
2009-01-0268 

Optimal Scheduling in Graphical Modeling Environments  

Michael Burke 
The MathWorks 

 

Copyright © 2009 SAE International

ABSTRACT 

Methods for controlling execution order in traditional text-
based languages such as C and Fortran are well 
established. The transition to graphical programs has 
revealed some of the hidden issues inherent in any 
scheduling routine, specifically data dependency and 
data protection (in multirate systems). Graphical 
programming languages provided built-in diagnostics 
that allow users to analyze the data dependencies to 
develop optimal schedules from a data propagation 
perspective. This paper examines one heuristic that can 
be used to develop an optimal schedule for an arbitrary 
model.  

INTRODUCTION 

The use of computer-based graphical modeling 
languages to model control systems has been steadily 
increasing since the early 1980s. Use of graphical 
modeling languages is growing, in part, because the 
graphical representation closely models traditional 
control design methodologies, making it a favorite tool 
among control engineers. With the introduction of code 
generation technologies in the late 1990s, the use of 
these languages expanded beyond control engineering 
into the software engineering domain.  

Entry into the software engineering domain highlighted 
the importance of controlling the execution order of the 
graphical components. Unlike in traditional programming 
languages such as C or Fortran, where the execution of 
components (e.g., functions) is explicitly set by a 
scheduling function, graphical components depend on 
the connection between components. The graphical 
language attempts to determine the correct execution 
order (sorted order) based on the connectivity of the 
system (see Figure 1).  

 

Figure 1. Ambiguous execution order example. 
 
This paper uses Simulink as the reference graphical 
modeling language. Simulink takes a directed graph 
approach to determining the execution order of a 
system. When a system is assembled in such a way that 
the execution order is ambiguous, the tool infrastructure 
provides diagnostic error messages (see Figure 2).  

 

Figure 2. Example error message. 
 
The error messages can be interpreted into the node 
tree of a data dependency graph. Also, the proper 
location for resolving the loop can be determined by 
observing where the flow direction of the graph changes 
(from input to output or from output to input).  

OBJECTIVE - This paper shows how to resolve 
execution order ambiguity in graphical models by using a 
simple heuristic based on directed graph methodologies. 
The resulting model is optimized from the scheduling 
perspective because it will use the minimum number of 
loop-breaking blocks (Unit Delay blocks) to resolve the 
loops. In addition, by following the heuristic method, the 
end user will have a better understanding of the 
interdependency of his or her system.  

OVERVIEW OF DATA DEPENECIES 

Data dependency is the requirement that for any 
calculation, all the values on the right-hand side (RHS) 



  
Page 2  

  

of an equation are known prior to starting the calculation. 
The value on the left-hand (LHS) side is dependent on 
the values on the right hand side. In a subsystem 
context, the concept of calculation order is equivalent to 
execution order of the subsystems.  

LHSn = f (RHSn) 

The C language does not prevent users from writing 
equations in which the LHS is assigned before the RHS. 
This means that old or noninitialized data can be used, 
which can have unexpected or incorrect results.  

LHSn = f (RHSn-1) 

LHSn = f (??) 

Graphical programming languages use data dependency 
to determine the order in which calculations are 
performed. If Block B uses the output of Block A, then 
Block B is said to be dependent on Block A. 
Dependency propagates through blocks, so if C uses B’s 
output then C depends on A (see Figure 3).  

 

Figure 3. Data dependencies. 
 

B(n) = f(A(n)) 
C(n)= f(B(n))  
C(n) = f(f(A(n))) 

 
Blocks that maintain state information, such as 
integrators and unit delays, break data dependency for 
the blocks following them (see Figure 4).  

 

Figure 4. Effect of unit delays. 
 

B(n) = f(A(n)) 
C(n) = f(B(n-1)) 

 
In Simulink the same principle can be extended to 
atomic subsystems. 

UNDERSTANDING DATA DEPENDENCIES IN 
GRAPHICAL SYSTEMS - Complications arise when 
feedback loops are introduced into the system. Again, 
using a simple block example, we can show how 

feedback loops introduce ambiguous execution order 
into the system (see Figure 5). 

 

Figure 5. Ambiguous calculation order. 
 
Note: The subscript letter “i” indicates the iteration count. 

Yi = Si  
Si = Xi + Si  
 

Subtracting Si from both sides (see Figure 6) results in:  

Xi = 0 

 

Figure 6. Data dependencies resolved, example 1. 
 

Yi = Ui  
Ui = Si-1 
Si = Xi + Ui 

 

By substitution:  

Yi = Xi-1 + Yi-1 
 
The resulting equation is not ambiguous; however, the 
output result is based on a delayed value of the input X 
(see Figure 7).  

 

Figure 7. Data dependencies resolved, example 2. 
 
Yi = Si 
Si = Xi + Ui 
Ui = Si-1 

 



  
Page 3  

  

By substitution: 

Yi = Xi + Si-1 = Xi + Yi-1 

 
This configuration of the block diagram results in the 
desired calculation; the output value is based on the 
current value of X and the last value of Y. 

METHOD FOR CONTROLLING CALCULATION 
ORDER 

The method for resolving execution order is dependent 
on use of the Simulink loop diagnostic error messages. 
When Simulink finds a data dependency in a model, it 
returns an error message (see Figure 8).  

 

Figure 8. Example error message (direct backward). 
 
The error messages have two forms: direct backward 
loop and multiple coexisting loop (see Table 1). The 
distinguishing characteristic of a direct backward loop is 
that when you click on the error messages in order, the 
signal flow between subsystems is direct and constant. 
In multiple coexisting loops, the order of the error 
message is “broken.” At some point in the error 
message, either the block order jumps without a direct 
connection between the subsystems or the connecting 
signals are broken by a unit delay. Both types of error 
message can be used to resolve model data 
dependencies. 

 

 Direct 
Backward 

Multiple  
Coexisting 

Number of loops in 
system 

1 2 or more 

Can be directly 
traced from error 
message 

Yes No; error message 
“jumps” at location 
of extra loops 

Can be broken at a 
single point 
between two 
subsystems 

Yes No 

Requires multiple 
iterations to resolve 
loops 

No Yes 

Table 1. Loop types. 
 
THE CONNECTION TABLE - The first step in resolving 
the data dependencies is building a connection table. 

The connection table is an aid to understanding where 
loops exist.  

 

Figure 9. Example model. 
 
Note: In this example model (Figure 9. Example model.), 
the subsystems are colored to make tracing signals 
easier. The colors do not represent the sample time for 
the model. 

 C B D A Length 
C - In Out In/Out 0 
B Out - In/Out In 0 
D In In/Out - X 0 
A In/Out Out X - 0 
Table 2. Connection table. 
 
The connection table is built from the Simulink error 
message (Figure 8) for the example model (Figure 9). 
The information is collected based on the following rules: 

• The column header is the order the subsystems 
appear. The row header is based on their 
appearance in the error message. 
• In: The row subsystem receives an Input from 

the column subsystem 
• Out: The row subsystem has an Output that 

goes to the column subsystem 
• If the subsystem has both an In and Out, the In is 

listed first. 
• The Length column is the number of columns 

between an Input and Output.  
 
USING THE CONNECTION TABLE - The connection 
table is used to determine where the loops can be 
broken. The heuristic rule for solving the loop is: 

• Starting at the top of the table, break the shortest 
length loops (e.g., all 0 length loops). 

• Break the loop by inserting a unit delay at the input 
to the row subsystem. 
• If there are multiple inputs, place unit delays on 

all of the inputs. 
• When all loops of a given length are broken, run the 

update diagram function to regenerate the table. 
 



  
Page 4  

  

 

Figure 10. Heuristic flow chart. 
 
In this example, there is a set of 0 length loops (A/C and 
B/D). Following the heuristic, we insert a unit delay at the 
input to A and B.  

 

Figure 11. Data dependencies resolved, example 3. 
 
It is a common mistake when dealing with systems such 
as this to add the unit delay before the import to 
subsystem D (B/D loop). Although doing so breaks the 
direct link between B and D, there is still an indirect loop 
(B C D B). The Simulink error diagnostic sorts the priority 
of the loops and allows for the minimum number of unit 
delays to be added.  

A second example with a more complex model is 
provided in the appendix.  

MULTIRATE SYSTEMS - There are two cases for 
multirate systems: a multirate system with single-rate 
components, and a multirate system with multirate 
components. The first case, a multirate system with 
single-rate components, is treated like the single-rate 
example already provided. When breaking the loops 
between multirate systems, a Rate Transition block is 
used instead of the Unit Delay block.  

The multirate system, multirate component case is more 
difficult. The initial error diagnostic will not provide 
enough information to correctly reduce the problem to a 
set of nodes and loops. The method for resolving this 

issue is to first insert Rate Transition blocks between all 
signals running at different rates. Once this has been 
done, the method outlined earlier in the paper can be 
applied.  

CONCLUSION 

This paper has presented a simple heuristic for resolving 
data dependency loops within graphical models. As the 
examples demonstrate, the technique can be applied to 
both small and large models.  

Future work will look at extending this methodology to an 
automated tool that would resolve data conflicts. Human 
input would still be used when multiple valid methods of 
resolving the problem exist. 

REFERENCES 

1. Guasch, A. et al, “Precompiled Submodels: A 
General Sorting Procedure,” Proceedings of the 2nd 
European Simulation Congress, Sep. 9–12, 1986, 
pp. 172–178.  

2. Thomas, Drea, “Q&A,” The MathWorks MATLAB 
Digest, vol. 3(1):1–8 (1995).  

3. Mosterman, Pieter J. et al, “Using Interleaved 
Execution to Resolve Cyclic Dependencies in Time-
Based Block Diagrams,” 43rd IEEE Conference on 
Decision and Control, Dec. 14–17, 2004, pp. 4057–
4062.  

4. Pearce, J.G., “The Submodel Concept in Continuous 
System Simulation Languages,” Simulation of 
Dynamical Systems, IEEE Colloquium on Simulation 
of Dynamical Systems, pp. 2/1–2/3 (2002). 

 
 

 

 

 

APPENDIX 

Figure 12 shows a larger, more complex model with 
multiple coexisting loops. For this model, the process of 
removing the loops is more complex. In the case 
presented earlier in this paper, the error message was 
easily interpreted because there was only one loop in 
the system. When there is more than one loop, the error 
message may be less clear. However, the same 
methods can be used to determine useful information. 



  
Page 5  

  

 

Figure 12. Complex example model. 

 

Figure 13. Example error message. 
 
The gray shaded boxes in the updated connection table 
(see Table 3) represent subsystem pairs that are directly 
part of the error message loop. The table has four 
subsystems that have both input and output 
connections: A/C, B/A, G/H, and F/B. The subsystem 
pair F/B can be ignored because the output connection 
is already broken by a unit delay (denoted by the * 
symbol). 

 H D C A E B F G 
H NA In Out X Out X Out* In/Out 
D Out NA In X Out X X In 
C Out Out NA In/Out X In In X 
A X X In/Out NA In In/Out X X 
E In In X Out NA X Out* Out 

B X X Out In/Out In NA In/Out* X 

F In* X Out X In* In/Out NA Out 
G In/Out Out X X In X In NA 

Table 3. Connection table. 
 
• Shortest loop: G/H 

• Inserted break on Inport to G.  
• Update diagram: No change to error message. 
• Shortest loop: B/A 

• Inserted break into B because two out of three 
inputs are already broken. 

• Update diagram: No change to error message. 
• Shortest loop: A/C 

• Inserted break before Inport for C.  
• Update diagram: Error message is updated. 
• Create new connection table. 
 

Figure 14 and Table 4 show the resulting model and 
connections. 

Figure 14. Example error message. 
 

 H D C B E F G 
H - In In X Out Out* Out/In* 
D Out - In X Out X In 
C Out Out - In X In X 
B X X Out - In Out X 
E In Out X Out - Out* Out 
F In* X Out Out/In In* - Out 
G Out/In* Out X X In In - 

Table 4. Updated connection table. 
 
The break in the connection table occurs at F/E. The 
error message shows a loop even though the loop is 
broken by a unit delay. Because of this we start by 
working on entries in rows H~E, prioritizing the bottom of 
the table. 

• Shortest loop: E and G (change from Output at E/G 
to Input at E/H) 
• Inserted break on the input to G.  

• Update diagram: No change to error message. 
• Shortest loop: B and E (change from Output B/C to 

Input B/E) 
• Inserted break on the input to B. 

• Update diagram: No error messages. 
 

 

Figure 15. Example error message. 
 
The final diagram, Figure 15, not all of the feedback 
loops are explicitly broken. For example, the feedback C 
to A and E to A are not broken. A common mistake 
would have been to insert the loop breaker at the Inports 
to A. This would not have resolved the data 
dependencies and would have required additional 
(redundant) unit delays. 

 



  
Page 6  

  

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other 
product or brand names may be trademarks or registered trademarks of their respective holders. 

 

 


