time-to-market pressures, cost sensitivity,
and quality expectations all contribute to the challenge.
Traditional methods of designing, testing, and
implementing mechatronic systems cause designers to
wait until late in the design effort, when actual or
prototype products and real-time embedded targets
become available, to find out whether the system

actually meets the performance requirements. Only then,
as system integration occurs, can the designer uncover
the errors that may have found their way into the product
during the early design stages.

Figure 1. Mechatronics Venn diagram.

The principles of Model-Based Design as a proven
technique for creating embedded control systems[2,3]
apply equally as well when designing mechatronic
systems. Using Model-Based Design, the various design
teams can evaluate design alternatives without relying
solely on expensive prototypes. Model-Based Design
allows engineers to mathematically model the behavior
of the physical system, design the software and model
its behavior, and then simulate the entire system model
to accurately predict and optimize the overall
performance.

Once the base design has been established, further
optimization can be easily performed by studying the
effects of component variances on the overall system
performance. A robust design is one that is immune to
component variances due to temperature, manufacturing
tolerances, and other factors. There are many sources of
information on robust design, Six Sigma, and the
Taguchi method; the focus of this paper is to show the
impact of applying such methods to a mechatronic
embedded control system.

MODELING THE PHYSICAL SYSTEM

Model-Based Design is widely used to develop software
algorithms for deployment onto an embedded controller.
For closed-loop testing of the control algorithm, the first
thing that is needed is a representation of the plant.
There is no shortage of techniques for modeling physical
systems. Commonly used methods include signal flow
diagrams[4], bond graphs[Error! Reference source not
found.], and even manual coding of the system
equations in C or Fortran. Since a mechatronic design
relies on collaboration between engineering teams, the
model must be easily shared and understood by the
various stakeholders. While the methods above are
perfectly valid for accurately modeling the physics, none
of these are particularly well-suited for meeting the
collaboration and integration needs of a multidomain
mechatronic system design. As a simple illustration,
consider the problem of modeling a DC motor with
speed and current control.

SIGNAL FLOW APPROACH - Simulink[6] from The
MathWorks is widely used to design control algorithms
using the signal flow approach. Once implemented in
Simulink, Model-Based Design methods are commonly
used to verify the controller design and automatically
generate the code for deployment onto the
microcontroller for rapid prototyping and production. As a
result, the signal flow method has also historically been
used to model the plant in Simulink to test the controller
in simulation and with a real-time hardware-in-the-loop
system.

Figure 2 shows a common textbook representation of a
DC motor.

Figure 2. DC motor architecture.

The signal flow modeling approach is a multistep
process that requires first deriving the motor equations:

dt

d
JBiKT

ωω ⋅−⋅−⋅= (1)

dt

di
LRiKV ⋅+⋅+⋅= ω (2)

The next step is to graphically model these equations in
a signal flow diagram, but this step often requires
reformulating the equations to support this approach:

 ⋅−⋅−=
dt

d
KRiV

Ldt

di θ1
 (3)

 ⋅−⋅=
dt

d
BiK

Jdt

d θω 1
 (4)

Finally, a signal flow model of the equations can be
created, as shown in Figure 3.

Figure 3. DC motor signal flow model.

Simulating this model yields the expected results (see
Figure 4), but the multistep modeling process results in a
model that is unrecognizable when compared with the
original diagram in Figure 2. Sharing even this simple
model with others would require significant explanation
and documentation.

Figure 4. DC motor model simulation results.

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08
Motor Speed (Rad/s)

Time (sec)
0 2 4 6 8 10

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Motor Current (Amps)

Time (sec)

NETWORK APPROACH - A more universal method for
modeling multidomain physical systems is often referred
to as the network modeling approach[7]. Its origins come
from the method of network analysis for electrical
systems and have been extended to also model systems
consisting of mechanical, hydraulic, thermal, and
magnetic components. The main advantage of a network
model over a signal flow model is the acausal[8] nature
of the connection ports.

In a signal flow diagram, the connections are causal.
That is, every block is a transfer function with a signal on
the input causing the output to behave according to the
defined transfer function. The model in Figure 3
illustrates how data flows through the model. Any
interaction between blocks must be explicitly modeled by
creating feedback loops. As the interactions become
more complex and commonplace, as with a mechatronic
system, the signal flow method quickly becomes
untenable for all but the most expert users. For example,
if additional effects such as damping, friction, or hard
stop limits are desired, the system equations (1) and (2)
would need to be reformulated and the model recreated,
resulting in an even more complicated model that is
more difficult to interpret.

Figure 5 illustrates the same DC motor model using the
network approach modeled using foundation blocks from
the Simscape[9] multidomain physical modeling
environment within Simulink.

Figure 5. DC motor network model.

As you can see, the model bears a close resemblance to
the original diagram. This is an important benefit of the
network approach, making it much easier for others to
understand and interpret, thus fostering the collaboration
needed for designing mechatronic systems. The
electrical side of the model solves for current and
voltage while the mechanical side solves for torque and
angular velocity, resulting in identical simulation results.
In the network terminology, these are commonly referred
to as “through” and “across” variables. Current and
torque scopes are placed in the network to measure the
through variables, and the RPM scope is placed to
measure the across variable of motor shaft speed.
These measured quantities can also be easily fed back
to the control algorithm modeled in Simulink (more on
this later).

A major advantage of the network approach is the ability
to quickly modify the system model without the need to

derive the system equations. The individual blocks
contain the fundamental component equations defining
the relationship between the through and across
variables. The system equations are then automatically
formulated by interconnecting the components into the
desired topology. For example, the rotational damper
component contains the equation:

ω⋅= BT (5)

This equation defines the relationship between the
through variable (torque) and the across variable
(angular velocity) as a linear relationship with the
damping coefficient (B) as a constant of proportionality.
This method of embedding the first-principle equations
into the component models allows additional physical
effects to be easily added to the system model without
needing to worry about their effect on the overall system
equations. For example, let’s say we want to add limits
to the angle of rotation. Using the network approach, you
can simply connect a rotational hard stop to the motor
shaft as shown in Figure 6.

Figure 6. DC motor model with hard stop as load.

Here we also used hierarchy to group the previous motor
model into a subsystem and added the rotational hard
stop as an external load. An angular position scope is
used to measure the angle of the motor shaft. As you
can see, the network approach makes it easy to quickly
add effects and immediately see them in simulation.

Figure 7. Motor position and current with hard stop.

Figure 7 clearly shows the results of introducing angular
travel limits. The motor shaft reaches the hard stop at
about 5 sec, resulting in an increase in the motor current
as it works harder to overcome the obstacle. The motor

0 5 10
0

0.05

0.1

0.15

0.2
Motor Position (Rad)

Time (sec)
0 5 10

-0.1

0

0.1

0.2

0.3

0.4
Motor Current (Amps)

Time (sec)

angular position, like angular velocity, is an across
variable that can be fed back to the controller if desired.

MODELING LANGUAGE - The enabling technology for
the network approach is a modeling language for
formulating the component’s characteristics equations
relating the through and across variables in the various
domains. The Simscape language, based on
MATLAB[10], provides the necessary constructs for
modeling the multidomain aspects of mechatronic
systems. In the DC motor example, the motor equations
can be directly modeled using the Simscape language,
as shown in Figure 8.

component dc_pm
 nodes
 p = electrical; % p:left
 n = electrical; % n:left
 r = rotational; % r:right
 c = rotational; % c:right
 end
 parameters
 Kt = {10 'N*m/A'}; % Torque constant
 Ke = {10 'V/(rad/s)'}; % Back EMF Constant
 Rwind = {1 'Ohm'}; % Winding Res
 Lwind = {1e-3 'H'}; % Winding Ind
 J = {1 'kg*m^2'}; % Motor Inertia
 B = {1 'N*m/(rad/s)'}; % Motor Damping
 end
 variables
 theta = {0,'rad'}; % Angular Displacement
 tq = {0,'N*m'}; % Torque thru variable
 w = {0,'rad/s'}; % AngVel across var.
 i = {0,'A'}; % Current thru var.
 v = {0,'V'}; % Voltage across var.
 end
 function setup
 through(tq,r.t,c.t); % thru variable tq
 across(w,r.w,c.w); % across variable w
 through(i,p.i,n.i); % through variable i
 across(v,p.v,n.v); % across variable v
 end
 equation
 w == theta.der;
 v == Ke*w+i*Rwind+Lwind*i.der; % Motor
 tq == -Kt*i+B*w+J*w.der; % Eq’ns
 end
end

Figure 8. DC motor model using Simscape language.

This modeling method creates a new foundation
component that can then be easily integrated into a
larger system model by inserting it between the electrical
controls and mechanical loads.

For example, consider the hydraulic actuation system in
Figure 9. The DC motor is used to energize the hydraulic
pump providing pressure to the system, which will
actuate mechanical motion as the valve directs the fluid
to the double-acting cylinder. Table 1 summarizes the
multidomain through and across variables present in this
system.

Figure 9. Hydraulic actuation system.

Domain Through Across
Electrical Current Voltage
Rotational Torque Angular velocity or position
Translational Force Velocity or position
Hydraulic Flow rate Pressure
Table 1. Domain variables.

With the network approach, a system model can be
quickly constructed by interconnecting the individual
component models. The resulting model representation
is intuitive and easily interpreted due to the physical
connection ports. The overall system equations are
automatically formulated from the individual component
equations based on the system topology. Figure 10
shows the overall system response (cylinder rod
position).

Figure 10. Cylinder rod position.

Additional instrumentation can be added to examine the
internal through and across variables. Figure 11 shows
the pressure on the P port of the hydraulic valve along
with the flow rate though the valve and cylinder.

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
Rod Position (m)

Time

Falltime = 0.30107secRisetime = 0.62687sec

Figure 11. System pressure and flow rate.

The results show that the flow rate is positive during the
movement of the cylinder. The spikes in pressure occur
when flow rate suddenly goes to zero due to valve
closure. The pressure relief valve is set to 20 bar to
mitigate this situation. The overall pressure profile is a
gradual increase except for a sharp drop at about 3.2
sec followed by a quick recovery when the valve opens
the second time and reverses the cylinder direction.

TUNING PARAMETERS - One of the challenges of any
physical model is validating that the simulation results
are accurate and represent reality. With the network
approach to modeling, the model parameters are the
degrees of freedom for adjusting the model
performance. In some cases, these parameters can be
populated directly from the datasheet of a component
manufacturer. For example, the stall torque and no-load
speed curves on a motor datasheet could be used to
parameterize the motor model. Many times, however,
good data is not available and the model parameters
must be manually adjusted. This is typically a tedious
trial-and-error (adjust, simulate, repeat) process until a
reasonable result is obtained.

Figure 12. Hydraulic cylinder response (measured
and simulated).

Optimization tools such as Simulink Parameter
Estimation[11] can be used to automate this process by
automatically tuning the model parameters by comparing
the simulation results with measured lab data until a
satisfactory parameter set is obtained. Figure 12 shows
the results from using Simulink Parameter Estimation to
automatically tune parameters in the hydraulic portion of
the model in Figure 9.

PARAMETER VARIATIONS

The nominal simulation results with optimized
parameters are useful for testing the controller and
verifying the overall system performance. However, an
optimized design does not necessarily ensure that the
design is robust. A robust design[12] is one that is
immune to component variances due to tolerances,
temperature, aging, and other factors. Once the nominal
performance has been validated, it is important to
consider these variances and account for their effect on
system performance when modeling a physical system.
The MATLAB programming language can be used to
automatically measure various aspects of the simulation
result from the Simulink and Simscape physical model.
For our hydraulic actuation system in Figure 9, the
overall performance metric might be the time it takes for
the cylinder to open and close. Measuring the risetime
and falltime of the rod position as shown in Figure 10
quantifies this performance and provides the basis for
further parametric analysis.

A common “brute force” technique for analyzing the
effect of parametric variances is Monte Carlo[13]
simulation. This method randomly varies component
parameter values within a prespecified tolerance range
and according to a probability distribution[14]. Figure 13
shows some common distributions.

Figure 13. Common probability distributions.

With today’s computing power and tools such as Parallel
Computing Toolbox[15] to distribute the simulation runs
across multiple computers, a large number of runs can
be simulated and the results automatically post-
processed with little or no human intervention.

For this example, SystemTest[16] was used to assign
tolerances to a set of physical parameters, perform 1000
simulation runs, and collect the performance
measurement data. For simplicity a normal (Gaussian)
distribution with 10% tolerance was assigned to the
physical parameters (see Appendix A).

The simulation results in Figure 14 show the effect of the
parametric variances on the rising edge of the cylinder
rod position. During the Monte Carlo simulations, the
MATLAB risetime measurement was applied after each
run and the results were collected in a histogram plot
(see Figure 15).

0 1 2 3 4
0

5

10

15

20

25
Pressure (Bars)

Time (sec)
0 1 2 3 4

-50

0

50

100

150

200
Flow Rate (Liter/min)

Time (sec)

Bimodal Uniform Normal

Figure 14. Monte Carlo results (1000 runs).

Figure 15. Histogram of risetime measurement.

The histogram provides us with a statistical view of the
system performance that takes into account parameter
variances. From this, we arrive at a quantifiable
assessment of the robustness of our design and can use
the results to directly determine if the observed
performance variation falls with acceptable limits based
on requirements. Requirements management tools such
as Simulink Verification and Validation[17] can then use
this information to automatically generate reports to
communicate the results to other members of the design
team.

If the performance variation is not acceptable, the next
logical step is to determine the major contributors to this
variation. Again, the MATLAB plotting and visualization
capability can be used to further analyze the data. The
scatterplot[18], shown in Figure 16, is one useful
representation. Here, we have plotted the measured
risetime for each simulation run against the value of one
of the parameters (area_b of the directional hydraulic
valve). The scatterplot data points reveal a visual trend
of increasing risetime for increasing values of the
parameter value. Additional measurements quantify this
data into sensitivity (slope of best-fit line) and correlation
coefficient (measure of deviation from the best-fit line).
This information can be used to assess the allowable
tolerances for a given parameter, but for a complex
mechatronics design with many physical parameter
variations and multiple performance measurements, a
more efficient mechanism for visualizing the data is
needed. Again we resort to MATLAB to manage the

information using a common representation known as a
Pareto chart[19], shown in Figure 17.

Figure 16. Correlation scatterplot.

Figure 17. Pareto plot of risetime for 1000 runs.

This compact representation allows us to quickly see the
contributors to the variation in terms of both sensitivity
and correlation. For the top contributors, we will want to
carefully control the variation by tightening the
tolerances, and for the parameters that have little or no
contribution, we can relax the tolerances where it saves
cost during production. Once the Monte Carlo data has
been generated, MATLAB can then be used to automate
the data mining process by performing similar analysis
on multiple performance measurements. This
information can then be used by the design engineers to
make engineering decisions and tradeoff assessments
to optimize the performance and cost of the mechatronic
design prior to building any hardware.

ROBUST CONTROL

Understanding the effects of parameter variation on the
physical system provides valuable insight from an open-
loop perspective. During controller design, it is important
to understand the effects of tolerances on the closed-
loop performance. The measure of controller robustness
is how well it controls the desired output when parameter
variances are present. In Figure 18, the physical plant
model is encapsulated into a Simulink subsystem
complete with sensors and actuator so that it can be

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12
Monte Carlo Results for rod_pos (1000 runs)

Time (sec)

ro
d

_p
o

s
(m

)

0.5 0.55 0.6 0.65 0.7 0.75
0

20

40

60

80

100

120

140

N
u

m
b

er
 o

f
ru

n
s

risetime (sec)

Histogram of risetime measurement for 1000 runs

Mean = 0.62434
Std Dev = 0.031313

0.0155 0.016 0.0165 0.017 0.0175 0.018 0.0185 0.019 0.0195
0.5

0.55

0.6

0.65

0.7

0.75

area_b

ri
se

tim
e

risetime vs. area_b

Rsq = 0.3173
Sens = 30.7122

 area_b max_pass_area act_tc area_a stroke max_open mot_damp k_mot
-20

0

20

40
S

en
si

ti
vi

ty

Pareto plots for risetime measurement (1000 runs, top 95% contributors)

 area_b max_area stroke k_mot pump_disp volt ind
0

0.2

0.4

C
or

re
la

ti
on

connected to a PID controller[20]. A command signal is
introduced for the desired position, and the overall
performance is measured by comparing the system
output with the command.

Figure 18. Closed-loop system model with controller
and physical plant subsystem.

The system response can then be optimized by tuning
the controller gains. This can be done manually using
trial and error, or an optimization tool such as Simulink
Response Optimization[21] can be used to automatically
tune the gains to meet the desired performance. This is
done by placing a signal constraint block that specifies
the acceptable region of operation on the desired output.
Figure 19 shows the result of the optimization.

Figure 19. Closed-loop system response.

The initial choice of PID gains resulted in a poor
response when connected to the plant model, but
closed-loop response after tuning the gains is much
more acceptable.

The Pareto chart from the closed-loop Monte Carlo
results revealed some tolerance issues with the cylinder.
After the suspect tolerances were tightened, the
simulation results of the closed-loop system in Figure 20
show that the controller is indeed robust enough to
handle the specified variation in parameters. As the
system design continues and more complex controls are
added, tools such as Robust Control Toolbox[22] can be
utilized to analyze and design multi-input/multi-output
(MIMO) control systems by providing methods for mode
order reduction and consideration of stability margins
and worst-case performance. These advanced
techniques can be applied to any Simulink model,

including Simscape physical models, but are beyond the
scope of this paper.

Figure 20. Closed-loop response (1000 runs).

CONCLUSION

To design a robust mechatronic embedded control
system, you must account for the effect of parameter
variances on system performance. Model-Based Design
has been shown to be a proven method for control
algorithm design, verification, and deployment. To test
the controller using Model-Based Design, you must
create a model of the physical system (or plant). The
network approach offers many advantages over
traditional signal flow or block diagram methods that are
typically employed by controls engineers, especially for
multidomain mechatronic systems.

Instead of relying on domain expertise to develop and
model the system equations, the network approach with
the aid of a modeling language applies first-principle
equation modeling at the component level. The
individual components are then combined to model the
larger system. The result is a very readable system
model that can be easily shared with others on the team
and quickly modified to account for additional effects as
needed. In constructing the system model in this way,
the engineer can then apply optimization techniques to
find a set of nominal parameters to meet the
performance requirements.

The process of robust design includes methods for
analyzing the effects of parameter variations on the
overall system performance. Monte Carlo simulation is
one method that can be applied to both open- and
closed-loop systems and requires the ability to analyze
the large amounts of data typically generated. Statistical
techniques such as histograms, scatterplots, and Pareto
charts can be used to uncover relationships between the
performance measurements and the model parameters.
This information can then be used to make design
decisions such as cost/performance tradeoffs.
Expanding use of Model-Based Design in this way to
consider both controller and plant models can help the
entire mechatronics design team build a more robust
design.

ACKNOWLEDGMENTS

I would like to thank my colleagues at The MathWorks
Steve Miller, Jeff Wendlandt, Val Tchkalov, Nathan
Brewton, Rick Hyde, Craig Borghesani, and Chris Portal
(among many others) for supporting me with Simulink
models and MATLAB functions while listening to me
preach about the importance of robust design. I would
also like to thank some of my past colleagues Darrell
Teegarden, Mike Donnelly, David Bedrosian, and Subba
Sommanchi from my days at Analogy Inc. for providing
the inspiration with their foundational work in the area of
robust design.

REFERENCES

1. en.wikipedia.org/wiki/Mechatronics
2. Paul F. Smith, Sameer M. Prabhu, Jonathan H. Friedman,
 “Best Practices for Establishing a Model-Based Design
 Culture,” SAE Paper 2007-01-0777.
3. Jeff Thate, Larry Kendrick, Siva Nadarajah,
 “Caterpillar Automatic Code Generation,” SAE Paper
 2004-01-0894.
4. Feedback Control of Dynamic Systems, Gene F. Franklin,
 J. David Powell, Abbas Emami-Naeini, Prentice Hall,
 ISBN 0-13-032393.
5. en.wikipedia.org/wiki/Bond_graph
6. www.mathworks.com/products/simulink
7. Mechatronics: An Integrated Approach, Clarence W. De

Silva, CRC Press, 2005, ISBN 0849312744.
8. en.wikipedia.org/wiki/Acausal
9. www.mathworks.com/products/simscape
10. www.mathworks.com/products/matlab
11. www.mathworks.com/products/simparameter
12. en.wikipedia.org/wiki/Robust
13. en.wikipedia.org/wiki/Monte_Carlo_Simulation
14. en.wikipedia.org/wiki/Probability_distribution
15. www.mathworks.com/products/parallel-computing
16. www.mathworks.com/products/systemtest
17. www.mathworks.com/products/simverification
18. en.wikipedia.org/wiki/Scatterplot
19. en.wikipedia.org/wiki/Pareto_chart
20. en.wikipedia.org/wiki/PID_control
21. www.mathworks.com/products/simresponse
22. www.mathworks.com/products/robust

CONTACT

Tom Egel
Principal Application Engineer

The MathWorks
tom.egel@mathworks.com

APPENDIX A

Physical model parameters (nominal values and
standard deviation) were used for Monte Carlo analysis.
A normal (Gaussian) distribution was used for all the
parameters.

MOTOR
res=0.15, sd=0.005
ind=200e-3, sd=0.0067
k_mot=0.1, sd=0.0033
mot_inertia=0.1, sd=0.0033
mot_damp=0.01, sd=0.00033
volt=100, sd=3.333

PUMP
pump_disp=0.5, sd=0.0167

DIRECTIONAL VALVE
max_area=200, sd=6.6667
max_open=0.015, sd=0.0005

RELIEF VALVE
max_pass_area=1e-3, sd=3.33e-5
set_pres=20, sd=0.6667

CYLINDER
area_a=0.0106, sd=3.53e-4
area_b=0.0176, sd=5.87e-4
stroke=0.1, sd=0.0033

ACTUATOR
act_gain=250, sd=8.333
act_tc=0.002, sd=6.667e-5
act_sat=0.3, sd=0.01

LOAD
stiff=1000, sd=33.33
damp=100, sd=3.33
mass=1, sd=0.0333

MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See www.mathworks.com/trademarks for a list of additional
trademarks. Other product or brand names may be trademarks or
registered trademarks of their respective holders.

