
INTRODUCTION
Many battery applications, especially those of high power
levels, require the series or parallel connection of several unit
battery cells, with a topology dictated by the electrical
characteristics of the load. As the battery pack size increases,
so does the computational demand on the solver for the
simulation of the system. This problem becomes more acute if
the model needs to run in real-time for hardware-in-the-loop
(HIL) testing. Modern computing hardware offers capabilities
such as parallel execution that can increase simulation speed,
but it is generally not easy to fully take advantage of these
capabilities, largely due to the significant challenges posed by
multithreading the model execution process.

Real time execution on multicore targets would appear to be
suitable for battery pack simulation because the repetitive
nature of a battery pack suggests a relatively straightforward
way to evenly partition the model. This apparent simplicity
notwithstanding, the implications of partitioning a model in
terms of its data transfer latencies on solver accuracy is a more
difficult problem to solve.

Desktop simulation is a natural first step before executing
generated code on a HIL platform. This work presents a
technique in which the designer uses desktop simulation to
determine optimum partitions of the model prior to code
generation and execution on target hardware. This step
enables the designer to achieve a balanced computational load
distribution across the multithreaded HIL application.

Battery Pack Modeling, Simulation, and Deployment on a Multicore
Real Time Target

Javier Gazzarri, Nishant Shrivastava, Robyn Jackey, and Craig Borghesani
MathWorks

ABSTRACT
Battery Management System (BMS) design is a complex task requiring sophisticated models that mimic the
electrochemical behavior of the battery cell under a variety of operating conditions. Equivalent circuits are well-suited for
this task because they offer a balance between fidelity and simulation speed, their parameters reflect direct experimental
observations, and they are scalable. Scalability is particularly important at the real time simulation stage, where a model of
the battery pack runs on a real-time simulator that is physically connected to the peripheral hardware in charge of
monitoring and control. With modern battery systems comprising hundreds of cells, it is important to employ a modeling
and simulation approach that is capable of handling numerous simultaneous instances of the basic unit cell while
maintaining real time performance.

In previous publications we presented a technique for the creation of a battery cell model that contains the electrochemical
fingerprints of a battery cell based on equivalent circuit model fitting to experimental data. In this work we extend our
previous model to represent a battery pack, featuring cell creation, placement, and connection using automation scripts,
thus facilitating the design of packs of arbitrary size and electrical topology. In addition, we present an assessment of
model partitioning schemes for real time execution on multicore targets to ensure efficient use of hardware resources, a
balanced computational load, and a study of the potential impact of the calculation latencies inherent to distributed
systems on solver accuracy. Prior to C code generation for real time execution, a model profiler assesses the model
partitioning and helps determine the multicore configuration that results in the lowest average turnaround time, the time
elapsed between task start and finish.

The resulting model is useful in the generation of multiple operating scenarios of interest in the design of charging,
balancing, and safety related procedures.

CITATION: Gazzarri, J., Shrivastava, N., Jackey, R., and Borghesani, C., "Battery Pack Modeling, Simulation, and Deployment
on a Multicore Real Time Target," SAE Int. J. Aerosp. 7(2):2014, doi:10.4271/2014-01-2217.

2014-01-2217
Published 09/16/2014

Copyright © 2014 The MathWorks, Inc.
doi:10.4271/2014-01-2217

saeaero.saejournals.org

http://dx.doi.org/10.4271/2014-01-2217
http://saeaero.saejournals.org/

A second goal is to provide a scalable methodology capable of
supporting any number of battery cell components configured
in series or parallel. A MATLAB script creates, places, and
connects each model component, including battery cell blocks
and electrical components for the battery pack load, and
partitions the model.

MODEL PARTITIONING
As system complexity increases, so too does the
computational demand placed on simulation hardware. When
modeling and simulating a battery pack, thermal management
and charge balancing require a model that encompasses the
entire battery pack and that can be simulated in real time.

Real time capability is an essential requirement for HIL testing.
For large models, real time performance can be difficult to
achieve, especially if the system contains components that are
numerically stiff, comprising subsystems with diverse time
constants. One option for achieving real time simulation of
large models is to distribute computational load by partitioning
for multicore execution. With this approach, some tasks are
executed concurrently, decreasing the execution time required
by the solver to advance each simulation step.

In Simulink, the user configures a model for on-target
concurrency by assigning separate tasks to different parts of
the model at the top level. Each task requires an associated
sampling time that must be an integer multiple of the top-level
model step size. This partitioning is done irrespective of the
target hardware specifications, with a scheduler assigning the
tasks to CPU cores in an optimal way without the need of user
intervention. This detachment of model development from
hardware mapping makes this approach scalable and easy to
employ with increasingly powerful targets. In Figure 1, model
blocks are assigned tasks that the Simulink scheduler later
uses to generate multithreaded C code for on-target execution.

Although concurrency is only possible at the on-target
execution stage, Simulink offers a profiling tool to assess the
performance of the partitioned model on the desktop. This tool
simulates the effects of model partitioning in terms of
computational load balance and shows quantitative information
on maximum and average turnaround times for the execution
of each task. We use this tool to assess the partitioning
strategy of a cell pack.

The often homogeneous architecture of a battery pack makes
it suitable for concurrency since the model can be partitioned
into similar units that should result in a balanced load on the
computing hardware. It is important, however, to validate the
partitioned model to ensure that delays and data transfer
latencies introduced by the partitioning do not undercut solver
performance. The first part of the Results section describes this
validation step in detail. Subsequent parts of the Results
section describe the process used to choose the optimal
partitioning scheme for a battery pack architecture of eight
lithium ion cells in series.

RESULTS

Baseline Model
The baseline model used to validate partitioning strategies
consists of eight cells in series. Each battery cell block contains
an equivalent circuit with state-of-charge and temperature
dependent parameters, as described in [1,2,3]. Figure 2 shows
the benchmark model to be compared against partitioned
models. Battery cell, voltage sensor, current source, and heat
transfer blocks are part of the Simscape library, and they are
interconnected forming a physical (acausal) network. In this
simulation, a sequence of 25A discharge pulses partially drains
the initially fully charged battery pack during one hour.

Figure 1. Partitioning schematic for concurrent execution in Simulink.
The user assigns different tasks to different parts of the model and a
scheduler finds an optimal hardware distribution of the computational
load [4].

Figure 2. Baseline model with eight lithium ion battery cells in series.
Thermal connection blocks model convective heat transfer between
adjacent cells. The baseline model uses the variable step implicit
solver (ode15s) recommended for numerically stiff systems.

Gazzarri et al / SAE Int. J. Aerosp. / Volume 7, Issue 2 (December 2014)

Inputs to the model are the discharge current and the ambient
temperature, and outputs are the pack voltage and
temperature. The baseline model uses a variable-step solver
for maximum accuracy. Subsequent versions of the model are
configured with a fixed-step solver to enable real-time
simulation. It is important to compare the variable step results
and the fixed step results to identify any possible losses in
accuracy, particularly during rapid changes in voltage and
current.

Figure 3 shows the voltage (V), temperature (°C), current (A),
and state of charge (or SoC) traces as a result of the electrical
and thermal stimuli.

Figure 3. Pack voltage (V), temperature (°C), discharge current (A),
and SoC (-) for the benchmark model.

Figure 4. Eight-cell pack voltage response for the baseline simulation
and three partitioning schemes: 1) No partition with variable step
solver, 2) No partition fixed step solver, 3) Partition in two tasks with
four cells each, and 4) Partition in four tasks with two cells each.

Figure 4 shows the voltage response of all partitioned schemes
superimposed on the baseline results. The similarity of the
results validates the three partitioned versions of the model:

1). 1-task partition: One task for the entire eight cell pack.
Fixed step solver

2). 2-task partition: Two-task partition with four cells each in
each task. Fixed step solver

3). 4-task partition: Four-task partition with two cells in each
task. Fixed step solver

Partitioning Procedure
For a given battery pack size, several partitioning schemes can
be conceived for real time concurrent execution. A four-core
real time computer suggests, for example, a partitioning of four
units with two cells each. When partitioning, it is important to
take into consideration the performance and accuracy
implications of imposing execution boundaries on the model,
since this arrangement also imposes potential data transfer
latencies between any two adjacent partitions. This
compromise between execution time improvement and latency
management lends itself to an optimization scheme.

The automated workflow of model creation streamlines the task
of exploring for optimal partitioning schemes. The workflow
enables the user to evaluate several configurations and to
assess the benefits of multicore computing. The user can also
evaluate trade-offs in performance imposed by scheduler
overhead and the solver performance implications of inter-task
data transfer latencies. Simulink provides a profiling tool to
perform this trade-off evaluation.

To support an automated and convenient method for exploring
different partitioning architectures, we create the battery pack
model using MATLAB scripts. This approach enables the
creation of a battery pack model and its partitioning into tasks
with a simple call to a function. The script combines unit blocks
according to arguments provided to it. The base function is
named and it has seven arguments.

The arguments to this function are: the desired model name,
the number of stacks into which the battery pack will be
divided, the number of cells in series inside each stack, the
number of tasks into which the model is to be partitioned, the
top-level solver sampling rate, an integer factor that multiplies
the base sample rate if any part of the model needs to be
solved at a slower frequency, and a choice of desktop
simulation or real time simulation.

Gazzarri et al / SAE Int. J. Aerosp. / Volume 7, Issue 2 (December 2014)

The function needs the following blocks
to be predefined:

1). Battery cell. This block defines the battery type in the
form of a lookup-table based equivalent circuit, including
thermal effects.

2). Load. This block specifies the battery charge/discharge
cycle.

3). Input. This block specifies the ambient temperature.
4). Output. This block contains the output blocks such as

plotting scopes.

Using these blocks, the MATLAB script automatically
constructs a battery pack model by placing and connecting any
number of battery cell blocks electrically and thermally,
connects the battery pack to its load, and specifies
configuration preferences and partitions. Functions such as

 and are used for the script-level
manipulation of Simulink blocks. The loops below show
examples of how we create a stack of battery cells
and make the series electrical connections between adjacent
cells.

The MATLAB script is also responsible for the task mapping,
i.e. assigning model blocks to different tasks so that the
scheduler can multithread them for distributed execution. The
following example code shows how tasks are assigned to
battery cell blocks. The vector is a handle to each
stack for which the user specifies a separate task.

Figure 5 shows an example pack created using this technique.
Two battery cells in series are inside each of the Stack1,
Stack2, Stack3, and Stack4 blocks. The small rectangle above
each model reference block designates the task to which it is
mapped.

Figure 5. Top level of the 8-cell pack model partitioned in four 2-cell
stacks and mapped into four tasks.

Although all blocks at the top level require a task assignment,
in this example the computational load of the tasks
corresponding to the four blocks outside of the battery pack is
negligible since these blocks consist of very simple elements.
Figure 6 shows the simple two-cell circuit inside each Stack
block.

Figure 6. Battery blocks inside each Stack block of Figure 5. The two
cells are connected in series both electrically and thermally.

Desktop Profiling
Simulink provides a profiling tool that can be used in desktop
simulation, before a model is downloaded to the real time
computer to assess computational load balancing. The results
of this profiler include a chart showing the load distribution, the
average and maximum turnaround times per task assigned in
the model, and a diagram showing the task-to-core mapping.
The following sections illustrate the use of this tool on the
battery model, using a Lenovo laptop with an Intel® Core™
i7-2620M Dual Core CPU running at 2.7GHz, hyperthreading
on. Operating system: Windows 7 6.1.

Gazzarri et al / SAE Int. J. Aerosp. / Volume 7, Issue 2 (December 2014)

Case 1 - No Partitioning (or one-task partition), Fixed
Step Solver @10 ms (one stack with eight cells and
one task)
This case is equivalent to the baseline case except it is
configured to use a fixed step solver. There is no concurrency
because the eight battery cells are all mapped onto a single
task. The average turnaround time for the stack block is 209μs
(Figure 7). Load balance is, of course, not applicable in this
case since there is no partitioning. It is important to consider
that since this report is the result of performance metrics
measured on a non-real time desktop computer, its results
should not be taken as a quantitative prediction of what the real
time simulation performance will be, since that simulation will
occur on different hardware.

Figure 7. Profiler report for no concurrency, fixed-step solver @10ms.
The average turnaround time was 209 μs for the task in charge of
solving the battery stack. The blue portion corresponds to non-stack
components such as source and sink Simulink blocks.

Case 2 - Two-Task Partitioning (two stacks with four
cells each and two tasks)
The second case under consideration features a two-task
partitioning scheme, and the profiler report shows a twofold
increase in average execution speed, with a 108 μs maximum
(103 μs average) time. In this case, the benefit of distributing
the computational load over two tasks is not offset by
scheduler overhead.

Figure 8. Profiler report for two-task partitioning, fixed-step solver
@10ms. The average execution time is roughly half of that for no
concurrency, revealing an almost 100% improvement in execution
speed.

Case 3 - Four-Task Partitioning (four stacks with two
cells each and four tasks)
Since the real time computer we use features a quad-core
processor, partitioning the pack into four main tasks seems like
a natural choice. Figure 9 shows the profiling results for this
case.

Figure 9. Profiler report for four-task partitioning, fixed-step solver
@10ms.

The average turnaround time for the four-task partitioning
ranged between 43 μs and 70 μs, with an average of 57 μs,
slightly more than 25% of the average time for the original
configuration, revealing the effect of the scheduler and data
transfer overheads due to multithreading. In addition, the
profiling also indicates that this partition configuration results in
a slightly less balanced computational load, as revealed by the
pie chart.

Case 4 - Large Model (four stacks with 24 cells each
and four tasks)
The benefits of automating the creation and partitioning of the
models are more apparent when the process is scaled up. This
section describes a process equivalent to those already
presented, although for a significantly larger model. In this case
we simulate 96 cells in series, partitioned as four stacks of 24
cells each. The profiling tool indicates an average turnaround
time ranging between 703 μs and 1165 μs, 16 times larger (on
average) than the previous example, for a model 12 times
larger. This larger-than-linear increase in computing time with
respect to model size is an important aspect to account for
when scaling-up models for real time execution.

Figure 10 illustrates one further feature of this tool: the task
distribution schematic, which shows the processor core
assignment (zero-based, 0 to 3 for a quad-core machine) of
each task as a function of solver step. This diagram is useful in
exploring load balancing as a function of simulation time.

Gazzarri et al / SAE Int. J. Aerosp. / Volume 7, Issue 2 (December 2014)

Figure 10. Profiling results for a model comprising 96 cells in series.
Top: The execution time is 16 times longer than the previous example,
while the stack size is 12 times larger. Bottom: Task assignment to
processor cores for the first 20 solver steps. Numbers indicate
zero-based core identification.

REAL TIME RESULTS
The ultimate goal of the procedure described above is to
prepare a battery pack model for real time simulation. A typical
application of real time simulation is HIL testing. Since the
desktop computer hardware used for the profiling is, in general,
different from the real-time computer, the results obtained from
the former are not quantitatively transferable to the latter. The
non-deterministic nature of the operating system running on
the desktop computer reinforces this statement. However, it is
best if the desktop configuration matches as closely as
possible the real time computer architecture.

Real time execution on a PC (HP xw4600 with Intel Core2
Quad processor @2.5 GHz, 6.144MB RAM) running Simulink
Real-Time™ kernel for Cases 1, 2, and 3 from the previous
section resulted in the traces shown in Figure 11, Figure 12,
Figure 13. These figures show the task execution time and its
hardware core assignment (number at the lower left corner
outside each bar) for a given sample time snapshot. Bar
overlap in the vertical direction indicate task concurrency. A
close look at the bar lengths also reveals that the execution
time reduction between Case 1 and Case 2 is slightly larger
than it is between Case 2 and Case 3, consistent with the
desktop profiling results from the previous section.

Figure 11. Snapshot of computational load distribution at 0.03sec.
Case 1 - Real Time. No battery pack partitioning, fixed step solver
@10ms (one stack with eight cells and one task - Bat_Stack1). Arrows
indicate processor core number.

Figure 12. Snapshot of computational load distribution at 0.06sec.
Case 2 - Real Time. Two-task partitioning (two stacks with four cells
each and two tasks). Execution time for Bat_Stack1 and Bat_Stack2
was almost half of that in Case 1.

Figure 13. Case 3 - Four-task partitioning (four stacks with two cells
each and four tasks). A twofold increase in partitioning with respect to
Case 2 resulted in a less than twofold reduction in execution time for
the tasks assigned to the battery pack.

Gazzarri et al / SAE Int. J. Aerosp. / Volume 7, Issue 2 (December 2014)

Finally, Figure 14 shows the real time simulation of the 96-cell
battery pack model for a four-task partition. The model ran in
real time without overruns, with an initial latency of
approximately 500 ms

Figure 14. Snapshot of computational load distribution at 0.6sec. Case
4 - Four-task partitioning, large model (four stacks with 24 cells each
and four tasks)

CONCLUSIONS AND OUTLOOK
This work presents a flexible method for constructing battery
pack models suitable for partitioning and multicore execution
on real time targets. The method features automated block
creation, placement, connection, and partitioning using a
MATLAB script. Scripting model creation makes it easier to
simulate numerous partitioning architectures and identify an
architecture optimized for minimum execution time or balanced
computational load distribution. The profiling tool enabled the
qualitative assessment of the benefits and trade-offs of the
different partitioning schemes on a desktop computer, and
showed a nonlinear increase in execution time when applied to
models of different size.

All models and partitions were tested in the real time
environment with a sample rate of 10 milliseconds. The
eight-cell model ran in real time with a performance that
qualitatively agreed with the desktop profiling prediction when
tested under different partitioning conditions. The four-task
partition scheme was finally used on the 96-cell model, which
also ran real time. As the number of partitions increased, more
time was required for initialization.

The method presented in this article is applicable to cases
outside of battery system design by replacing and renaming
the blocks to be handled automatically by the automation
scripts. The script for model creation and set up could also
become the objective function of an optimization scheme to
find optimal configurations in a systematic and automated way.

REFERENCES
1. Huria, T., Ceraolo, M., Gazzarri, J., Jackey, R., “High fidelity

electrical model with thermal dependence for characterization and
simulation of high power lithium battery cells”, Electric Vehicle
Conference (IEVC), 2012 IEEE International, March 2012

2. Jackey, R., “A Simple, Effective Lead-Acid Battery Modeling
Process for Electrical System Component Selection,” SAE
Technical Paper 2007-01-0778, 2007, doi:10.4271/2007-01-0778.

3. Jackey, R., Saginaw, M., Sanghvi, P., Gazzarri, J. et al., “Battery
Model Parameter Estimation Using a Layered Technique: An
Example Using a Lithium Iron Phosphate Cell,” SAE Technical
Paper 2013-01-1547, 2013, doi:10.4271/2013-01-1547

4. MathWorks Documentation - www.mathworks.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the copyright holder.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the
paper.

Gazzarri et al / SAE Int. J. Aerosp. / Volume 7, Issue 2 (December 2014)

http://www.sae.org/technical/papers/2007-01-0778
http://dx.doi.org/10.4271/2007-01-0778
http://www.sae.org/technical/papers/2013-01-1547
http://dx.doi.org/10.4271/2013-01-1547
http://www.mathworks.com

