
INTRODUCTION
Many battery applications, especially those of high power 
levels, require the series or parallel connection of several unit 
battery cells, with a topology dictated by the electrical 
characteristics of the load. As the battery pack size increases, 
so does the computational demand on the solver for the 
simulation of the system. This problem becomes more acute if 
the model needs to run in real-time for hardware-in-the-loop 
(HIL) testing. Modern computing hardware offers capabilities 
such as parallel execution that can increase simulation speed, 
but it is generally not easy to fully take advantage of these 
capabilities, largely due to the significant challenges posed by 
multithreading the model execution process.

Real time execution on multicore targets would appear to be 
suitable for battery pack simulation because the repetitive 
nature of a battery pack suggests a relatively straightforward 
way to evenly partition the model. This apparent simplicity 
notwithstanding, the implications of partitioning a model in 
terms of its data transfer latencies on solver accuracy is a more 
difficult problem to solve.

Desktop simulation is a natural first step before executing 
generated code on a HIL platform. This work presents a 
technique in which the designer uses desktop simulation to 
determine optimum partitions of the model prior to code 
generation and execution on target hardware. This step 
enables the designer to achieve a balanced computational load 
distribution across the multithreaded HIL application.

Battery Pack Modeling, Simulation, and Deployment on a Multicore 
Real Time Target

Javier Gazzarri, Nishant Shrivastava, Robyn Jackey, and Craig Borghesani
MathWorks

ABSTRACT
Battery Management System (BMS) design is a complex task requiring sophisticated models that mimic the 
electrochemical behavior of the battery cell under a variety of operating conditions. Equivalent circuits are well-suited for 
this task because they offer a balance between fidelity and simulation speed, their parameters reflect direct experimental 
observations, and they are scalable. Scalability is particularly important at the real time simulation stage, where a model of 
the battery pack runs on a real-time simulator that is physically connected to the peripheral hardware in charge of 
monitoring and control. With modern battery systems comprising hundreds of cells, it is important to employ a modeling 
and simulation approach that is capable of handling numerous simultaneous instances of the basic unit cell while 
maintaining real time performance.

In previous publications we presented a technique for the creation of a battery cell model that contains the electrochemical 
fingerprints of a battery cell based on equivalent circuit model fitting to experimental data. In this work we extend our 
previous model to represent a battery pack, featuring cell creation, placement, and connection using automation scripts, 
thus facilitating the design of packs of arbitrary size and electrical topology. In addition, we present an assessment of 
model partitioning schemes for real time execution on multicore targets to ensure efficient use of hardware resources, a 
balanced computational load, and a study of the potential impact of the calculation latencies inherent to distributed 
systems on solver accuracy. Prior to C code generation for real time execution, a model profiler assesses the model 
partitioning and helps determine the multicore configuration that results in the lowest average turnaround time, the time 
elapsed between task start and finish.

The resulting model is useful in the generation of multiple operating scenarios of interest in the design of charging, 
balancing, and safety related procedures.
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A second goal is to provide a scalable methodology capable of 
supporting any number of battery cell components configured 
in series or parallel. A MATLAB script creates, places, and 
connects each model component, including battery cell blocks 
and electrical components for the battery pack load, and 
partitions the model.

MODEL PARTITIONING
As system complexity increases, so too does the 
computational demand placed on simulation hardware. When 
modeling and simulating a battery pack, thermal management 
and charge balancing require a model that encompasses the 
entire battery pack and that can be simulated in real time.

Real time capability is an essential requirement for HIL testing. 
For large models, real time performance can be difficult to 
achieve, especially if the system contains components that are 
numerically stiff, comprising subsystems with diverse time 
constants. One option for achieving real time simulation of 
large models is to distribute computational load by partitioning 
for multicore execution. With this approach, some tasks are 
executed concurrently, decreasing the execution time required 
by the solver to advance each simulation step.

In Simulink, the user configures a model for on-target 
concurrency by assigning separate tasks to different parts of 
the model at the top level. Each task requires an associated 
sampling time that must be an integer multiple of the top-level 
model step size. This partitioning is done irrespective of the 
target hardware specifications, with a scheduler assigning the 
tasks to CPU cores in an optimal way without the need of user 
intervention. This detachment of model development from 
hardware mapping makes this approach scalable and easy to 
employ with increasingly powerful targets. In Figure 1, model 
blocks are assigned tasks that the Simulink scheduler later 
uses to generate multithreaded C code for on-target execution.

Although concurrency is only possible at the on-target 
execution stage, Simulink offers a profiling tool to assess the 
performance of the partitioned model on the desktop. This tool 
simulates the effects of model partitioning in terms of 
computational load balance and shows quantitative information 
on maximum and average turnaround times for the execution 
of each task. We use this tool to assess the partitioning 
strategy of a cell pack.

The often homogeneous architecture of a battery pack makes 
it suitable for concurrency since the model can be partitioned 
into similar units that should result in a balanced load on the 
computing hardware. It is important, however, to validate the 
partitioned model to ensure that delays and data transfer 
latencies introduced by the partitioning do not undercut solver 
performance. The first part of the Results section describes this 
validation step in detail. Subsequent parts of the Results 
section describe the process used to choose the optimal 
partitioning scheme for a battery pack architecture of eight 
lithium ion cells in series.

RESULTS

Baseline Model
The baseline model used to validate partitioning strategies 
consists of eight cells in series. Each battery cell block contains 
an equivalent circuit with state-of-charge and temperature 
dependent parameters, as described in [1,2,3]. Figure 2 shows 
the benchmark model to be compared against partitioned 
models. Battery cell, voltage sensor, current source, and heat 
transfer blocks are part of the Simscape library, and they are 
interconnected forming a physical (acausal) network. In this 
simulation, a sequence of 25A discharge pulses partially drains 
the initially fully charged battery pack during one hour.

Figure 1. Partitioning schematic for concurrent execution in Simulink. 
The user assigns different tasks to different parts of the model and a 
scheduler finds an optimal hardware distribution of the computational 
load [4].

Figure 2. Baseline model with eight lithium ion battery cells in series. 
Thermal connection blocks model convective heat transfer between 
adjacent cells. The baseline model uses the variable step implicit 
solver (ode15s) recommended for numerically stiff systems.
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Inputs to the model are the discharge current and the ambient 
temperature, and outputs are the pack voltage and 
temperature. The baseline model uses a variable-step solver 
for maximum accuracy. Subsequent versions of the model are 
configured with a fixed-step solver to enable real-time 
simulation. It is important to compare the variable step results 
and the fixed step results to identify any possible losses in 
accuracy, particularly during rapid changes in voltage and 
current.

Figure 3 shows the voltage (V), temperature (°C), current (A), 
and state of charge (or SoC) traces as a result of the electrical 
and thermal stimuli.

Figure 3. Pack voltage (V), temperature (°C), discharge current (A), 
and SoC (-) for the benchmark model.

Figure 4. Eight-cell pack voltage response for the baseline simulation 
and three partitioning schemes: 1) No partition with variable step 
solver, 2) No partition fixed step solver, 3) Partition in two tasks with 
four cells each, and 4) Partition in four tasks with two cells each.

Figure 4 shows the voltage response of all partitioned schemes 
superimposed on the baseline results. The similarity of the 
results validates the three partitioned versions of the model:

1). 1-task partition: One task for the entire eight cell pack. 
Fixed step solver 

2). 2-task partition: Two-task partition with four cells each in 
each task. Fixed step solver 

3). 4-task partition: Four-task partition with two cells in each 
task. Fixed step solver

Partitioning Procedure
For a given battery pack size, several partitioning schemes can 
be conceived for real time concurrent execution. A four-core 
real time computer suggests, for example, a partitioning of four 
units with two cells each. When partitioning, it is important to 
take into consideration the performance and accuracy 
implications of imposing execution boundaries on the model, 
since this arrangement also imposes potential data transfer 
latencies between any two adjacent partitions. This 
compromise between execution time improvement and latency 
management lends itself to an optimization scheme.

The automated workflow of model creation streamlines the task 
of exploring for optimal partitioning schemes. The workflow 
enables the user to evaluate several configurations and to 
assess the benefits of multicore computing. The user can also 
evaluate trade-offs in performance imposed by scheduler 
overhead and the solver performance implications of inter-task 
data transfer latencies. Simulink provides a profiling tool to 
perform this trade-off evaluation.

To support an automated and convenient method for exploring 
different partitioning architectures, we create the battery pack 
model using MATLAB scripts. This approach enables the 
creation of a battery pack model and its partitioning into tasks 
with a simple call to a function. The script combines unit blocks 
according to arguments provided to it. The base function is 
named  and it has seven arguments.

The arguments to this function are: the desired model name, 
the number of stacks into which the battery pack will be 
divided, the number of cells in series inside each stack, the 
number of tasks into which the model is to be partitioned, the 
top-level solver sampling rate, an integer factor that multiplies 
the base sample rate if any part of the model needs to be 
solved at a slower frequency, and a choice of desktop 
simulation or real time simulation.
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The  function needs the following blocks 
to be predefined:

1). Battery cell. This block defines the battery type in the 
form of a lookup-table based equivalent circuit, including 
thermal effects. 

2). Load. This block specifies the battery charge/discharge 
cycle. 

3). Input. This block specifies the ambient temperature. 
4). Output. This block contains the output blocks such as 

plotting scopes.

Using these blocks, the MATLAB script automatically 
constructs a battery pack model by placing and connecting any 
number of battery cell blocks electrically and thermally, 
connects the battery pack to its load, and specifies 
configuration preferences and partitions. Functions such as 

 and  are used for the script-level 
manipulation of Simulink blocks. The loops below show 
examples of how we create a stack of  battery cells 
and make the series electrical connections between adjacent 
cells.

The MATLAB script is also responsible for the task mapping, 
i.e. assigning model blocks to different tasks so that the 
scheduler can multithread them for distributed execution. The 
following example code shows how tasks are assigned to 
battery cell blocks. The vector  is a handle to each 
stack for which the user specifies a separate task.

Figure 5 shows an example pack created using this technique. 
Two battery cells in series are inside each of the Stack1, 
Stack2, Stack3, and Stack4 blocks. The small rectangle above 
each model reference block designates the task to which it is 
mapped.

Figure 5. Top level of the 8-cell pack model partitioned in four 2-cell 
stacks and mapped into four tasks.

Although all blocks at the top level require a task assignment, 
in this example the computational load of the tasks 
corresponding to the four blocks outside of the battery pack is 
negligible since these blocks consist of very simple elements. 
Figure 6 shows the simple two-cell circuit inside each Stack 
block.

Figure 6. Battery blocks inside each Stack block of Figure 5. The two 
cells are connected in series both electrically and thermally.

Desktop Profiling
Simulink provides a profiling tool that can be used in desktop 
simulation, before a model is downloaded to the real time 
computer to assess computational load balancing. The results 
of this profiler include a chart showing the load distribution, the 
average and maximum turnaround times per task assigned in 
the model, and a diagram showing the task-to-core mapping. 
The following sections illustrate the use of this tool on the 
battery model, using a Lenovo laptop with an Intel® Core™ 
i7-2620M Dual Core CPU running at 2.7GHz, hyperthreading 
on. Operating system: Windows 7 6.1.
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Case 1 - No Partitioning (or one-task partition), Fixed 
Step Solver @10 ms (one stack with eight cells and 
one task)
This case is equivalent to the baseline case except it is 
configured to use a fixed step solver. There is no concurrency 
because the eight battery cells are all mapped onto a single 
task. The average turnaround time for the stack block is 209μs 
(Figure 7). Load balance is, of course, not applicable in this 
case since there is no partitioning. It is important to consider 
that since this report is the result of performance metrics 
measured on a non-real time desktop computer, its results 
should not be taken as a quantitative prediction of what the real 
time simulation performance will be, since that simulation will 
occur on different hardware.

Figure 7. Profiler report for no concurrency, fixed-step solver @10ms. 
The average turnaround time was 209 μs for the task in charge of 
solving the battery stack. The blue portion corresponds to non-stack 
components such as source and sink Simulink blocks.

Case 2 - Two-Task Partitioning (two stacks with four 
cells each and two tasks)
The second case under consideration features a two-task 
partitioning scheme, and the profiler report shows a twofold 
increase in average execution speed, with a 108 μs maximum 
(103 μs average) time. In this case, the benefit of distributing 
the computational load over two tasks is not offset by 
scheduler overhead.

Figure 8. Profiler report for two-task partitioning, fixed-step solver 
@10ms. The average execution time is roughly half of that for no 
concurrency, revealing an almost 100% improvement in execution 
speed.

Case 3 - Four-Task Partitioning (four stacks with two 
cells each and four tasks)
Since the real time computer we use features a quad-core 
processor, partitioning the pack into four main tasks seems like 
a natural choice. Figure 9 shows the profiling results for this 
case.

Figure 9. Profiler report for four-task partitioning, fixed-step solver 
@10ms.

The average turnaround time for the four-task partitioning 
ranged between 43 μs and 70 μs, with an average of 57 μs, 
slightly more than 25% of the average time for the original 
configuration, revealing the effect of the scheduler and data 
transfer overheads due to multithreading. In addition, the 
profiling also indicates that this partition configuration results in 
a slightly less balanced computational load, as revealed by the 
pie chart.

Case 4 - Large Model (four stacks with 24 cells each 
and four tasks)
The benefits of automating the creation and partitioning of the 
models are more apparent when the process is scaled up. This 
section describes a process equivalent to those already 
presented, although for a significantly larger model. In this case 
we simulate 96 cells in series, partitioned as four stacks of 24 
cells each. The profiling tool indicates an average turnaround 
time ranging between 703 μs and 1165 μs, 16 times larger (on 
average) than the previous example, for a model 12 times 
larger. This larger-than-linear increase in computing time with 
respect to model size is an important aspect to account for 
when scaling-up models for real time execution.

Figure 10 illustrates one further feature of this tool: the task 
distribution schematic, which shows the processor core 
assignment (zero-based, 0 to 3 for a quad-core machine) of 
each task as a function of solver step. This diagram is useful in 
exploring load balancing as a function of simulation time.
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Figure 10. Profiling results for a model comprising 96 cells in series. 
Top: The execution time is 16 times longer than the previous example, 
while the stack size is 12 times larger. Bottom: Task assignment to 
processor cores for the first 20 solver steps. Numbers indicate 
zero-based core identification.

REAL TIME RESULTS
The ultimate goal of the procedure described above is to 
prepare a battery pack model for real time simulation. A typical 
application of real time simulation is HIL testing. Since the 
desktop computer hardware used for the profiling is, in general, 
different from the real-time computer, the results obtained from 
the former are not quantitatively transferable to the latter. The 
non-deterministic nature of the operating system running on 
the desktop computer reinforces this statement. However, it is 
best if the desktop configuration matches as closely as 
possible the real time computer architecture.

Real time execution on a PC (HP xw4600 with Intel Core2 
Quad processor @2.5 GHz, 6.144MB RAM) running Simulink 
Real-Time™ kernel for Cases 1, 2, and 3 from the previous 
section resulted in the traces shown in Figure 11, Figure 12, 
Figure 13. These figures show the task execution time and its 
hardware core assignment (number at the lower left corner 
outside each bar) for a given sample time snapshot. Bar 
overlap in the vertical direction indicate task concurrency. A 
close look at the bar lengths also reveals that the execution 
time reduction between Case 1 and Case 2 is slightly larger 
than it is between Case 2 and Case 3, consistent with the 
desktop profiling results from the previous section.

Figure 11. Snapshot of computational load distribution at 0.03sec. 
Case 1 - Real Time. No battery pack partitioning, fixed step solver 
@10ms (one stack with eight cells and one task - Bat_Stack1). Arrows 
indicate processor core number.

Figure 12. Snapshot of computational load distribution at 0.06sec. 
Case 2 - Real Time. Two-task partitioning (two stacks with four cells 
each and two tasks). Execution time for Bat_Stack1 and Bat_Stack2 
was almost half of that in Case 1.

Figure 13. Case 3 - Four-task partitioning (four stacks with two cells 
each and four tasks). A twofold increase in partitioning with respect to 
Case 2 resulted in a less than twofold reduction in execution time for 
the tasks assigned to the battery pack.
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Finally, Figure 14 shows the real time simulation of the 96-cell 
battery pack model for a four-task partition. The model ran in 
real time without overruns, with an initial latency of 
approximately 500 ms

Figure 14. Snapshot of computational load distribution at 0.6sec. Case 
4 - Four-task partitioning, large model (four stacks with 24 cells each 
and four tasks)

CONCLUSIONS AND OUTLOOK
This work presents a flexible method for constructing battery 
pack models suitable for partitioning and multicore execution 
on real time targets. The method features automated block 
creation, placement, connection, and partitioning using a 
MATLAB script. Scripting model creation makes it easier to 
simulate numerous partitioning architectures and identify an 
architecture optimized for minimum execution time or balanced 
computational load distribution. The profiling tool enabled the 
qualitative assessment of the benefits and trade-offs of the 
different partitioning schemes on a desktop computer, and 
showed a nonlinear increase in execution time when applied to 
models of different size.

All models and partitions were tested in the real time 
environment with a sample rate of 10 milliseconds. The 
eight-cell model ran in real time with a performance that 
qualitatively agreed with the desktop profiling prediction when 
tested under different partitioning conditions. The four-task 
partition scheme was finally used on the 96-cell model, which 
also ran real time. As the number of partitions increased, more 
time was required for initialization.

The method presented in this article is applicable to cases 
outside of battery system design by replacing and renaming 
the blocks to be handled automatically by the automation 
scripts. The script for model creation and set up could also 
become the objective function of an optimization scheme to 
find optimal configurations in a systematic and automated way.
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