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ABSTRACT 

Today's automotive control system engineering requires 
precision and accuracy. The cost of a controller 
designed with conservative margins may increase 
significantly, causing the design, when produced and 
marketed, to be less competitive. On the other hand, a 
design with too little margin may lead to system 
malfunction under marginal environment conditions or 
due to component aging. A robust design is one that is 
immune to the effects of component variance due to 
tolerance, temperature, and aging, among other factors. 
Achieving a robust design involves careful analysis of 
the controller and plant operating together. This paper 
discusses how MATLAB and Simulink can be leveraged 
to ensure the robustness of a mechatronic system 
design. The merits of the network approach as a 
technique for modeling physical systems as an 
alternative to the signal flow (block diagram) approach 
are also discussed. Finally, the advantages of integrating 
these methods within Simulink as the environment for 
Model-Based Design for mechatronic systems are 
presented. An example involving Monte Carlo simulation 
on a simple multidomain mechatronic control system is 
used as a case study. 

INTRODUCTION 

Mechatronics[1] is a commonly used term for describing 
the combination of electromechanical physical systems 
with computer controls (see Figure 1). Designers of 
embedded controls for mechatronic systems face difficult 
challenges. Completion of a successful mechatronic 
system design requires the integration of multiple 
engineering domains and collaboration between the 
engineering teams. For example, exhaustively testing 
the software control algorithm for an antilock brake 
system requires accurately representing the physics of 
the electronics, hydraulics, and mechanics. In addition, 
as embedded controls continue to become more and 
more part of the core functionality of the modern 
automobile, time-to-market pressures, cost sensitivity, 
and quality expectations all contribute to the challenge. 
Traditional methods of designing, testing, and 
implementing mechatronic systems cause designers to 
wait until late in the design effort, when actual or 
prototype products and real-time embedded targets 
become available, to find out whether the system 

actually meets the performance requirements. Only then, 
as system integration occurs, can the designer uncover 
the errors that may have found their way into the product 
during the early design stages. 

 

Figure 1. Mechatronics Venn diagram. 
 

The principles of Model-Based Design as a proven 
technique for creating embedded control systems[2,3] 
apply equally as well when designing mechatronic 
systems. Using Model-Based Design, the various design 
teams can evaluate design alternatives without relying 
solely on expensive prototypes. Model-Based Design 
allows engineers to mathematically model the behavior 
of the physical system, design the software and model 
its behavior, and then simulate the entire system model 
to accurately predict and optimize the overall 
performance.  

Once the base design has been established, further 
optimization can be easily performed by studying the 
effects of component variances on the overall system 
performance. A robust design is one that is immune to 
component variances due to temperature, manufacturing 
tolerances, and other factors. There are many sources of 
information on robust design, Six Sigma, and the 
Taguchi method; the focus of this paper is to show the 
impact of applying such methods to a mechatronic 
embedded control system. 



 

MODELING THE PHYSICAL SYSTEM 

Model-Based Design is widely used to develop software 
algorithms for deployment onto an embedded controller. 
For closed-loop testing of the control algorithm, the first 
thing that is needed is a representation of the plant. 
There is no shortage of techniques for modeling physical 
systems. Commonly used methods include signal flow 
diagrams[4], bond graphs[Error! Reference source not 
found.], and even manual coding of the system 
equations in C or Fortran. Since a mechatronic design 
relies on collaboration between engineering teams, the 
model must be easily shared and understood by the 
various stakeholders. While the methods above are 
perfectly valid for accurately modeling the physics, none 
of these are particularly well-suited for meeting the 
collaboration and integration needs of a multidomain 
mechatronic system design. As a simple illustration, 
consider the problem of modeling a DC motor with 
speed and current control.  

SIGNAL FLOW APPROACH - Simulink[6] from The 
MathWorks is widely used to design control algorithms 
using the signal flow approach. Once implemented in 
Simulink, Model-Based Design methods are commonly 
used to verify the controller design and automatically 
generate the code for deployment onto the 
microcontroller for rapid prototyping and production. As a 
result, the signal flow method has also historically been 
used to model the plant in Simulink to test the controller 
in simulation and with a real-time hardware-in-the-loop 
system.  

Figure 2 shows a common textbook representation of a 
DC motor. 

 

Figure 2. DC motor architecture. 
 
The signal flow modeling approach is a multistep 
process that requires first deriving the motor equations: 
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The next step is to graphically model these equations in 
a signal flow diagram, but this step often requires 
reformulating the equations to support this approach: 
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Finally, a signal flow model of the equations can be 
created, as shown in Figure 3. 

 

Figure 3. DC motor signal flow model. 
 
Simulating this model yields the expected results (see 
Figure 4), but the multistep modeling process results in a 
model that is unrecognizable when compared with the 
original diagram in Figure 2. Sharing even this simple 
model with others would require significant explanation 
and documentation.  

 

Figure 4. DC motor model simulation results. 
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NETWORK APPROACH - A more universal method for 
modeling multidomain physical systems is often referred 
to as the network modeling approach[7]. Its origins come 
from the method of network analysis for electrical 
systems and have been extended to also model systems 
consisting of mechanical, hydraulic, thermal, and 
magnetic components. The main advantage of a network 
model over a signal flow model is the acausal[8] nature 
of the connection ports.  

In a signal flow diagram, the connections are causal. 
That is, every block is a transfer function with a signal on 
the input causing the output to behave according to the 
defined transfer function. The model in Figure 3 
illustrates how data flows through the model. Any 
interaction between blocks must be explicitly modeled by 
creating feedback loops. As the interactions become 
more complex and commonplace, as with a mechatronic 
system, the signal flow method quickly becomes 
untenable for all but the most expert users. For example, 
if additional effects such as damping, friction, or hard 
stop limits are desired, the system equations (1) and (2) 
would need to be reformulated and the model recreated, 
resulting in an even more complicated model that is 
more difficult to interpret. 

Figure 5 illustrates the same DC motor model using the 
network approach modeled using foundation blocks from 
the Simscape[9] multidomain physical modeling 
environment within Simulink. 

 

Figure 5. DC motor network model. 
 
As you can see, the model bears a close resemblance to 
the original diagram. This is an important benefit of the 
network approach, making it much easier for others to 
understand and interpret, thus fostering the collaboration 
needed for designing mechatronic systems. The 
electrical side of the model solves for current and 
voltage while the mechanical side solves for torque and 
angular velocity, resulting in identical simulation results. 
In the network terminology, these are commonly referred 
to as “through” and “across” variables. Current and 
torque scopes are placed in the network to measure the 
through variables, and the RPM scope is placed to 
measure the across variable of motor shaft speed. 
These measured quantities can also be easily fed back 
to the control algorithm modeled in Simulink (more on 
this later).  

A major advantage of the network approach is the ability 
to quickly modify the system model without the need to 

derive the system equations. The individual blocks 
contain the fundamental component equations defining 
the relationship between the through and across 
variables. The system equations are then automatically 
formulated by interconnecting the components into the 
desired topology. For example, the rotational damper 
component contains the equation: 

ω⋅= BT     ( 5 ) 

This equation defines the relationship between the 
through variable (torque) and the across variable 
(angular velocity) as a linear relationship with the 
damping coefficient (B) as a constant of proportionality. 
This method of embedding the first-principle equations 
into the component models allows additional physical 
effects to be easily added to the system model without 
needing to worry about their effect on the overall system 
equations. For example, let’s say we want to add limits 
to the angle of rotation. Using the network approach, you 
can simply connect a rotational hard stop to the motor 
shaft as shown in Figure 6. 

 

Figure 6. DC motor model with hard stop as load. 
 
Here we also used hierarchy to group the previous motor 
model into a subsystem and added the rotational hard 
stop as an external load. An angular position scope is 
used to measure the angle of the motor shaft. As you 
can see, the network approach makes it easy to quickly 
add effects and immediately see them in simulation.  

 

Figure 7. Motor position and current with hard stop. 
 
Figure 7 clearly shows the results of introducing angular 
travel limits. The motor shaft reaches the hard stop at 
about 5 sec, resulting in an increase in the motor current 
as it works harder to overcome the obstacle. The motor 
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angular position, like angular velocity, is an across 
variable that can be fed back to the controller if desired. 

 
MODELING LANGUAGE - The enabling technology for 
the network approach is a modeling language for 
formulating the component’s characteristics equations 
relating the through and across variables in the various 
domains. The Simscape language, based on 
MATLAB[10], provides the necessary constructs for 
modeling the multidomain aspects of mechatronic 
systems. In the DC motor example, the motor equations 
can be directly modeled using the Simscape language, 
as shown in Figure 8. 

component dc_pm  
  nodes  
    p = electrical; % p:left   
    n = electrical; % n:left  
    r = rotational; % r:right  
    c = rotational; % c:right  
  end  
  parameters  
    Kt = {10 'N*m/A'};     % Torque constant  
    Ke = {10 'V/(rad/s)'}; % Back EMF Constant  
    Rwind = {1 'Ohm'};     % Winding Res  
    Lwind = {1e-3 'H'};    % Winding Ind  
    J = {1 'kg*m^2'};      % Motor Inertia  
    B = {1 'N*m/(rad/s)'}; % Motor Damping  
  end  
  variables  
    theta = {0,'rad'}; % Angular Displacement  
    tq = {0,'N*m'};    % Torque thru variable  
    w = {0,'rad/s'};   % AngVel across var.  
    i = {0,'A'};       % Current thru var.  
    v = {0,'V'};       % Voltage across var.  
  end  
  function setup  
    through(tq,r.t,c.t); % thru variable tq  
    across(w,r.w,c.w);   % across variable w  
    through(i,p.i,n.i);  % through variable i  
    across(v,p.v,n.v );  % across variable v  
  end  
  equation  
      w == theta.der;  
      v == Ke*w+i*Rwind+Lwind*i.der; % Motor  
      tq == -Kt*i+B*w+J*w.der;       % Eq’ns  
  end  
end 
 
Figure 8. DC motor model using Simscape language. 
  
This modeling method creates a new foundation 
component that can then be easily integrated into a 
larger system model by inserting it between the electrical 
controls and mechanical loads.  

For example, consider the hydraulic actuation system in 
Figure 9. The DC motor is used to energize the hydraulic 
pump providing pressure to the system, which will 
actuate mechanical motion as the valve directs the fluid 
to the double-acting cylinder. Table 1 summarizes the 
multidomain through and across variables present in this 
system.  

 

Figure 9. Hydraulic actuation system. 
 

Domain Through Across 
Electrical Current Voltage 
Rotational Torque Angular velocity or position 
Translational Force Velocity or position 
Hydraulic Flow rate Pressure 
Table 1. Domain variables. 
 
With the network approach, a system model can be 
quickly constructed by interconnecting the individual 
component models. The resulting model representation 
is intuitive and easily interpreted due to the physical 
connection ports. The overall system equations are 
automatically formulated from the individual component 
equations based on the system topology. Figure 10 
shows the overall system response (cylinder rod 
position).  

 

Figure 10. Cylinder rod position. 
 
Additional instrumentation can be added to examine the 
internal through and across variables. Figure 11 shows 
the pressure on the P port of the hydraulic valve along 
with the flow rate though the valve and cylinder.  

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
Rod Position (m)

Time

Falltime = 0.30107secRisetime = 0.62687sec



 

 

Figure 11. System pressure and flow rate. 
 
The results show that the flow rate is positive during the 
movement of the cylinder. The spikes in pressure occur 
when flow rate suddenly goes to zero due to valve 
closure. The pressure relief valve is set to 20 bar to 
mitigate this situation. The overall pressure profile is a 
gradual increase except for a sharp drop at about 3.2 
sec followed by a quick recovery when the valve opens 
the second time and reverses the cylinder direction. 

 
TUNING PARAMETERS - One of the challenges of any 
physical model is validating that the simulation results 
are accurate and represent reality. With the network 
approach to modeling, the model parameters are the 
degrees of freedom for adjusting the model 
performance. In some cases, these parameters can be 
populated directly from the datasheet of a component 
manufacturer. For example, the stall torque and no-load 
speed curves on a motor datasheet could be used to 
parameterize the motor model. Many times, however, 
good data is not available and the model parameters 
must be manually adjusted. This is typically a tedious 
trial-and-error (adjust, simulate, repeat) process until a 
reasonable result is obtained.  

 

Figure 12. Hydraulic cylinder response (measured 
and simulated). 
 
Optimization tools such as Simulink Parameter 
Estimation[11] can be used to automate this process by 
automatically tuning the model parameters by comparing 
the simulation results with measured lab data until a 
satisfactory parameter set is obtained. Figure 12 shows 
the results from using Simulink Parameter Estimation to 
automatically tune parameters in the hydraulic portion of 
the model in Figure 9.  

 
PARAMETER VARIATIONS 

The nominal simulation results with optimized 
parameters are useful for testing the controller and 
verifying the overall system performance. However, an 
optimized design does not necessarily ensure that the 
design is robust. A robust design[12] is one that is 
immune to component variances due to tolerances, 
temperature, aging, and other factors. Once the nominal 
performance has been validated, it is important to 
consider these variances and account for their effect on 
system performance when modeling a physical system. 
The MATLAB programming language can be used to 
automatically measure various aspects of the simulation 
result from the Simulink and Simscape physical model. 
For our hydraulic actuation system in Figure 9, the 
overall performance metric might be the time it takes for 
the cylinder to open and close. Measuring the risetime 
and falltime of the rod position as shown in Figure 10 
quantifies this performance and provides the basis for 
further parametric analysis.  

A common “brute force” technique for analyzing the 
effect of parametric variances is Monte Carlo[13] 
simulation. This method randomly varies component 
parameter values within a prespecified tolerance range 
and according to a probability distribution[14]. Figure 13 
shows some common distributions.  

 

Figure 13. Common probability distributions. 
 
With today’s computing power and tools such as Parallel 
Computing Toolbox[15] to distribute the simulation runs 
across multiple computers, a large number of runs can 
be simulated and the results automatically post-
processed with little or no human intervention.  

For this example, SystemTest[16] was used to assign 
tolerances to a set of physical parameters, perform 1000 
simulation runs, and collect the performance 
measurement data. For simplicity a normal (Gaussian) 
distribution with 10% tolerance was assigned to the 
physical parameters (see Appendix A).  

The simulation results in Figure 14 show the effect of the 
parametric variances on the rising edge of the cylinder 
rod position. During the Monte Carlo simulations, the 
MATLAB risetime measurement was applied after each 
run and the results were collected in a histogram plot 
(see Figure 15). 
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Figure 14. Monte Carlo results (1000 runs). 
 

 

Figure 15. Histogram of risetime measurement. 
 
The histogram provides us with a statistical view of the 
system performance that takes into account parameter 
variances. From this, we arrive at a quantifiable 
assessment of the robustness of our design and can use 
the results to directly determine if the observed 
performance variation falls with acceptable limits based 
on requirements. Requirements management tools such 
as Simulink Verification and Validation[17] can then use 
this information to automatically generate reports to 
communicate the results to other members of the design 
team.  

If the performance variation is not acceptable, the next 
logical step is to determine the major contributors to this 
variation. Again, the MATLAB plotting and visualization 
capability can be used to further analyze the data. The 
scatterplot[18], shown in Figure 16, is one useful 
representation. Here, we have plotted the measured 
risetime for each simulation run against the value of one 
of the parameters (area_b of the directional hydraulic 
valve). The scatterplot data points reveal a visual trend 
of increasing risetime for increasing values of the 
parameter value. Additional measurements quantify this 
data into sensitivity (slope of best-fit line) and correlation 
coefficient (measure of deviation from the best-fit line). 
This information can be used to assess the allowable 
tolerances for a given parameter, but for a complex 
mechatronics design with many physical parameter 
variations and multiple performance measurements, a 
more efficient mechanism for visualizing the data is 
needed. Again we resort to MATLAB to manage the 

information using a common representation known as a 
Pareto chart[19], shown in Figure 17. 

 

Figure 16. Correlation scatterplot. 
 

 

Figure 17. Pareto plot of risetime for 1000 runs. 
 
This compact representation allows us to quickly see the 
contributors to the variation in terms of both sensitivity 
and correlation. For the top contributors, we will want to 
carefully control the variation by tightening the 
tolerances, and for the parameters that have little or no 
contribution, we can relax the tolerances where it saves 
cost during production. Once the Monte Carlo data has 
been generated, MATLAB can then be used to automate 
the data mining process by performing similar analysis 
on multiple performance measurements. This 
information can then be used by the design engineers to 
make engineering decisions and tradeoff assessments 
to optimize the performance and cost of the mechatronic 
design prior to building any hardware.  

ROBUST CONTROL 

Understanding the effects of parameter variation on the 
physical system provides valuable insight from an open-
loop perspective. During controller design, it is important 
to understand the effects of tolerances on the closed-
loop performance. The measure of controller robustness 
is how well it controls the desired output when parameter 
variances are present. In Figure 18, the physical plant 
model is encapsulated into a Simulink subsystem 
complete with sensors and actuator so that it can be 
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connected to a PID controller[20]. A command signal is 
introduced for the desired position, and the overall 
performance is measured by comparing the system 
output with the command.  

 

Figure 18. Closed-loop system model with controller 
and physical plant subsystem. 
 
The system response can then be optimized by tuning 
the controller gains. This can be done manually using 
trial and error, or an optimization tool such as Simulink 
Response Optimization[21] can be used to automatically 
tune the gains to meet the desired performance. This is 
done by placing a signal constraint block that specifies 
the acceptable region of operation on the desired output. 
Figure 19 shows the result of the optimization. 

 

Figure 19. Closed-loop system response. 
 
The initial choice of PID gains resulted in a poor 
response when connected to the plant model, but 
closed-loop response after tuning the gains is much 
more acceptable.  

The Pareto chart from the closed-loop Monte Carlo 
results revealed some tolerance issues with the cylinder. 
After the suspect tolerances were tightened, the 
simulation results of the closed-loop system in Figure 20 
show that the controller is indeed robust enough to 
handle the specified variation in parameters. As the 
system design continues and more complex controls are 
added, tools such as Robust Control Toolbox[22] can be 
utilized to analyze and design multi-input/multi-output 
(MIMO) control systems by providing methods for mode 
order reduction and consideration of stability margins 
and worst-case performance. These advanced 
techniques can be applied to any Simulink model, 

including Simscape physical models, but are beyond the 
scope of this paper. 

 

Figure 20. Closed-loop response (1000 runs). 
 
CONCLUSION 

To design a robust mechatronic embedded control 
system, you must account for the effect of parameter 
variances on system performance. Model-Based Design 
has been shown to be a proven method for control 
algorithm design, verification, and deployment. To test 
the controller using Model-Based Design, you must 
create a model of the physical system (or plant). The 
network approach offers many advantages over 
traditional signal flow or block diagram methods that are 
typically employed by controls engineers, especially for 
multidomain mechatronic systems.  

Instead of relying on domain expertise to develop and 
model the system equations, the network approach with 
the aid of a modeling language applies first-principle 
equation modeling at the component level. The 
individual components are then combined to model the 
larger system. The result is a very readable system 
model that can be easily shared with others on the team 
and quickly modified to account for additional effects as 
needed. In constructing the system model in this way, 
the engineer can then apply optimization techniques to 
find a set of nominal parameters to meet the 
performance requirements.  

The process of robust design includes methods for 
analyzing the effects of parameter variations on the 
overall system performance. Monte Carlo simulation is 
one method that can be applied to both open- and 
closed-loop systems and requires the ability to analyze 
the large amounts of data typically generated. Statistical 
techniques such as histograms, scatterplots, and Pareto 
charts can be used to uncover relationships between the 
performance measurements and the model parameters. 
This information can then be used to make design 
decisions such as cost/performance tradeoffs. 
Expanding use of Model-Based Design in this way to 
consider both controller and plant models can help the 
entire mechatronics design team build a more robust 
design. 
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APPENDIX A 

Physical model parameters (nominal values and 
standard deviation) were used for Monte Carlo analysis. 
A normal (Gaussian) distribution was used for all the 
parameters. 

 
MOTOR 
res=0.15, sd=0.005 
ind=200e-3, sd=0.0067 
k_mot=0.1, sd=0.0033 
mot_inertia=0.1, sd=0.0033 
mot_damp=0.01, sd=0.00033 
volt=100, sd=3.333 
 
PUMP 
pump_disp=0.5, sd=0.0167 
 
DIRECTIONAL VALVE 
max_area=200, sd=6.6667 
max_open=0.015, sd=0.0005 
 
RELIEF VALVE 
max_pass_area=1e-3, sd=3.33e-5 
set_pres=20, sd=0.6667 
 
CYLINDER 
area_a=0.0106, sd=3.53e-4 
area_b=0.0176, sd=5.87e-4 
stroke=0.1, sd=0.0033 
 
ACTUATOR 
act_gain=250, sd=8.333 
act_tc=0.002, sd=6.667e-5 
act_sat=0.3, sd=0.01 
 
LOAD 
stiff=1000, sd=33.33 
damp=100, sd=3.33 
mass=1, sd=0.0333 
 

MATLAB and Simulink are registered trademarks of The MathWorks, 
Inc. See www.mathworks.com/trademarks for a list of additional 
trademarks. Other product or brand names may be trademarks or 
registered trademarks of their respective holders. 

 

 

 

 


