

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the
session organizer. This process requires a minimum of three (3) reviews by industry experts.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
ISSN 0148-7191
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of
the paper.
SAE Customer Service: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: CustomerService@sae.org
SAE Web Address: http://www.sae.org

Printed in USA

2009-01-0149

Techniques for Generating and Measuring Production Code
Constructs from Controller Models

Bill Chou, Saurabh Mahapatra
The MathWorks

Copyright © 2009 The MathWorks. Published by SAE International with permission.

ABSTRACT

A key step in Model-Based Design is the deployment of
an algorithm as machine code onto a target processor in
the production vehicle. Modern software tools
automatically generate the algorithmic source code from
models. Given the many combinatorial possibilities for
realizing a given algorithm within the modeling
environment, the generated C source code will be a
function of a realization. This dependency is an
important consideration because the quality and clarity
of the source code impacts the amount of verification
and analysis that must be done for production software
development. Other factors involved in generating the
machine code from the source code, such as compiler
optimization and microprocessor architecture, also
contribute to this optimization. Organizations that
proactively data mine and gather these optimizations
into a set of best practices stand to benefit from reduced
development times and lower costs. This paper
introduces techniques that can be used to generate and
measure code constructs used to create a set of best
practices for the Simulink modeling environment. The
quality of the object code is measured by examining the
algorithm compiled within an Integrated Development
Environment.

MODEL-BASED DESIGN

Model-Based Design for embedded control systems
development involves a process centered on a model—
from requirements capture to implementation and test.
This model forms the “executable specification” that is
used to communicate the desired system performance.
The control design is elaborated and continuously tested

against requirements through simulation. Code is
generated from models and rapid-prototyping is carried
out to assess the performance of the algorithm in a real-
time environment. Software-in-the-loop (SIL), processor-
in-the-loop (PIL), and hardware-in-the-loop (HIL) testing
and verification of the algorithmic code may be done
before deployment on the production vehicle.

The use of automatic code generation maintains the link
between the model and the generated C source code[1].
To change the algorithm later in the design process, it is
easier to update the model and regenerate the C source
code. This method allows the engineer to focus more on
integrating algorithmic code and setting up the
infrastructure for embedded system deployment[2].

Figure 1 shows the code generation workflow in Model-
Based Design. A and B denote opportunities for
optimizing code.

Figure 1. Code generation workflow in Model-Based
Design.

For each opportunity, several techniques are available:

A. Generating C source code from software models:
 Using modeling design patterns in the controller

model
 Using target-optimized code

B. Compiling C source code into object code:

 2

 Choosing a microprocessor architecture
 Choosing a compiler
 Using compiler-specific optimizations

Two important metrics to measure the quality of control
algorithms running on microprocessors are object code
size and execution time.

Object code size is used to measure the quality of the
control algorithms, although the proposed techniques
can save time as well[3]. This is due to difficulties in
profiling object code. One can look at either the
execution time or speed. If time is being measured over
several trials, the variability requires looking at the
minimum, maximum, or average execution times. If
efficiency is being measured by throughput, it is
measured differently from execution time. Hence, we
use object code size to measure the quality of code.

The following examples illustrate the application of these
techniques to optimize object code. Real-Time
Workshop Embedded Coder is used to automatically
generate C source code from Simulink models. The
code is compiled and loaded onto processors supported
by Green Hills MULTI. Standard code generation
optimization settings, such as expression folding and
block reduction, and compiler flags, such as –a and
-Osize, were used unless stated otherwise.

GENERATING C SOURCE CODE FROM
SOFTWARE MODELS

Two techniques are available for optimizing the C source
code generated from the software model: modeling
patterns and target-optimized code.

USING MODELING DESIGN PATTERNS IN THE
CONTROLLER MODEL - A modeling design pattern is
much like a software design pattern used in object-
oriented literature[4]. It is a template containing modeling
elements that can be reused in commonly recurring
design problems. Figure 2 shows an example of a
Stateflow modeling design pattern for the familiar do-
while logic. This pattern can be used to generate the
common do-while loop construct in the C code.

Figure 2. Stateflow do-while loop design pattern.

We are interested in modeling design patterns that
optimize C source code measured by lines of code
(LOC). At a high level, it may lead to more optimized
object code.

Figure 3 shows the matrix multiplication of two 10x10
matrices u_1 and u_2 in Stateflow. The outer two
loops use counters i and j to loop through rows of u_1
and columns of u_2. The inner-most loop computes
each element of the output matrix y_1 as the dot
product of the row from u_1 and the column from u_2.
The model uses nested loops very similar to the
Stateflow do-while loop design pattern shown in
Figure 2. The difference lies in the duplicate
initializations of y_1[i][j] in the outer i and j loops.

Figure 3. Modeling multiplication of two 10x10
matrices without use of a modeling design pattern.

Figure 4 shows 42 LOC generated from this model. Note
the checks for i and j with redundant initializations of
y_1[i][j] on lines 32–37 and 41–47. These multiple
initializations can be reduced to just one initialization
before the do-while loop in lines 25–29.

 3

Figure 4. Generated C source code without the use
of modeling design patterns.

Figure 5 shows an implementation of the same algorithm
that makes proper use of a nested Stateflow do-while
loop design pattern. The generated C source code (see
Figure 6) has only 25 LOC compared with the 42 LOC
shown in Figure 4. The redundant initializations of
y_1[i][j] and checks for i and j have been
eliminated, resulting in more efficient C source code.

Figure 5. Modeling a multiplication of two 10x10
matrices using nested Stateflow do-while loop
design patterns.

Figure 6. Generated C source code with the proper
use of nested Stateflow do-while loop design
patterns.

The reduced source code contains production code
constructs, or C source code constructs in this case, that
represent the algorithm more concisely. A subset of
mappings from modeling design patterns to common C
source code constructs can contain the following list (for
other source code languages such as the C++
language, the list may contain different constructs):

 Data types, operators, and expressions such as
data declarations, data type conversions, and type
qualifiers

 Control flows such as if-then-else, switch, and for-
loops

 Functions and program structures such as void-void
functions and calling external functions

 Structures such as nested structures and bit fields
 Arrays and pointers

A set for the Simulink modeling environment is available
from The MathWorks[5].

USING TARGET-OPTIMIZED CODE - During the
automatic code generation process, it is efficient to
replace appropriate sections of the C source code with
optimized C code for a specific target. There are two
techniques for doing this:

 Reuse existing handwritten or legacy code that has
been tested and optimized for a specific target

 Use target-specific libraries that contain mappings of
functions and operators to optimized object code

Figure 7 shows ANSI C and optimized C source code for
the Infineon TriCore processor.

 4

Figure 7. ANSI C code and Infineon TriCore
optimized code using a Target Function Library for
two 32-bit fixed-point numbers.

The algorithm adds two 32-bit fixed-point numbers and
performs saturation checks on the output. The second
block of code is optimized using a single call to an
intrinsic TriCore function that replaces the first block of
code. This function is available through a Target
Function Library (TFL) mapping using Real-Time
Workshop Embedded Coder.

COMPILING C SOURCE CODE INTO OBJECT
CODE

The previous section shows the use of modeling design
patterns to optimize C source code for size. However,
optimized C source code does not necessarily
guarantee optimal object code in terms of size.
Therefore, it is essential to understand the impact of the
compilation and linking steps on the overall object code
size.

Resources on embedded systems are limited. As a
result, memory used to store instructions and registers
used for computation are at a premium. In the matrix
multiplication algorithm, execution time of the algorithm
is heavily dependent on the number of instructions in the
inner-most loop. We use three metrics to measure the
quality of generated object code:

 Total number of instructions measured in bytes
 Number of inner-loop instructions measured in bytes
 Number of registers used

The following sections discuss three variables that affect
the size of the compiled object code: microprocessor
architecture, type of compiler, and compiler optimization.

CHOOSING A MICROPROCESSOR ARCHITECTURE -
Figure 8 shows a Stateflow chart that implements the
same matrix multiplication algorithm shown in Figure 5
using nested Stateflow for-loop design patterns.

Figure 8. Modeling a multiplication of two 10x10
matrices with nested Stateflow for-loop design
patterns.

The C source code generated from this model has 17
LOC, shown in Figure 9. It may appear to be more
efficient compared with the 25 LOC generated using the
Stateflow for-loop design pattern shown in Figure 6.

Figure 9. Generated C source code using nested
Stateflow for-loop design patterns.

The C source code is compiled for the MCU 1 processor
and shown in Figure 10 and Figure 11. For readability,
the C source code is shown with the assembly code.

ANSI C code

Target-optimized code for TriCore

 5

Figure 10. C source and assembly codes for the
matrix multiplication algorithm using do-while loop
design pattern on MCU 1.

Figure 11. C source and assembly codes for matrix
multiplication using for-loop design pattern on MCU
1.

Table 1 shows the metrics for the quality of the
generated object code on several different processors.
The use of a do-while loop design pattern instead of a
for-loop design pattern results in notably better metrics

for the algorithm on the MCU 1 processor. The results
are less significant for the other two processors. This
shows an example where measuring LOC at the C
source code level is insufficient to gauge the quality of
the object code; architecture dependency may affect the
choice of modeling design pattern used in the model.

Table 1. Metrics for quality of the generated object
code for the matrix multiplication algorithm on
different processors.

CHOOSING A COMPILER - The intrinsic characteristics
of a compiler can affect the quality of the object code.
Table 2 summarizes the metrics for object code
generated for the for-loop design pattern example using
the -Osize compiler optimization flag available for both
compilers.

Table 2. Metrics for quality of the generated object
code for the matrix multiplication algorithm on
different compilers and processors.

USING COMPILER-SPECIFIC OPTIMIZATIONS - The –
Osize optimization flag minimizes object code size
Using the compiler’s code optimization technologies. It
may optimize code size at the expense of speed. A
similar flag, –O, can also be used to optimize object code
for a balance of both size and speed.

Figure 10 shows the assembly code generated from the
do-while loop design pattern with the –Osize
optimization flag for the MCU 1 processor. Compared
with this result, the assembly code is larger without the
use of the flag, as shown in Figure 12.

Compiler Total number of instructions (bytes)

MCU 1
 Green Hills 120
 GCC 204

MCU 2
 Green Hills 78
 GCC 118

DSP 1
 Green Hills 128
 GCC 220

Design patterns Total number of
instructions

(bytes)

Inner-loop
instructions

(bytes)

Number of
registers

MCU 1
 for-loop 120 56 12
 do-while loop 104 52 10

MCU 2
 for-loop 78 38 7
 do-while loop 74 36 7

DSP 2
 for-loop 114 52 8
 do-while loop 104 48 8

 6

Figure 12. Assembly code generated without
compiler optimization –Osize flag for MCU 1.

A summary of the comparisons is shown in Table 3. As
expected, compiler optimizations affect the quality of the
object code[6].

Table 3. Metrics for quality of the generated object
code for the matrix multiplication algorithm on MCU
1

CONCLUSION

In Model-Based Design, the quality of the object code
measured in terms of size is critical for final deployment.
It may impact pricing decisions such as the choice of
processor and memory. Thus, incorporating techniques
to optimize object code as a goal of embedded controller
design can significantly reduce costs and development
times.

Several key steps in the code generation workflow
impact the size of the final object code. Techniques such
as using modeling patterns and target-optimized code
can streamline the generated C source code.
Furthermore, the choice of microprocessor architecture,
compiler, and compiler-specific optimizations can affect
the choice of the modeling pattern.

To gain maximum leverage from these techniques,
organizations can invest in:

 Undertaking detailed studies to gain a better
understanding of various parameters that optimize
object code at these steps in the workflow

 Establishing a culture that proactively data mines
and gathers these optimizations into a set of best
practices that serve as organizational memory for
future designs

ACKNOWLEDGMENTS

The authors would like to acknowledge the following
fellow MathWorks staff who contributed to the
development of the ideas used in this paper and the
writing of this paper: Arvind Jayaraman, Scott
Prochaska, Thomas Maier-Komor, and Tom Erkkinen.

REFERENCES

1. P. F. Smith, S. Prabhu, J. Friedman, Best Practices
for Establishing a Model-Based Design Culture, SAE
Paper 2007-01-0777, 2007.

2. T. Erkkinen, S. Breiner, Automatic Code
Generation—Technology Adoption Lessons Learned
from Commercial Vehicle Case Studies, SAE Paper
2007-01-4249, 2007.

3. J. L. Hennessy, D. A. Patterson, D. Goldberg,
Computer Architecture: A Quantitative Approach, 3rd
Edition, Morgan Kaufmann Publishers Inc., 2002.

4. E. Freeman, E. Freeman, B. Bates, K. Sierra, Head
First Design Patterns, 1st Edition, O'Reilly Media,
Inc., 2004.

5. The MathWorks, Inc., Modeling Patterns for C
Constructs:
www.mathworks.com/support/solutions/data/1-
6AWSQ9.html.

6. A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman,
Compilers: Principles, Techniques, and Tools, 2nd

Edition, 2006 Addison-Wesley.

-Osize
optimization
flag

Total number
of instructions

(bytes)

Inner-loop
instructions

(bytes)

Number of
registers

On 104 52 10
Off 248 172 7

 7

CONTACT

Bill Chou, embedded code generation and verification
marketing, The MathWorks, Bill.Chou@mathworks.com

Saurabh Mahapatra, Simulink platform marketing, The
MathWorks, Saurabh.Mahapatra@mathworks.com

MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See www.mathworks.com/trademarks for a list of additional
trademarks. Other product or brand names may be trademarks or
registered trademarks of their respective holders.

