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ABSTRACT 

A recent Gartner Dataquest study predicts that the total 
worldwide automotive semiconductor market will grow 
from $20.1 billion in 2007 to $25.9 billion by 2010. The 
study also predicts that revenue from automotive usage 
of FPGAs will triple to approximately $312 million during 
that same period[1].  

Many of these FPGAs will be deployed in safety 
applications such as back-up cameras, lane departure 
warning systems, blind-spot warning system, and 
adaptive cruise control. FPGAs will also be deployed in 
next-generation engine electronics, emissions control, 
navigation, and entertainment applications.  

Automotive systems engineers are adept at using 
Model-Based Design for implementing some of these 
embedded applications on DSPs and microcontrollers. 
Many of these engineers are new to FPGA design and 
waking up to a fragmented workflow that is making it 
harder to meet time-to-market and cost objectives. 

For example, engineers who are migrating their systems 
designs from DSPs to FPGAs are discovering that 
additional verification steps such as bit-true, cycle-
accurate simulations are required to ensure that the 
FPGA functions the same as the system specification. 
This is a time-consuming and error-prone activity 
involving file exchanges between the system designer 
and the FPGA designer. Geographically distributed 
teams face an even bigger challenge since the system 
engineer and FPGA designer may be many miles away 
from each other. 

This paper illustrates how Model-Based Design 
integrates the world of system designers, FPGA 
designers, and verification engineers to increase 
productivity and produce correct-by-construction designs 
that match the system specification. Using the concept 
of executable design specification, this paper discusses 
how Model-Based Design streamlines both design and 

verification of FPGAs for automotive applications in two 
important automotive workflows:  

• FPGA design and production deployment to low-
volume high-processing power applications such as 
driver-assistance and infotainment systems. 

• FPGA use for prototyping in high-volume applications 
such as engine and steering control, where the final 
production deployment will be an ASIC. In this workflow, 
the proof of concept work is done using FPGAs. 

INTRODUCTION 

Many new cars now include electronic safety systems 
such as collision avoidance, adaptive cruise control, and 
lane-departure system. These new features often 
require fast processing power and large memory to 
handle video data streaming, image recognition, or 
other signal processing, which greatly increase the 
hardware and software complexity in automotive 
electronic systems. Many of these complex functions 
can not be implemented in software running on 
traditional DSP and microcontrollers. Instead, 
automotive hardware designers are now focusing on 
FPGAs and ASICs.  

Compared to traditional DSPs and microcontrollers 
(MCUs), FPGAs and ASICs offer faster processing 
speed and more functionality to support more advanced 
features. Choosing between an ASIC and an FPGA 
implementation depends on the application and is 
beyond the scope of this paper, but, broadly speaking, 
an FPGA implementation can be a faster time-to-market 
and lower-cost solution than an ASIC design. FPGAs 
also offer the added benefit of reconfigurability when the 
design specification changes. On the other hand, an 
ASIC may be the right solution for a large volume, very 
high-speed, or power-sensitive application.  

FPGA usage is growing rapidly because it satisfies the 
automotive industry’s demands for faster processing 



speed, higher logic density, shorter time-to-market 
cycle, and reconfigurability[2]. 

 

 

Figure 1. FPGA applications in the automotive 
industry. 
 

Figure 1 lists a few of the applications where FPGAs 
may be deployed. These include active safety system, 
powertrain, chassis, body electronics, and infotainment 
systems. 

In Table1, we capture five major automotive 
applications and their suitability for FPGA-based 
implementation.  

Active-safety systems and infotainment systems are the 
most popular areas for FPGA applications. These 
applications need to process large amounts of streaming 
input data and provide responses in real time. Their 
image processing and radar signal processing 
algorithms may easily consume the processing power of 
an entire DSP processor. In such applications, instead 
of using a fast, stand-alone DSP, the adoption of an 
FPGA as a hardware coprocessor can offer a more 
compelling solution that allows the designer to use a 
smaller DSP. This can result in greater system 
performance at a lower cost[3,4].  

FPGAs are also found in powertrain systems as a 
coprocessor for engine controller tasks such as knock 
detection and injector control. While ASICs are often 
used in high speed applications such as gasoline direct 
injection, diesel multiple injection, and electronic valve 
lifting, newly introduced flash-based FPGAs may be an 
attractive option for these applications[1,5].  

As of two years ago, premium vehicles such as BMW 5 
Series employed well over 100 MCUs to control the 
various systems in the car. Automotive engineers have 

been working to consolidate the functions of multiple 

Applications Examples 
Key 
Requirements 

Present Technology FPGA Viability  

 
Active 
Safety  
Systems 
 
 

Adaptive cruise control 
Collision mitigation 
Lane departure warning 
Back-up camera 
Blind spot warning. 

Throughput 
Reconfigurability 

DSP and ASIC/FPGA  
 
New systems have 
more FPGAs in 
them. 
 

Yes. 
As a coprocessor for video and 
image processing. 
For high processing speed and 
reconfigurability. 

 
Powertrain 
 
 

Engine control module: 
– Fuel injection 
– Knock detection 
– Ignition timing 
Power electronics control 
Transmission control 
Vehicle energy 
management. 

Cost/Memory 
Speed 
Complexity  
Reconfigurability 
  
  
 

MCU (high end) 
 
ASICs are used 
today extensively in 
engine control and 
power electronics 
control. 
 

Yes. 
As a co-processor for tasks 
such as knock detection, fuel 
injector control, and power 
electronics control. 
 
For HW and SW codesign. 
 

 
Chassis  
 
 

Steering control 
ABS 
Electronic stability (ESP) 
Ride control 
Brake-by-wire 

Cost/Memory 
Speed 
Redundancy 
 

MCU (mid end) 
 
DSPs are sometimes 
used for steering 
control. 
 

Yes. 
Possible for power steering 
control, which requires high 
processing speed. 

 
Body  
Electronics 
 
 

Roof, window, mirror, seat 
Climate control 
Instrument cluster 
Central body control 
Network gateway. 

Cost/Memory 
Low Power 
Reconfigurability 
 
 

MCU (low end) 
 

Yes.  
To consolidate the functions of 
multiple MCUs that are 
distributed around the vehicle 
into one FPGA [3]. 
 

 
Infotainment 
Systems 
 

Navigation 
Voice recognition  
Digital audio/TV 
Rear-seat entertainment. 

Throughput  
Reconfigurability 
 

MCU and DSP 
 

Yes. 
For high processing speed and 
reconfigurability. 
 



MCUs into one FPGA to reduce the system 
complexity[6]. Even as the unit costs of both DSP and 
FPGA devices are falling, the growing system 
complexity and increasing need for raw processing 
power make FPGAs a compelling solution for many 
automotive applications. 

For example, Saab’s trionic engine combustion control 
processing is straining the abilities of MCUs[7]. 
Conceivably, the engine can burn hydrocarbons and CO 
in polluted air that is sucked into the intake[8]. The ECU 
uses a Motorola 683xx 32-bit processor, 4Mbit of 
memory, an 8-bit coprocessor, barometric sensor, and 
other components[9].  

By using the spark plug as an ionization probe during 
each idle cycle in the four-cycle process and sensing 
temperature, pressure, and unburned exhaust, 
everything can be adjusted to its optimum to wring out 
every bit of power available in the gasoline, based on 
real-time combustion results and driving conditions.  

Taking this technology farther will require more than a 
faster embedded processor if it is to be done efficiently 
for economy autos as well as high-end luxury vehicles. 

MODEL-BASED DESIGN 

Model-Based Design improves design quality and 
accelerates design and verification tasks by employing 
an executable specification. This executable 
specification is elaborated to create hardware and 
software partitioning, automatically create hardware and 
software implementation code, and verify the hardware 
and software implementations in the context of the 
complete system (as shown in Figure 2). Significant 
advantages of Model-Based Design include the fact that 
it facilitates rapid design iterations and it moves the 
verification process all the way to the beginning of the 
design cycle. This helps detect system specification 
related errors, design errors, and implementation errors 
early.  
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Figure 2. Model-Based Design that uses an 
executable specification and allows continous 
system-level verification. 
FPGA SYSTEM DESIGN CHALLENGE 

As stated in the introduction, automotive systems 
engineers are adept at using Model-Based Design for 
implementing embedded applications on 
microcontrollers and DSPs. They are typically new to 
FPGA design. Hardware design workflow is significantly 
different from software design workflow and the 
transition can be difficult. The following sections outline 
some of the typical problems with the manual FPGA 
design workflow and propose an integrated system-level 
design approach to FPGA development.   

MULTI-PASS WORKFLOW 

In the typical hardware system design workflow, a 
system designer designs the algorithm and creates a 
text-based design document and corresponding I/O 
vectors for hardware engineers. FPGA designers then 
translate this specification into a hardware realizable 
model by hand-coding either Verilog or VHDL code, the 
two common hardware description languages (HDLs). 
To verify that the hand-coded HDL behavior matches 
the system specification, they write extensive HDL test 
benches to exercise the I/O test vectors provided by the 
system designer, as shown in Figure 3.  



 

Figure 3. Typical text-based system specification to 
hardware design workflow that leads to many 
errors. 
 
While this workflow looks very straightforward, the 
reality is that it is a laborious and inefficient process.   

The system designers need to spend extra effort to 
create and maintain the text-based design document 
and test I/O vectors which are only used by FPGA 
designers. Additional effort is wasted by FPGA 
designers to create the module level HDL test benches 
that are not usable for chip-level verification.  

This workflow requires close collaboration between 
system engineers and hardware engineers. However, 
this level of collaboration is not always easy because 
system engineers and hardware engineers may be 
physically located far away from each other.  

As we know, design specification changes are 
inevitable. This workflow breaks down even more when 
design iterations are required due to specification 
changes. Working through hundreds or thousands of 
lines of code is invariably more inefficient than working 
at a higher level of abstraction.  

VERIFICATION  

Ensuring that the FPGA implementation matches the 
system specification in bit-true, cycle-accurate 
simulations is a time-consuming and error-prone activity 
involving many file exchanges between the system 
designers and the FPGA designers. As many as 10 lines 
of test code may be needed for each line of hardware 
implementation code. Moreover, these module level test 
benches and verification scripts are often not directly 
usable for FPGA system level verification. 

HARDWARE AND SOFTWARE CODESIGN 

Making the right partitioning choice is a complex 
decision process and often requires multiple iterations. 
In many automotive applications, a portion of the design 
may be running on a DSP or an MCU and some time-
critical application may be running on the FPGA 
coprocessor.  

Since the end application requires a seamless interface 
between hardware and software, engineers need to work 
in an integrated design and verification environment that 
allows them to evaluate various hardware and software 

portioning options to achieve an optimal 
implementation.   

HOW MODEL-BASED DESIGN HELPS 

Model-Based Design integrates the world of system 
design engineers, FPGA designers, and verification 
engineers to increase productivity and produce correct-
by-construction designs that match the executable 
system specifications.  

Figure 4 illustrates a typical Model-Based Design 
workflow where MATLAB and Simulink are used as the 
environments for capturing system-level algorithms and 
design specifications. The steps in this workflow include:  

1. Create an executable specification consisting of 
implementable algorithms, system model, and 
system-level verification environment.  

2. Verify the system model against functional 
requirements using simulation. 

3. Automatically generate production software for 
embedded processors and synthesizable HDL code 
for ASICs and FPGAs. 

4. Employ the executable specification as a test bench 
to verify software and hardware implementations. 

 
 

 

Figure 4. MATLAB and Simulink as the foundation 
of Model-Based Design. 
 
Engineers developing control algorithms that target 
microcontrollers and DSPs make extensive use of 
automatic production code generation technologies. 
Additionally, off-the-shelf interfaces between the code 
generator and integrated design environments (IDE) 
enable them to perform equivalence testing using, for 
example, processor In-the-loop (PIL). 

On the hardware side, recent advances in automatic 
HDL code generation technology, such as Simulink HDL 
Coder from The MathWorks provides bit-true and cycle-
accurate synthesizable HDL code for ASIC or FPGA 
implementation.  



Reusing the executable specification as a system level 
test bench allows the engineers to ensure that final 
hardware and software implementations match the true 
intent of the system design engineer.  

In this workflow, cosimulation tools enable you to verify 
the correct functionality of your HDL code with industry 
leading HDL simulators from Mentor Graphics, 
Cadence, and Synopsys.  

Together, HDL code generation and cosimulation help 
engineers shorten the two most time consuming and 
error prone aspects of system design—coding and 
verification.  

The iterative nature of embedded system design and 
chip design requires use of automated workflows that 
allow you to do rapid prototyping of your ideas before 
committing to a particular implementation.  

Model-Based Design enables systems designers to do 
just that. You can iterate your design to achieve optimal 
area-speed-power implementation, focus on design 
architecture and value-added IP, and then automatically 
generate the implementation or prototyping code.  

By elevating the abstraction level from HDL code to 
system level design, Model-Based Design enables chip 
designers to focus on the many other tasks that complex 
IC design involves, including IP integration and 
verification for the rest of the chip. 

HARDWARE AND SOFTWARE PARTIONING 

Successful system level design requires engineers to 
have a thorough understanding of their application, the 
environment where it will operate, and other factors 
such as the baseline performance.   

 

Figure 5. System-level specifications that drive 
hardware and software partitioning and 
implementation. 
 

As illustrated in Figure 5, these high level requirements 
then drive the decisions of choosing hardware and 
software partitioning, hardware and software design and 

implementation, and the choice of target platform, such 
as DSP vs. microcontroller or FPGA vs. ASIC.  

Using Model-Based Design, engineers can use the 
executable specification to generate C code for a DSP, 
evaluate the DSP performance, and then evaluate the 
same algorithm on an FPGA. In contract to working at 
the C and HDL level, engineers gain enormous 
productivity by working at the high level of abstraction 
afforded by Model-Based Design.  

REUSABILITY 

Since both system design and software and hardware 
implementation are using one golden reference model, it 
is very easy to maintain the model and reuse it later.  

WORKFLOW WITH CASE STUDY 

We illustrate the implementation of a Model-Based 
Design workflow by developing a knock detection 
algorithm. In this case study, we use MATLAB and 
Simulink as the foundation tools for creating the 
executable specification, elaborating this specification 
for hardware and software code generation, and 
verifying that the hardware and software 
implementations match the original executable 
specification. 

We are motivated to use a knock detection algorithm, as 
many automotive engineers are already using a Model-
Based Design workflow for embedded system design 
with DSPs and MCUs. We show how they can easily 
target an FPGA using the same concepts. 

SYSTEM LEVEL DESIGN 

The internal combustion engine relies on precise timing 
to burn the air and fuel mixture. Premature ignition of 
the air and fuel mixture causes the engine to produce a 
knocking in the engine, as shown in Figure 6. This 
knocking can lead to engine damage if left uncorrected.  

Fortunately, engineers have developed signal 
processing spectral analysis techniques to easily identify 
engine knock. By leveraging this knowledge, engineers 
can optimize the performance of ignition timing control 
logic engine, improve the engine performance, and 
prevent engine knocking.  



 

Figure 6. Premature ignition of the air and fuel 
mixture in internal combustion engine that can lead 
to engine knocking. 
 

Executable Design Specification 

The model in Figure 7 shows the executable 
specification of an engine knock detection and 
correction system. This model includes the system 
specification and the knock detection algorithm. The 
system specification provides the system-level 
constraints and operating environment for the algorithm. 
At this point in the workflow, the executable specification 
is used to model, simulate, and iterate the algorithm in 
the context of the complete system. The focus of the 
executable specification is the correct functional 
development of the knock detection algorithm, with little 
consideration for implementation detail.  

 

Figure 7. Executable specification for engine knock 
detection and correction system. 
 

The continuous-time knock generator subsystem shown 
in Figure 7 is created to produce a knocking condition 
based on characteristics of sampled engine data  

The executable specification shown in Figure 7 includes 
the engine spark knock simulator and the analog-to-
digital converter (ADC), the electronic spark advance 
(ESA), and digital-to-analog converter (DAC) 
subsystems as the testing environment for the knock 
detector algorithm. The ADC is used to sample the 
knock sensor signal coming from the engine knock 
simulator model. This parameterized model is based on 
a combination of theoretical and empirical data. It 
contains elements to represent a fundamental knocking 
frequency of 6 KHz, as well as first and second 
harmonics. Moreover, the model can be configured to 
inject additional noise into the system.  

The knock detector subsystem, which is the target 
design of this case study, is responsible for detecting 
engine knock independently for each cylinder. The 
electronic spark advance subsystem adjusts the ignition 
timing signal to compensate for engine knock. If engine 
knock is detected, the spark timing is reduced to prevent 
knock. If no knock is detected, the spark timing is 
advanced to optimize engine performance and 
emissions. 

The knock detector algorithm should identify the engine 
knock fast and correctly. As engine events occur at over 
1 KHz at 6000 RPM, the knock detector system should 
meet the timing requirement for engine controller to fine 
tune the ignition timing and fuel injection.  

Design the Floating Point Algorithm 

With these design constraints in mind, we next create 
the floating-point model of the knock detection 
algorithm, shown in Figure 8. 

Fundamental signal processing techniques are used to 
extract knock frequency content from the digitized knock 
sensor and estimate the knock energy. In this system, 
only one knock sensor is used. The crank angle (CA) 
signal is required to determine the knock window 
associated with each cylinder. The knock energy 
associated with each cylinder's knock window is 
compared with a threshold to determine if cylinder knock 
is present. The knock energy is extracted using a simple 
band-pass filter, as shown in Figure 9.  

The threshold to determine engine knock is often 
composed of a of lookup table, which takes into account 
signals such as RPM, manifold pressure, throttle 
position, and engine coolant temperature. For simplicity, 
the example in Figure 10 just uses RPM to determine 
the appropriate threshold. 

The knock detect output is an array containing 
independent knock detect indicators for each cylinder. 



 

As shown in Figure 11, the pulses of sinusoid signals in 
the first axis represent engine knock. The second axis 
represents the output of the knock sensor, which will 
output ”true” or digital logic ”1” when engine knock is 
detected. The spark ignition for this cylinder starts at a 
given crank angle (in degrees). During the intervals 
where spark is detected the cylinder spark injection 
signal is retarded (corresponding crank angle is 
decreased). Once no knock is detected, the spark 
injection signal is then advanced (corresponding crank 
angle is increased) at a step size less aggressive than 
the when spark is detected. As shown in this example, if 
the ignition timing continues to advance and knocking 
occurs, the ignition timing is again retarded.  

 

FIXED-POINT CONVERSION 

Algorithms can be implemented in digital hardware to 
process either floating-point numbers or fixed-point 
numbers. At the expense of dynamic range, hardware 
implementations with fixed-point data type result in a 
smaller, more power efficient, faster, and cost-effective 

solution. 
 
The Fixed-Point Conversion Advisor utility is used in this 
case study to help automatically determine the precision 
needed.  
 

To ensure equivalency, floating-point models and fixed-
point models are compared side-by-side, as shown in 
Figure 12. When we execute this model, we see the 
output of the “golden specification,” the output from the 
fixed-point model, and the difference between the two 
models. We can rapidly iterate this fixed-point model 
and try different fixed-point settings to achieve the right 
balance for your application. 
 

 

Figure 11. Engine knock waveforms. 
 

Figure 9. Knock energy calculated using a band-
pass digital filter. 
 

Figure 10. Lookup table implementation of knock 
detection energy threshold.  



 

Figure 12. Comparison of floating-point and fixed-
point models side-by-side to achieve optimal 
performance. 
HARDWARE-SOFTWARE PARTITION 

In this case study, we implement the knock detector 
algorithm on an FPGA and implement the spark control 
algorithm in software running on a microcontroller.  

AUTOMATIC CODE GENERATION 

Once the fixed-point model meets design requirements, 
we can invoke the Simulink HDL Coder to automatically 
generate HDL code and test benches directly from the 
fixed-point model. The generated HDL code matches 
the fixed-point model in bit-true, cycle-accurate 
simulations.  

The automatically generated HDL code is correct by 
construction, enabling the designer to save initial hand-
coding time and debugging time. Since the designers 
are working at the level of a system model and not at 
the level of HDL code, they are able to create quick 
prototypes and design iterations to keep up with rapidly 
changing specifications.  

For many reasons, including verification, it is important 
that automatically generated code is readable and 
integrates seamlessly with hand-written HDL code. 
Imagine trying to debug your design and tracing a signal 
into a block where you can not read the HDL code.  

SYSTEM LEVEL VERIFICATION 

A corresponding HDL test bench is also generated by 
Simulink HDL Coder. The test bench input/output 
vectors are generated directly from the fixed-point 
design specification model to verify that the generated 

FPGA implementation meets the functional 
specifications.  

EDA simulator link products enable you to cosimulate 
the HDL code with MATLAB and Simulink so you can 
ensure that your FPGA implementation matches the 
original executable design specification.  

 

Figure 13. Cosimulating the HDL code with the 
fixed-point model for ensuring correct hardware 
implementation. 
 
As shown in Figure 13, the knock detector module is 
implemented in an FPGA, and the spark advance 
algorithm is implemented in a microcontroller. We use 
this model as a test bench to verify both the HDL and C 
implementations. For the HDL cosimulation, we used 
EDA Simulator Link MQ (for use with ModelSim).  

RAPID ITERATION 

Nearly 60%[10] of integrated circuit designs require 
rework. In addition to functional errors, performance 
issues, or a changed specification could be the cause. 
Size, power, or speed may need to be optimized. To 
address these factors, designers may need to go back to 
the fixed-point model and adjust the bit-widths, simplify 
the algorithm, or choose another implementation.  

Because engineers using Model-Based Design are 
invested in the model and not the HDL code, they can 
readily iterate the fixed-point model to quickly create 
alternative implementations. System engineers can 
focus their time on refining the algorithm, and hardware 
engineers can focus their time on optimizing the 
implementation for specific targets. 



CONCLUSION 

In summary, Model-Based Design provides a design 
flow that directly maps executable system specification 
into hardware. Model-Based Design permits system 
engineers and HDL engineers to collaborate using 
functional models of the design specification that can be 
executed and understood more easily, thus significantly 
speeding up design and verification activities.  

Starting from a golden Simulink system specification, 
the design engineers can quickly generate 
synthesizable, target-independent, human-readable, and 
correct-by- construction HDL code. This workflow 
enables design engineers to quickly prototype and 
iterate their algorithm to keep up with rapidly changing 
specifications and standards. 

Using the cosimulation tools, engineers can do system-
level verification to ensure that the HDL code is 
functionally equivalent to the system specification. 
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