
2009-01-1021

Real Time Simulation Using Non-causal Physical Mode ls

Tom Egel
The MathWorks, Inc.

Copyright © 2009 SAE International

ABSTRACT

As automotive electronics become more complex and
more distributed, hardware in-the-loop simulation is now
a widely adopted technique for performing controller
software/hardware integration testing as well as
controller/controller integration testing. Having real-time
capable models that are correlated to physical hardware
being controlled is key to successful implementation of
hardware in-the-loop testing. Because models for
hardware in-the-loop must be developed in a short
amount of time and then stay in sync with the design
through design changes, a best practice is to obtain
such models from the system-level model used for
requirements analysis and design trade offs. This way,
one model can address the need of both requirements
analysis and integration testing, reducing re-
development of models and ensuring consistency
between two process steps. While there has been
significant progress made in recent years on real-time
simulator technologies, including I/O accuracy, use of
off-the-shelf hardware, acceleration using parallel
processing, the process by which a system level
simulation model is to be reused for hardware in-the-
loop testing is not very well understood. This paper
starts by examining options for developing a system
level simulation model. When limited to causal modeling
techniques, the process of creating models is often
cumbersome and time-consuming. Many engineers find
non-causal (or acausal) modeling methods to be much
more intuitive. However, getting acausal models to run
in real-time requires careful upfront planning and, when
required, methodical reduction. The remaining sections
of the paper deal with effective techniques for physical
model development and reduction.

INTRODUCTION

Mechatronics[1] is a commonly used term for describing
the combination of electromechanical physical systems
with computer controls. Designers of embedded
controls for mechatronic systems face difficult
challenges. As illustrated in Figure 1, completion of a
successful mechatronic system design requires the
integration of multiple engineering domains and
collaboration between the engineering teams. For
example, in order to exhaustively test the software
control algorithm for an ABS system requires accurately

representing the physics of the electronics, hydraulics
and mechanics.

Figure 1 - Mechatronics Venn Diagram

In addition, as embedded controls continue to become
more and more part of the core functionality of the
modern automobile, time-to-market pressures, cost
sensitivity, and quality expectations all contribute to the
design challenge. Traditional methods of designing,
testing, and implementing mechatronic systems cause
designers to wait until late in the design effort, when
actual or prototype products and real-time embedded
targets become available, to find out if system actually
meets the performance requirements. Only then, as
system integration occurs, can the designer uncover the
errors that may have found their way into the product
during the early design stages.

The principles of Model-Based Design as a proven
technique for creating embedded control systems[2,3],
and apply equally as well when designing mechatronic
systems. Using Model-Based Design, the various design
teams can evaluate design alternatives without relying
solely on expensive prototypes. A Model-Based Design
environment allows engineers to mathematically model
the behavior of the physical system, design the software
and model its behavior, and then simulate the entire

system model to accurately predict and optimize
performance.

Once the design performance has been verified with
simulation, the next step in the process is to test the
controller in real time using Hardware-in-the-Loop (HIL)
simulation[4]. For the this discussion, HIL simulation will
be defined as testing the control algorithm in real time by
deploying it to a controller (hardware) and connecting to
a model of the physical system (plant) running in real
time. In order to achieve this, the physical model must
be real-time capable. The main focus of this paper will
be discussing the process of creating models of the
physical system and deploying them to real time for HIL
testing.

MODELING THE PHYSICAL SYSTEM

Model-Based Design is widely used to develop software
algorithms for deployment onto an embedded controller.
In order to perform closed-loop tests on the control
algorithm, the first thing that is needed is a
representation of the plant. There are no shortages of
techniques for modeling physical systems. Some
commonly used methods include signal flow
diagrams[5], bond graphs[6] and even manually coding
the system equations in C or Fortran. Since a
mechatronic design relies on collaboration between
engineering teams, it is imperative that the model can be
easily shared and understood by the various
stakeholders. While the methods above are perfectly
valid for accurately modeling the physics, none of these
are particularly well-suited for meeting the collaboration
and integration needs of a multi-domain mechatronic
system design. As a simple illustration, consider the
problem of modeling a DC motor with speed and current
control.

Figure 2 – DC Motor Architecture

SIGNAL FLOW APPROACH - Simulink by The
MathWorks is widely used to design control algorithms
using the signal flow approach. Once implemented in
Simulink®[7], Model-Based Design methods are
commonly used to verify the controller design and
automatically generate the code for deployment onto the
microcontroller for rapid prototyping and production. As
a result, the signal flow method has also historically
been used to model the plant in Simulink to test the

controller in simulation and with a real-time hardware-in-
the-loop system.

A common representation of a DC motor is shown in
Figure 2 . The signal flow modeling approach is a multi-
step process that first requires deriving the motor
equations:

dt

d
JBiKT

ωω ⋅−⋅−⋅= (1)

dt

di
LRiKV ⋅+⋅+⋅= ω (2)

The next step is to graphically model these equations in
a signal flow diagram, but this often requires
reformulating the equations to support this approach:

 ⋅−⋅−=
dt

d
KRiV

Ldt

di θ1
 (3)

 ⋅−⋅=
dt

d
BiK

Jdt

d θω 1
 (4)

Finally, a signal flow model of the equations can be
created:

Figure 3 - DC Motor Signal Flow Model

Figure 4 - DC Motor Model Simulation Results

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08
Motor Speed (Rad/s)

Time (sec)
0 2 4 6 8 10

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Motor Current (Amps)

Time (sec)

Simulating this model yields the expected results (see
Figure 4), but the multi-step modeling process results in
a model that is unrecognizable when compared to the
original diagram in Figure 2 . Even for this simple model,
in order to share with others it would require significant
explanation and documentation.

NETWORK APPROACH - A more universal method for
modeling multi-domain physical systems is often referred
to as the network modeling approach[8]. Its origins
come from the method of network analysis for electrical
systems, and can been extended to also model systems
consisting of mechanical, hydraulic, thermal and
magnetic components. The main advantage of a
network model over a signal flow model is the non-
causal or sometimes called acausal[9] nature of the
connection ports. In signal flow diagrams, the
connections are causal. That is, every block is a transfer
function with a signal on the input causing the output to
behave according to the defined transfer function. A
quick look at the model in Figure 3 illustrates how data
flows through the model. Any interaction between blocks
must be explicitly modeled by creating feedback loops.
As the interactions become more complex and
commonplace as with a mechatronic system, the signal
flow method quickly becomes untenable for all but the
most expert users. For example, if additional effects like
damping, friction or hard stop limits are desired, the
system equations (1) and (2) would need to be
reformulated and the model recreated, resulting in an
even more complicated model that is more difficult to
interpret.

To illustrate, let’s look at the same DC motor model
using the network approach modeled using foundation
blocks from the SimscapeTM[10] multi-domain physical
modeling environment within Simulink:

Figure 5 - DC Motor Network Model

As you can see, the model bears a close resemblance to
the original diagram in Figure 2 . This is an important
benefit of the network approach making it much easier
for others to understand and interpret thus fostering the
collaboration needed for designing mechatronic
systems. The electrical side of the model solves for the
quantities current and voltage while the mechanical side
solves for torque and angular velocity resulting in
identical simulation results to the signal flow model. In
the network terminology, these quantities are commonly
referred to as “through” and “across” variables. Notice
how current and torque “scopes” are placed in the

network to measure the through variables and the RPM
scope to measure the across variable of motor shaft
speed. These measured quantities can also be easily
fed back to the control algorithm modeled in Simulink for
closed-loop system analysis (more on this later).

A major advantage of the network approach is the ability
to quickly modify the system model without the need to
derive the system equations. Here, the individual
“blocks” contain the fundamental component equations
defining the relationship between the through and across
variables. The system equations (1) and (2) are then
automatically formulated by interconnecting the
components into the desired topology. For example the
rotational damper component contains the equation:

ω⋅= BT (5)

Defining the relationship between the through variable
(torque) and the across variable (angular velocity) as a
linear relationship with the damping coefficient (B) as a
constant of proportionality. This method of embedding
the first principle equations into the component models
allows additional physical effects to be easily added to
the system model without needing to worry about
reformulating the overall system equations. For example,
let’s say we want to add limits to the angle of rotation.
Using the network approach, you can simply connect a
rotational hardstop to the motor shaft as shown in Figure
6.

Figure 6 - DC Motor Model with Hardstop as Load

Figure 7 - Motor Position and Current with Hardstop

Here we also used hierarchy to group the previous motor
model into a subsystem and added the rotational
hardstop as an external load. An angular position scope
is used to measure the angle of the motor shaft. As you

0 5 10
0

0.05

0.1

0.15

0.2
Motor Position (Rad)

Time (sec)
0 5 10

-0.1

0

0.1

0.2

0.3

0.4
Motor Current (Amps)

Time (sec)

can see the network approach makes it easy to quickly
add additional effects and immediately see the effects in
simulation.

In Figure 7 you can clearly see the results of introducing
angular travel limits. The motor shaft reaches the
hardstop at about 5 sec resulting in an increase in the
motor current as it works harder to overcome the
obstacle. The motor angular position like angular
velocity is an across variable that can also be fed back
to the controller if desired.

MODELING LANGUAGE - The enabling technology for
the network approach is a modeling language for
formulating the component’s characteristics equations
relating the through and across variables in the various
domains. The Simscape language, based on
MATLAB®[11], provides the necessary constructs for
modeling the multi-domain aspects of mechatronic
systems. To revisit the DC motor example, the motor
equations can be directly modeled using the Simscape
language as shown below in Figure 8.

component dc_pm
 nodes
 p = electrical; % p:left
 n = electrical; % n:left
 r = rotational; % r:right
 c = rotational; % c:right
 end
 parameters
 Kt = {10 'N*m/A'}; % Torque constant
 Ke = {10 'V/(rad/s)'}; % Back EMF Constant
 Rwind = {1 'Ohm'}; % Winding Res
 Lwind = {1e-3 'H'}; % Winding Ind
 J = {1 'kg*m^2'}; % Motor Inertia
 B = {1 'N*m/(rad/s)'}; % Motor Damping
 end
 variables
 theta = {0,'rad'}; % Angular Displacement
 tq = {0,'N*m'}; % Torque thru variable
 w = {0,'rad/s'}; % AngVel across var.
 i = {0,'A'}; % Current thru var.
 v = {0,'V'}; % Voltage across var.
 end
 function setup
 through(tq,r.t,c.t); % thru variable tq
 across(w,r.w,c.w); % across variable w
 through(i,p.i,n.i); % through variable i
 across(v,p.v,n.v); % across variable v
 end
 equation
 w == theta.der;
 v == Ke*w+i*Rwind+Lwind*i.der; % Motor
 tq == -Kt*i+B*w+J*w.der; % Eq’ns
 end
end

Figure 8 – DC Motor model using Simscape
language

This modeling method creates a new foundation
component which can then be easily integrated into a
larger system model by inserting it between the electrical
controls and mechanical loads.

TUNING PARAMETERS - One of the challenges of any
physical model is validating that the simulation results
are accurate and represent reality. With the network
approach to modeling, the model parameters are the
degrees of freedom for adjusting the model
performance. In some cases these parameters can be
populated directly from the datasheet of a component
manufacturer. For example, the stall torque and no-load
speed curves on the motor datasheet could be used to
parameterize the motor model. Many times, however,
good data is not available and the model parameters
must be manually adjusted. This is typically a tedious
trial and error adjust-simulate-repeat process until a
reasonable result is obtained. Optimization tools like
Simulink Parameter EstimationTM[12] can be used to
automate this process by automatically tuning the model
parameters by comparing the simulation results to
measured lab data until a satisfactory parameter set is
obtained. Figure 9 shows the results from using
Simulink Parameter Estimation to automatically tune
parameters of the model in Figure 5.

Figure 9 – Motor Speed Response (Measured and

Simulated)

MECHATRONIC SYSTEM INTEGRATION

Using the network approach a complex system model
can be quickly constructed by interconnecting the
individual component models. The resulting model
representation is intuitive and easily interpreted due to
the physical connection ports. The overall system
equations are automatically formulated from the
individual component equations along with how they are
interconnected.

As an example, consider the system modeled in Figure
10. Here the DC motor is integrated into a linear
actuation system with speed control. The speed and
current control subsystems are PI controllers made from

standard Simulink blocks while the rest of the model is
constructed with physical blocks. The DC motor is driven
by electrical PWM and H-Bridge block from the
SimElectronicsTM[13] library.

Figure 10 – Linear Actuator with Speed Control

The mechanical load includes a worm gear with friction
connected to a lead screw to convert rotational to linear
motion modeled in Simscape. The two inputs to the
system are the constant set point signal of 2000 RPM for
the desired motor speed into the controller and a
disturbance force of -500N occurring at 3 seconds on the
mechanical load. The goal of the simulation is to see
how well the controller responds to the disturbance in
closed-loop system. The network approach allows
additional effects (like friction) to be easily inserted.

Figure 11 - Motor Speed - Closed-Loop Response

This formulation of the system equations is enabled by
applying the through and across variable concept
discussed earlier to the different physical domains.
Table 1 shows the through and across variables used in
this system.

Table 1 - Through and Across Variables
Domain Through Across
Electrical Current Voltage
Rotational Torque Angular velocity or position

Translational Force Velocity or position

The simulation results are shown in Figure 11. Here we
see the motor speed increase to 2000RPM, droop to
about 750RPM when the external force disturbance of
500N is applied at 3 sec, then recovers to desired set
point.

CONTROL DESIGN - The risetime and recovery time
are key performance attributes that can be used to
determine if the design meets the requirements. The PI
gains of the controller can be adjusted manually to
improve the performance or automatically tuned using
Simulink Response Optimization[14] as shown in Figure
12. Here we can graphically specify the response
constraints (risetime, overshoot, settling time, etc…) for
the optimization routine to enforce during automatic gain
tuning. The result is a set of optimized gains assigned to
the MATLAB workspace variables for storage and future
use.

Figure 12 – Results from PI Gain Optimization

Alternatively, classic (linear) control techniques can also
be applied by linearizing the physical model and using
Simulink Control Design[15] to tune gains with a linear
system model. The advantage of this approach is the
ability to represent the physical system as an s-domain
or z-domain transfer function enabling quick tuning of the
gains. For example, linearizing the physical system in
Figure 10 yields the transfer function in equation 6:

01
2

2
3

3
4

4
5

5
6

6
7

7

01
2

2
3

3
4

4
5

5
6

6)(
bsbsbsbsbsbsbsb

asasasasasasa
sT

+++++++
++++++

= (6)

Where:
 a6 = 0.0001168 b7 = 1
 a5 = 7.299e7 b6 = 1.532e4
 a4 = 2.321e10 b5 = 4.128e7
 a3 = 2.376e12 b4 =1.657e10

 a2 = 7.685e13 b3 = 2.202e12
 a1 = -7.316 b2 = 1.021e14
 a0 = 0.005892 b1 = 1.138e15
 b0 = 8.645e11

The frequency response in the form of a bode plot is
shown in Figure 13. Complete control system design
and analysis is beyond the scope of this paper. The
intent here is to show that all the advanced capabilities
of Simulink are still available when using the network
approach to represent the physical system.

Figure 13 - Frequency Response of Linearized Model

REAL-TIME SIMULATION

Once the controller has been designed and tested in
simulation, the next step in the Model-Based Design
process is to deploy the control algorithm to the
microprocessor for real-time testing and verification.
Modern production code generation technology is
typically used to create an on-target rapid prototyping
environment where the algorithm code can be quickly
deployed to the target microprocessor which is inserted
into a physical prototype of the overall system. When a
prototype of the physical system is not available, an
alternative is to use Hardware-on-the-Loop (HIL) testing.
For our purposes, HIL is defined as a microprocessor
(the hardware) communicating (in-the-Loop) with a plant
model that is running in real time (see Figure 14). This
configuration allows you to exhaustively test and debug
the controller prior to building a prototype of the physical
system. The cost savings from reducing prototypes can
be tremendous and there are many HIL systems
available in the marketplace. An exhaustive discussion
on HIL simulation in beyond the scope of his paper,
rather the intent is to illustrate that it is not limited to the
traditional causal modeling techniques typically
employed by control system engineers.

In order to perform HIL testing, the physical model must
be real-time capable. This presents a challenge when
modeling physical systems as there is always a tradeoff
between simulation speed and model complexity. The
engineer must ensure that the model contains enough of
the physics to provide an accurate representation for the
controller, while avoiding overly complex models that
slow down the simulation with no added benefit. The
following discussion on model reduction explores this in
more detail.

Figure 14 - Hardware-in-the-Loop Setup

MODEL REDUCTION - The motor control system in
Figure 10 utilizes pulsewidth modulation (PWM) to
control the switches in an H-Bridge connected to the DC
motor. The resulting motor current is shown in Figure
15. Varying the duty cycle of the PWM signal is a
common control technique, but the high switching
frequency (10kHz) is computationally intensive for any
numerical simulation engine and certainly not conducive
to real-time simulation on any reasonably fast HIL
hardware. What is needed is a “reduced” model that
outputs the average value of the switching waveforms
used to energize the motor. For our system we utilized
the PWM and H-Bridge blocks from the SimElectronics
library that allow you to quickly interchange the switching
and averaged models. The removal of the switching
waveforms increases the simulation speed by many
orders of magnitude while maintaining the overall system
performance. The Simscape modeling language
discussed earlier could also be leveraged to create
averaged models for real-time execution.

FIXED-STEP SOLVERS - In order to execute in real
time, the model needs to be simulated with a fixed-step
solver. When simulating a physical system, variable-
step solvers are generally used due to the increased
numerical efficiency required to capture the wide
dynamic range typically present. However, since the
microprocessor that will be connected to the real-time
plant model executes in fixed time steps, the plant model
must also execute in fixed steps. For fixed-step
simulation, the size of the time step chosen will have a
direct impact on the simulation speed and accuracy. A

smaller time step will provide greater accuracy, but will
be numerically more expensive for the simulator.
Selecting too large of a time step will speed up the
simulation, but sacrifice accuracy. For this system we
chose a time step of 100ms (as a comparison, for the
PWM version of the model with a 10kHz switching
frequency, the time step would have needed to be at
least 100us!)

Figure 15 - Closed-Loop Response (switching and
averaged models)

The motor current when using the fixed-step simulation
with the averaged models is shown in Figure 15. As you
can see, the averaged model provides a sufficient
approximation of the motor current. The resulting motor
speed is identical to the previous results shown in Figure
11.

Figure 16 - Open-loop DC Motor Model

DEPLOYING TO REAL-TIME - Once the system model
has been sufficiently reduced and simulated with a fixed-
time solver, it is then ready to be deployed to real-time.
The first step is to separate the controller and plant
models so that code for each can be generated and
deployed independently. Our focus here will be to
deploy the plant model to real-time. Figure 16 shows the
plant model without the controller. Here we are testing it
in an open-loop configuration with a control signal input
and an external force disturbance.

To deploy this model to real-time, we used xPC
Target™[16] from the MathWorks. xPC Target leverages
the code generation technology from Real-Time
Workshop[17] to deploy the Simulink model to a real-
time operating system capable of running on standard
PC hardware.

With xPC Target you can use any PC with Intel or AMD
32-bit processors as your real-time target. The target PC
can be a desktop computer, an industrial computer,
PC/104, PC/104+, CompactPCI, all-in-one embedded
PC, or any other PC-compatible form factor. The target
PC for this system was a Pentium 4 with 768K RAM.

Figure 17 - xPC Target Setup

As shown in Figure 17, a single communications link
connects the host and target computers. You design
your application on the host computer in Simulink and
download the real-time application to the target PC. The
same communications interface is also used to pass
commands and parameter changes to the target PC.
You can choose either RS-232 or TCP/IP
communications.

With a host computer running MATLAB, Simulink, Real-
Time Workshop, xPC Target, and a C compiler as your
development environment, you can create real-time
applications and run them on a target PC using the xPC
Target real-time kernel.

Once deployed to the target PC, the model can then be
simulated in real time. The results of this simulation are
shown in Figure 18. A control signal equivalent to 5V is
supplied to the input of the averaged PWM and H-Bridge
model. Initially, there is no load and the motor spins at

about 1500 RPM with a motor current of about 0.5
Amps. At 2sec, an opposing force of -400N is applied
resulting in a decrease in speed to about 1100 RPM with
an increase in current to about 1 amp. At 6 sec the
opposing force is increased to -800N resulting in a
further decrease in speed to about 750RPM an increase
in current to about 1.5 amps.

The xPC Target scope also indicates an important metric
called Average Task Execution Time (TET) which for our
system is just under 2ms. This value is an average of the
measured CPU times to run the model equations and
post outputs during each sample interval. The average
TET is nearly constant, with minor deviations due to
cache, memory access, interrupt latency, and multirate
model execution. The average TET is the main factor to
consider when determining the minimum achievable
sample time. It the TET for a given interval exceeds the
sample time, the result will be an overflow error. If this
occurs you need to either further reduce your model or
increase the processing power of the target PC.

Figure 18 - Real-Time Simulation Results

CONCLUSION

Hardware-in-the-Loop simulation is a powerful tool for
testing embedded control systems. In order to test the
controller using HIL, a real-time plant model must be
created. Signal flow (causal) modeling techniques have
been traditionally used by control engineers to model the
plant and deploy to real-time. The domain expertise
required to derive the mechatronic system equations
typically results prolonged development time or over-
simplified models. The network approach to physical
modeling uses non-causal connections between the
physical component models. The benefit to this
approach is that the system equations are automatically
derived when the interconnecting components into a
complete system. The existence of code generation
technology for these non-causal models means that the
time and effort required to create multi-domain real-time

capable physical models is significantly reduced. Care
must be taken to ensure that these network models have
the appropriate amount of fidelity to provide a realistic
dynamics for the controller. This typically means some
amount of model reduction must occur to remove
unnecessary detail from the physical model. The benefit
of using a physical modeling language is that the user
has direct control over this fidelity. Once the plant
models have been simulated in real time with acceptable
simulation results, they can be deployed to hardware
running a real time operating system connected to the
target microprocessor for HIL testing.

ACKNOWLEDGMENTS

I would like to thank my colleagues at The MathWorks
Steve Miller, Jeff Wendlandt, Nathan Brewton and Rick
Hyde for their support with the Simscape models and
language. Additionally, I’d like to thank Ethan Woodruff,
Sam Mirsky and Terry Denery for their support with real-
time simulation using xPC Target.

REFERENCES

1. http://en.wikipedia.org/wiki/Mechatronics
2. Paul F. Smith, Sameer M. Prabhu, Jonathan H. Friedman,
 “Best Practices for Establishing a Model-Based Design
 Culture,” SAE Paper 2007-01-0777.
3. Jeff Thate, Larry Kendrick, and Siva Nadarajah,
 “Caterpillar Automatic Code Generation,” SAE Paper
 2004-01-0894.
4. http://en.wikipedia.org/wiki/Hardware-in-the-loop
5. Feedback Control of Dynamic Systems, Gene F. Franklin,
 J. David Powell, Abbas Emami-Naeini, Prentice Hall,
 ISBN 0-13-032393
6. http://en.wikipedia.org/wiki/Bond_graph
7. http://www.mathworks.com/products/simulink
8. Mechatronics: An Integrated Approach, Clarence W. De
 Silva, CRC Press, 2005 ISBN 0849312744
9. http://en.wikipedia.org/wiki/Acausal
10. http://www.mathworks.com/products/simscape
11. http://www.mathworks.com/products/matlab
12. http://www.mathworks.com/products/simparameter
13. http://www.mathworks.com/products/simelectronics
14. http://www.mathworks.com/products/simresponse
15. http://www.mathworks.com/products/simcontrol
16. http://www.mathworks.com/products/xpctarget
17. http://www.mathworks.com/products/rtw

CONTACT

Tom Egel
Principal Application Engineer
The MathWorks Inc.
tom.egel@mathworks.com

MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See www.mathworks.com/trademarks for a list of additional

trademarks. Other product or brand names may be trademarks or
registered trademarks of their respective holders.

