2009-01-0149

Techniques for Generating and Measuring Production Code
Constructs from Controller Models

Bill Chou, Saurabh Mahapatra
The MathWorks

Copyright © 2009 The MathWorks. Published by SAE International with permission.

ABSTRACT

A key step in Model-Based Design is the deployment of
an algorithm as machine code onto a target processor in
the production vehicle. Modern software tools
automatically generate the algorithmic source code from
models. Given the many combinatorial possibilities for
realizing a given algorithm within the modeling
environment, the generated C source code will be a
function of a realization. This dependency is an
important consideration because the quality and clarity
of the source code impacts the amount of verification
and analysis that must be done for production software
development. Other factors involved in generating the
machine code from the source code, such as compiler
optimization and microprocessor architecture, also
contribute to this optimization. Organizations that
proactively data mine and gather these optimizations
into a set of best practices stand to benefit from reduced
development times and lower costs. This paper
introduces techniques that can be used to generate and
measure code constructs used to create a set of best
practices for the Simulink modeling environment. The
quality of the object code is measured by examining the
algorithm compiled within an Integrated Development
Environment.

MODEL-BASED DESIGN

Model-Based Design for embedded control systems
development involves a process centered on a model—
from requirements capture to implementation and test.
This model forms the “executable specification” that is
used to communicate the desired system performance.
The control design is elaborated and continuously tested

against requirements through simulation. Code is
generated from models and rapid-prototyping is carried
out to assess the performance of the algorithm in a real-
time environment. Software-in-the-loop (SIL), processor-
in-the-loop (PIL), and hardware-in-the-loop (HIL) testing
and verification of the algorithmic code may be done
before deployment on the production vehicle.

The use of automatic code generation maintains the link
between the model and the generated C source code!™.
To change the algorithm later in the design process, it is
easier to update the model and regenerate the C source
code. This method allows the engineer to focus more on
integrating algorithmic code and setting up the
infrastructure for embedded system deployment.

Figure 1 shows the code generation workflow in Model-
Based Design. A and B denote opportunities for
optimizing code.

(A) (B)

Controller _"— : C Source -— Assembly
Model Code Code

Figure 1. Code generation workflow in Model-Based
Design.

For each opportunity, several techniques are available:

A. Generating C source code from software models:
e Using modeling design patterns in the controller
model
e Using target-optimized code
B. Compiling C source code into object code:

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the
session organizer. This process requires a minimum of three (3) reviews by industry experts.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
ISSN 0148-7191
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of
the paper.
SAE Customer Service: Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

SAE Web Address:
Printed in USA

e Choosing a microprocessor architecture
e Choosing a compiler
e Using compiler-specific optimizations

Two important metrics to measure the quality of control
algorithms running on microprocessors are object code
size and execution time.

Object code size is used to measure the quality of the
control algorithms, although the proposed techniques
can save time as well®. This is due to difficulties in
profiling object code. One can look at either the
execution time or speed. If time is being measured over
several trials, the variability requires looking at the
minimum, maximum, or average execution times. If
efficiency is being measured by throughput, it is
measured differently from execution time. Hence, we
use object code size to measure the quality of code.

The following examples illustrate the application of these
techniques to optimize object code. Real-Time
Workshop Embedded Coder is used to automatically
generate C source code from Simulink models. The
code is compiled and loaded onto processors supported
by Green Hills MULTI. Standard code generation
optimization settings, such as expression folding and
block reduction, and compiler flags, such as —a and
-Osize, were used unless stated otherwise.

GENERATING C SOURCE CODE FROM
SOFTWARE MODELS

Two techniques are available for optimizing the C source
code generated from the software model: modeling
patterns and target-optimized code.

USING MODELING DESIGN PATTERNS IN THE
CONTROLLER MODEL - A modeling design pattern is
much like a software design pattern used in object-
oriented literature!. It is a template containing modeling
elements that can be reused in commonly recurring
design problems. Figure 2 shows an example of a
Stateflow modeling design pattern for the familiar do-
while logic. This pattern can be used to generate the
common do-whi le loop construct in the C code.

p
[dowhile loop in Stateflow */

i do action
TmyAction}

fiwhile condition
ImyCondition;}

O

Figure 2. Stateflow do-while loop design pattern.

We are interested in modeling design patterns that
optimize C source code measured by lines of code
(LOC). At a high level, it may lead to more optimized
object code.

Figure 3 shows the matrix multiplication of two 10x10
matrices u_1 and u_2 in Stateflow. The outer two
loops use counters 1 and j to loop through rows of u_1
and columns of u_2. The inner-most loop computes
each element of the output matrix y 1 as the dot
product of the row from u_1 and the column from u_2.
The model uses nested loops very similar to the
Stateflow do-while loop design pattern shown in
Figure 2. The difference lies in the duplicate
initializations of y_1[1][J] in the outer i and j loops.

M Initialize

{i=9;

i=9;

k=9;

v_10lll = 03}

Ji Traverse vertically
If to next row

{i=9

k=9

v_1lillil = 03}

/i Calculate

i dot product

{ v 1l =
v_10ll] +

U_10IK] " u_2[K]0E}

I Traverse
i horizontalty
/ito next column

k=9
v_10I0] = 03

/f Increment to the
/I next element
Jifor dot product
{k-3

If Finished with
/f dot product?
[k==0]

/I Finished
ifall columns?,
[i>=0] -
I Finished
liall rows?

/I Finished li>=0]

/f column
{=ij-13}
1

i
J
2
I row

Gi=i-13 |,

I Finished

/i EXit loop >

Figure 3. Modeling multiplication of two 10x10
matrices without use of a modeling design pattern.

Figure 4 shows 42 LOC generated from this model. Note
the checks for 1 and J with redundant initializations of
y_1[i]1[]J] on lines 32-37 and 41-47. These multiple
initializations can be reduced to just one initialization
before the do-whi le loop in lines 25-29.

Figure 4. Generated C source code without the use
of modeling design patterns.

Figure 5 shows an implementation of the same algorithm
that makes proper use of a nested Stateflow do-while
loop design pattern. The generated C source code (see
Figure 6) has only 25 LOC compared with the 42 LOC
shown in Figure 4. The redundant initializations of
y_1[i][J]1 and checks for 1 and j have been
eliminated, resulting in more efficient C source code.

{i=3;}
{i=9%}
{k=3}

1000 = 0}

{¥_ 10001 = ¥ _A0IG] +.
e UAGIKT* u_2[K]G
K=k-1;

}

{=i-1

{i=i-13}

-

I Exit loop

Cha—re

Figure 5. Modeling a multiplication of two 10x10
matrices using nested Stateflow do-while loop
design patterns.

Figure 6. Generated C source code with the proper
use of nested Stateflow do-while loop design
patterns.

The reduced source code contains production code
constructs, or C source code constructs in this case, that
represent the algorithm more concisely. A subset of
mappings from modeling design patterns to common C
source code constructs can contain the following list (for
other source code languages such as the C++
language, the list may contain different constructs):

o Data types, operators, and expressions such as
data declarations, data type conversions, and type
qualifiers

e Control flows such as if-then-else, switch, and for-
loops

e Functions and program structures such as void-void
functions and calling external functions

e Structures such as nested structures and bit fields

e Arrays and pointers

A set for the Simulink modeling environment is available
from The MathWorks™.

USING TARGET-OPTIMIZED CODE - During the
automatic code generation process, it is efficient to
replace appropriate sections of the C source code with
optimized C code for a specific target. There are two
techniques for doing this:

e Reuse existing handwritten or legacy code that has
been tested and optimized for a specific target

e Use target-specific libraries that contain mappings of
functions and operators to optimized object code

Figure 7 shows ANSI C and optimized C source code for
the Infineon TriCore processor.

ANSI C code
void TFL 32 add TricCore Add 32 (void)
{
{
int32 T tmp;
tmp = ul+ u2;
if ((ul <0) & (u 2 < 0) & (tmp >= 0)) {
tmp = MIN int32 T;
} else {
if ((ul > 0) & (u 2 > 0) && (tmp <= 0)) {
tmp = MAX int32_T;
}
}

v 1= tmp;
}
}

Target-optimized code for TriCore

inline int32_T tricore_add_ss‘z_sa2_532_sat(int32_T a, int32_T b)
{

return (_sat int)a + b;

}

Figure 7. ANSI C code and Infineon TriCore
optimized code using a Target Function Library for
two 32-bit fixed-point numbers.

The algorithm adds two 32-bit fixed-point humbers and
performs saturation checks on the output. The second
block of code is optimized using a single call to an
intrinsic TriCore function that replaces the first block of
code. This function is available through a Target
Function Library (TFL) mapping using Real-Time
Workshop Embedded Coder.

COMPILING C SOURCE CODE INTO OBJECT
CODE

The previous section shows the use of modeling design
patterns to optimize C source code for size. However,
optimized C source code does not necessarily
guarantee optimal object code in terms of size.
Therefore, it is essential to understand the impact of the
compilation and linking steps on the overall object code
size.

Resources on embedded systems are limited. As a
result, memory used to store instructions and registers
used for computation are at a premium. In the matrix
multiplication algorithm, execution time of the algorithm
is heavily dependent on the number of instructions in the
inner-most loop. We use three metrics to measure the
quality of generated object code:

e Total number of instructions measured in bytes
e Number of inner-loop instructions measured in bytes
e Number of registers used

The following sections discuss three variables that affect
the size of the compiled object code: microprocessor
architecture, type of compiler, and compiler optimization.

CHOOSING A MICROPROCESSOR ARCHITECTURE -
Figure 8 shows a Stateflow chart that implements the
same matrix multiplication algorithm shown in Figure 5
using nested Stateflow for-loop design patterns.

if Initialize
/f row counter
{1=03}

/f Finished all rows?
[i<10] / Finished all
Hcols?

[<105 By, Ik<10]

{y_100 =...
y_ 1[0 +..
wu_1[K] * u_2[KI0]5}

If Exit loop

O

Figure 8. Modeling a multiplication of two 10x10
matrices with nested Stateflow for-loop design
patterns.

The C source code generated from this model has 17
LOC, shown in Figure 9. It may appear to be more
efficient compared with the 25 LOC generated using the
Stateflow for-loop design pattern shown in Figure 6.

Figure 9. Generated C source code using nested
Stateflow for-loop design patterns.

The C source code is compiled for the MCU 1 processor
and shown in Figure 10 and Figure 11. For readability,
the C source code is shown with the assembly code.

[void DO_step(void)

10 1 1
11 2 ¢
12 3 ints T sf_3:
13 4 ints T sf_i:
12 5 inte_T sf_k;
15 6§ sf_1 = 9
. 0x40008108 DO _step: 38800009 1i r4 <sf_i», 9
16 7 do {
17 8 sf 3 = 9;
¢ 0x4000810c DO _step+Ox4: 38600008 li T3 <sf 3>, 9
15 9 do {
19 10mp sE k= 9
¢ Ox40008110 DO_step+Oxd: lee3000a mulli r6, r3 <sf_ji», Oxa
¢ 0x40008114 DO_step+Oxc: 35200008 1i r5 <sf_k>, 9
z0 11 v i[sf_i + 10 * sf_3] = O;
. 0x40008116 DO_step+0x10: 39000000 11 r8, O
21 12 do {
. 0x4000811c DO step+0x14: 7843214 add riz, r4 <sf_i», ré
. 0x40008120 DO _step+0x18: 558b103a slwi rii, riz, 2
. 0x40008124 DO _step+0xlc: Sceb4001 addis r7?, rill, 0Ox4001
22 13 y_1[f i + 10 * =s£ 3] = w_1[10 * sf_k + =£ i] * w 2[10 * sf_3 + of k]
o Ox40008128 DO _step+Oxz0: 14550002 mulli ri2, r5 <si_k», Oxa
o Ox4000812c DO_step+Ox2d: 7dgezzld add ri2, riz, ri <sf_i>
o Ox40008130 DO_step+Ox28: 5588083¢ =lwi rs, riz, 1
¢ 0x40008134 DO_step+Oxzce: 7d862ald add ri2, ré, r5 <sf_k>
. 0x40008136 DO_step+0x30: 3d694001 addis rll, r9, 0x4001
. 0x4000813c DO_step+0x34: 558a083c slwi rio, riz, 1
. 0x40008140 DO _step+0x36: 3d8a4001 addis riz, ri0, 0Ox4001
. 0x40008144 DO step+Oxic: a98c59cd Llha riz, -2e172(riz)
. 0x40008148 DO _step+0x40: a96bh88fe Llha rii, -2e372(ril1)
¢ 0x4000814c DO_step+Oxgd: 7dghb61ds mully riz, rii, riz
¢ O0x40008150 DO_step+Ox4s: 7d0c4zld4 add rs, riz, s
o Ox40008154 DO_steptOxéc: 91079678 stw rg, -27016(r7)
23 14 + y_1[10 % sf_3 + s£_i]:
24 15 sf_k--:
¢ 0x40008155 DO_step+0xS50: 34aSEfff subic. r5 <sf_ks, r5 <sf k», 1
ks 16 } while (sf_k »= 0);
. 0x4000815c DO _step+0x54: 4080ffoc hge DO _step+0xZ0 (0x40008128)
26 17
27 1& sf j-—;
¢ 0x40008160 DO_step+OxS8: 3463LEEf subic. r3 <sf_j>, I3 <sf >, 1
25 19 } while (sf_3 »= 0):
¢ O0x4000816%4 DO _step+OxSc: 4080Ifac hge DO_step+Dxd (0x40008110)
2o zo
0 21 sE_i--:
¢ O0x40008165 DO_step+Ox60: 3484fffEf subic. r4 <sf_i>, r4 <sf_ir, 1
i1 22 } while (sf_i »= 0);
. 0x4000816c DO _step+0x64: 4080£fa0 hge DO _step+0x4 (0x4000810c)
|32 23)
33 24
. 0x40008170 DO _step+0x68: 4e800020 blr
3¢

Figure 10. C source and assembly codes for the
matrix multiplication algorithm using do-while loop
design pattern on MCU 1.

=] wvoid FORO_step(void)
10 1 [
11 2 {
12 3 int8 T s£ 3;
13 4 intd_T sf_i;
14 5 intd T st k;
+ 0x40008108 TFORO_step: Tc0B0Zas wflr 0
+ 0x4000810c FORD_step+Ox4: 48001423 bl _savesmall_16 (0x400095£4)
15 & for (sf i = O; sf i < 10; sf_i++] {
s 0x40008110 FORD_SteptOxs: 38600000 11 £3 <5 1>, 0
16 7 mp for (sf_3 = 0; sf_3j < 10; sf_i++) {
s 0x40008114 FORD_step+Oxe: 3ped0onn 1i rii <sf_jx, 0
17 & y_1[sf 1 + 10 * 5f_3] = 0:
+ 0x40008116 FORD_step+0x10: 1chf000a mulli r5, ral <sf_j», Oxa
0x400081lc FORD_step+Ox14: 38e00000 1i 7, 0
18 2 for (sf_k = 0; Sf k < 10; Sf_K++) {
+ 0x40008120 FORD_step+Ox18: 7ce43b78 mr r4 <sf_k», 7
s Ox40008124 FORD_step+Oxlc: 7d83zald add riz, r3 <sf_i>, r§
+ 0x40008128 FORD_step+0x20: 558h103a slwi rii, riz, 2
+ 0x4000812c FORD_step+OxZ4: 3cch400l addis ré, ril, Ox4001
15 10 v i[sf_i + 10 * sf 3] = w 1[10 * sf k + =f 1] * u 2[10 * sf 3 + sf_k]
s 0x40008130 FORD_step+Ox28: 14840008 wulli rlz, r4 <si_k», Oxa
+ 0x40008134 FORD_step+OxZc: 7d8clald add riz, riz, r3 <sf_ir
s Ox40008138 FORD_step+Ox30: 5588083c slui rs, riz, 1
+ 0x4000813c FORD_step+Ox34: 70852214 add rlz, r5, r4 <sf_k>
+ 0x40008140 FORD_step+Ox3s: 558a083c slui rio, riz, 1
+ 0x40005144 TFOROD_step+Oxic: 3dzg4001 addis 3, rd, O0x4001
+ 0x40008148 FORD_step+O0x40: 30684001 addis rll, ril0, 0x2001
+ 0x4000814c FORD_step+Oxdd: 2989990z lha riz, -28356(rg)
+ 0x40008150 FORO_step+Ox4s: af6k99dd 1ha rll, -26156(ril)
+ 0x40008154 FORD_step+Oxdc: 7d8e59d6 wully riz, rilz, ril
+ 0x40008158 FORD_step+OxS0: 38840001 addi r4 <sf_k», r4 <sf_k», 1
+ 0x4000815c FORO_step+OxS4: Teewdald add 7?7, riz, r7
+ 0x40008160 FORD_step+0x58: D0e69688 stw £7?, -27000(r&)
18 9 + 0x40008164 FORD_step+OxSc: 20040008 cmpui r4 <sf_k», Oxa
18 9 + 0x400058168 TFOROD_step+Ox60: 4180£fes hlt FORO_step+0x28 (Ox40008130)
16 7 + 0x4000816c FORD_step+0x64: 3pEE0001 mddi ra31 <sf_i», r3l <sf_3», 1
16 7 + 0x40008170 FORD_step+0x65: 201£000a cmpui r31 <af_j», Oxa
16 7 + 0x40008174 FOROD_step+Oxbo: 4180ffat hlt FORO_step+0x10 (Ox40008118)
15 6 + 0x400081768 FORO_step+0x70: 38630001 mddi r3 <sf_i», r3 <sf_ir, 1
15 6 + 0x4000817c FORD_step+Ox74: 20030008 cmpui rad <sf_ir, Oxa
15 & + 0x40008180 FOROD_step+Ox75: 4180££94 hlt FORO_step+Oxe (Ox40008114)
20 11 + y_1[10 * sf_3 + sf_i];
21 12)
22 13 ¥
23 14 ¥
24 15 b
s 18 3

Figure 11. C source and assembly codes for matrix
multiplication using for-loop design pattern on MCU
1.

Table 1 shows the metrics for the quality of the
generated object code on several different processors.
The use of a do-whi le loop design pattern instead of a
for-loop design pattern results in notably better metrics

for the algorithm on the MCU 1 processor. The results
are less significant for the other two processors. This
shows an example where measuring LOC at the C
source code level is insufficient to gauge the quality of
the object code; architecture dependency may affect the
choice of modeling design pattern used in the model.

Design patterns Total number of Inner-loop Number of
instructions instructions registers
(bytes) (bytes)
MCU 1
for-loop 120 56 12
do-while loop 104 52 10
MCU 2
for-loop 78 38 7
do-while loop 74 36 7
DSP 2
for-loop 114 52 8
do-while loop 104 48 8

Table 1. Metrics for quality of the generated object
code for the matrix multiplication algorithm on
different processors.

CHOOSING A COMPILER - The intrinsic characteristics
of a compiler can affect the quality of the object code.
Table 2 summarizes the metrics for object code
generated for the for-loop design pattern example using
the -Osize compiler optimization flag available for both
compilers.

Compiler | Total number of instructions (bytes)
MCU 1
Green Hills 120
GCC 204
MCU 2
Green Hills 78
GCC 118
DSP 1
Green Hills 128
GCC 220

Table 2. Metrics for quality of the generated object
code for the matrix multiplication algorithm on
different compilers and processors.

USING COMPILER-SPECIFIC OPTIMIZATIONS - The —
Osize optimization flag minimizes object code size
Using the compiler's code optimization technologies. It
may optimize code size at the expense of speed. A
similar flag, —0, can also be used to optimize object code
for a balance of both size and speed.

Figure 10 shows the assembly code generated from the
do-while loop design pattern with the —-Osize
optimization flag for the MCU 1 processor. Compared
with this result, the assembly code is larger without the
use of the flag, as shown in Figure 12.

] void DO_step(void)
10 1 {
11 2 {
1z 3 ints T sf_3:
13 4 ints T sf_i:
12 5 ints T sf_k:
15 & sf_i = 9
+ Ox40008108 DO_step: 35200008 1i r? <sf_i>, 9
16 7 do {
17 8 sf 3 = 9;
. 0x4000810c DO _step+0xd: 38c00009 1i ré <af_j», 9
18 9 do {
19 10 sf_k = 9;
+ 0x40008110 DO_step+0xs: 39000008 1i T8 <sf k>, 9
2o 11 v i[sf_i + 10 * s£_3] = O;
+ Ox4000811% DO_step+Oxe: Tech33TE mr ril, ré <sf_i>
+ Ox40008118 DO_step+0xlD: 556c103a slwi riz, ril,
+ Ox4000811c DO_step+Oxld: 7d6c5ald add ril, riz, rii
- 0x40008120 DO_step+0x16: 5560083 slwi ril, ri1, 1
. 0x40008124 DO _step+0xlc: 7dE75a14 add riz, r7 <sf_i», ri1
. 0x40008128 DO _step+0x20: 558b103a slwi rii, riz, 2
. 0x4000812c DO _step+0xi4: 3d804001 lis riz, 0Ox4001
. 0x40008130 DO _step+0xZ8: 398c50bEe subi riz, riz, Oxe474
+ 0x2000313% DO_step+OxZc: 7d6cSald add ril, riz, ril
* Ox40008135 DO_step+0x30: 39500000 1i riz, o
+ Ox4000813c DO_step+Oxdd: 918b0000 stw riz, 0{ril)
21 12 an (
22 13mp y_1[sf i + 10 # s£_3] = w_1[10 # sf_k + s£_i] * w 2[10 % sf_3 + sf_k]
- 0x40005140 DO_step+0x36: Foch33TE Hr ril, r6 <sf_3i>
. 0x40008144 DO_step+0xdc: 556c103a slui riz, rii, 2
. 0x40008145 DO _step+0x40: TFdbc5ald add rii, riz, ri1
. 0x4000814c DO _step+0xdd: S556b083c slwi rii, ri11, 1
. 0x40008150 DO _step+0x48: 7dE75a14 add riz, r7 <sf_i>, ri1
+ 0x20003154 DO_step+Oxdc: SSgbl03a slvi rii, riz, 2
* Ox40008158 DO_step+0xS0: 34504001 lis ri2, 0Dx4001
+ Ox4000815c DO_step+OxSd: 398cohBe subi ri2, riz, Ox6474
+ Ox40008160 DO_step+0x58: 7dzeSald add rs, riz, ril
+ Ox40008164 DO_step+OxSe: Td0b4378 mr ril, r8 <sf_k»
+ Ox40008165 DO_step+0x60: 556c103a slui riz, ril, z
- 0x4000816c DO_step+0x64: Fdec5ald add rll, rilz, rill
. 0x40008170 DO _step+0x68: 556b083c slui rii, ri1, 1
. 0x40008174 DO _step+Ox6o: 7dEb3ald add riz, ril, r7 «<sf ix
. 0x40008178 DO _step+0x70: S558b083e slwi rii, riz, 1
+ 0x2000817c DO_step+Ox7d: 34804001 lis riz, 0x4001
- 0x40008180 DO_step+0x76: 39828210 subi rilz, rlz, 0Ox61f0
. 0x40008184 DO _step+0x7c: Td4c5ald add rio, riz, rii1
. 0x40008186 DO _step+0x80: TFoch3378 r rii, r6 <sf_3j>
. 0x4000818c DO _step+0xS84: 556c103a slwi riz, ri1, 2
. 0x40008190 DO _step+0x88: 7FdécSald add rii, riz, ri1
+ 0x20003154 DO_step+Oxsc: SS6b03c slvi rii, rii, 1
* Ox40003155 DO_step+0xs0: 7dsh4zl4 add ri2, ril, r§ <sf_kr
+ Ox4000815c DO_step+Oxdd: 558b083c slwi rii, riz, 1
+ Ox400081a0 DO_step+0xss: 34804001 lis ri2z, 0x4001
+ Ox400081a% DO_step+Oxse: 398c9ed3 subi ri2, riz, Ox6123
- 0x400081a5 DO_step+0xal: 7FdBc5ald add rlz, rilz, rill
- 0x400081ac DO_step+0xad: a96a0000 lha rill, O(rio)
. 0x400081b0 DO _step+0xab: a98c0000 lha riz, O{(riz)
. 0x400081b4 DO _step+Oxac: 7Fd4bE1de roul lw rio, ri1, riz
. 0x400081b8 DO _step+0xb0: Toch3378 mr rii, ré <sf_ 3>
+ 0x40003lbc DO_step+Oxbd: SS6cl0ia slvi riz, rii, 2
* Ox400081c0 DO_step+Oxhd: 7décSald add ril, riz, ril
+ Ox400081cd DO_stept+Oxhe: 556b083c slwi rii, rii, 1
+ Ox400081cE DO_step+OxcO: 7dgb3ald add ri2, ril, e7 <sf_i>
+ Ox40008lcc DO_step+xcd: 558b103a =lwi ril, riz, z
+ Ox400081d0 DO_step+Oxes: 34804001 lis ri2, Dx4001
- 0x400081c¢ DO_step+0xcc: 398e5bhEs subi rilz, rlz, 0Ox6474
. 0x400081d5 DO _step+0xd0: 7dBcS5ald add riz, riz, rii1
. 0x400081de DO _step+0xdd: 8180000 luz riz, O{(riz)
. 0x400081e0 DO _step+0xdS: 7dE8agz14 add riz, ri0, riz
+ Ox$0003led DO_step+Oxde: 91890000 stw riz, 0(rs)
23 14 + y_1[10 * s£_3 + sf_il:
22 15 sf_k-—:
+ Ox400081e6 DO_step+Oxe0: 3508EE£E subic. r8 <sf_ke, r8 <sf k», 1
25 16 } vhile (sf_k »= 0):
+ Ox40008lec DO_step+Oxed: 408054 bge DO_step+Dx3S (0x40008140)
26 17
k7 18 s£_j--;
+ 0x400031£0 DO step+Oxes: F4cEEEFE subic. ré <sf 3y, ré <sf ¥, 1
l2e 19 } while (sf_j »= 0):
. 0x400081f4 DO _step+Oxec: 4080ff1c bge DO _step+lx8 (0x40008110)
=R
50 21 sf_i--:
+ Ox400081£8 DO_step+Oxfl: 34eTIfEE subic. r? <sf_i>, r? <sf ir, 1
31 2z } while (sf_i »= 0):
+ Ox400081fc DO_step+Oxfd: 4080E£10 bge DO_step+dxd (0x4000810)
|32 a3 ¥
33 24 ¥
0x40008200 DO step+0xf8: 4e800020 blr

Figure 12. Assembly code generated without
compiler optimization —Osize flag for MCU 1.

A summary of the comparisons is shown in Table 3. As
expected, compiler optimizations affect the quality of the
object code'®.

-Osize Total number Inner-loop Number of
optimization of instructions instructions registers
flag (bytes) (bytes)

On 104 52 10

Off 248 172 7

Table 3. Metrics for quality of the generated object
code for the matrix multiplication algorithm on MCU
1

CONCLUSION

In Model-Based Design, the quality of the object code
measured in terms of size is critical for final deployment.
It may impact pricing decisions such as the choice of
processor and memory. Thus, incorporating techniques
to optimize object code as a goal of embedded controller
design can significantly reduce costs and development
times.

Several key steps in the code generation workflow
impact the size of the final object code. Techniques such
as using modeling patterns and target-optimized code
can streamline the generated C source code.
Furthermore, the choice of microprocessor architecture,
compiler, and compiler-specific optimizations can affect
the choice of the modeling pattern.

To gain maximum leverage from these techniques,
organizations can invest in:

e Undertaking detailed studies to gain a better
understanding of various parameters that optimize
object code at these steps in the workflow

e Establishing a culture that proactively data mines
and gathers these optimizations into a set of best
practices that serve as organizational memory for
future designs

ACKNOWLEDGMENTS

The authors would like to acknowledge the following
fellow MathWorks staff who contributed to the
development of the ideas used in this paper and the
writing of this paper. Arvind Jayaraman, Scott
Prochaska, Thomas Maier-Komor, and Tom Erkkinen.

REFERENCES

1. P. F. Smith, S. Prabhu, J. Friedman, Best Practices
for Establishing a Model-Based Design Culture, SAE
Paper 2007-01-0777, 2007.

2. T. Erkkinen, S. Breiner, Automatic Code
Generation—Technology Adoption Lessons Learned
from Commercial Vehicle Case Studies, SAE Paper
2007-01-4249, 2007.

3. J. L. Hennessy, D. A. Patterson, D. Goldberg,
Computer Architecture: A Quantitative Approach, 3"
Edition, Morgan Kaufmann Publishers Inc., 2002.

4. E. Freeman, E. Freeman, B. Bates, K. Sierra, Head
First Design Patterns, 1% Edition, O'Reilly Media,
Inc., 2004.

5. The MathWorks, Inc., Modeling Patterns for C
Constructs:
www.mathworks.com/support/solutions/data/1-
B6AWSQ9.html.

6. A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman,
Compilers: Principles, Techniques, and Tools, 2
Edition, 2006 Addison-Wesley.

CONTACT

Bill Chou, embedded code generation and verification
marketing, The MathWorks, Bill. Chou@mathworks.com

Saurabh Mahapatra, Simulink platform marketing, The
MathWorks, Saurabh.Mahapatra@mathworks.com

MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See www.mathworks.com/trademarks for a list of additional
trademarks. Other product or brand names may be trademarks or
registered trademarks of their respective holders.

