A graph of —cosh(1).

14 Summer 1998

Cleve’s Corner

Trigonometry Is a Complex Subject

Revisiting inverse, complex, hyperbolic, floating-point trig functions

by Cleve Moler

thought I had learned everything worth knowing about

trigonometry years ago. But I've just been reading a

paper by W. Kahan, “Branch Cuts for Complex
Elementary Functions” (in Iserles and Powell (eds.), State of
the Art of Numerical Analysis, 1987). Kahan is a professor at
Berkeley, the father of the IEEE floating-point standard, and a
consultant in the design of algorithms used in Hewlett Packard
calculators. His paper reminded me of some important facts
about computing trig functions.

Let’s start with the hyperbolic cosine,
cosh(f) = (¢'+ "2

This is the only trig function I’ve ever seen in Newsweek,
where it was in an article about the Gateway Arch in St. Louis.
It’s the equation of an upside down arch, as well as the
catenary, the curve formed by a chain hanging between two
supports. I am really interested in the inverse function,

acosh(x). To find its formula, we need to solve the equation
x=("+eHn
for t. An intermediate step is the quadratic in ¢/,

e —2xe' +1=0

We solve the quadratic and then take a logarithm to get

acosh(x) =log(x * (- 1)1/2)

This formula for acosh(x) can be found in almost any
calculus or math reference book. But it turns out to be
unsuitable for actual computation, except for a limited range
of x. As a general-purpose computational formula, it has at
least three defects:

+ It may be inaccurate.
+ It may generate unnecessary arithmetic overflow.
+ It may give the wrong branch cuts in the complex plane.

We will look at each of these problems in a moment, but

MATLAB News & Notes

acosh

asinh

first let’s look at that + sign. For real ¢, the graph of x = cosh()
never drops below x = 1, so, for now, we can assume x> 1 and
get a real square root term. The * sign gives two possible
values for the argument of log. But the arguments turn out to
be reciprocals of each other, so the resulting logs are negatives
of each other. This corresponds to the two legs of the double-
valued function obtained by turning the St. Louis arch on its

side. In principle, we could use either sign in a computation.

Now, let’s look at the various computational problems with
the textbook formula. Overflow is the least important, but the
easiest to see. Say x is greater than 10"%%, but less than 10>,
This is pretty extreme, but we still should be able to compute
acosh(x) because it’s essentially equal to log(2x), which is
between roughly 355 and 710. However, the formula squares x,
producing an intermediate result larger than the largest
number allowed in IEEE floating-point double precision
format. This particular problem is easily fixed with some
scaling, but that doesn’t help the more serious problems.

The accuracy problem shows up in the real case if we

choose the minus sign in the formula. Let
x = cosh(10)

which is about 1.1013 » 10*. Using the minus sign, we expect
acosh(x) to be very close to —10. The trouble comes when we
compute x — (x? — 1)Y2. The result is about 4.54 + 10, but it is
obtained with serious subtractive cancellation. Taking the
logarithm produces —10.00000001350353. We’ve lost almost
half of the digits.

The cancellation problem gets worse quickly. For all values
of x greater than about cosh(18.8), the computed value of

(- 1)

is actually equal to x, the subtraction produces zero,
and the logarithm becomes negative infinity. For real x
between 1 and the square root of overflow, the cancellation
difficulty can be avoided by using the plus sign in the textbook
formula. But that just transfers the problem to negative x and
doesn’t make the formula reliable in general.

Now let’s consider complex arithmetic and use zin place of
x. As functions of a complex argument, both log(z) and
have discontinuous jumps when z crosses the branch cut,
which is conventionally taken to be the negative real axis. The
jump in log(z) is always 27, while the jump in s |z|1/ 2

All of the inverse trig functions must have branch cuts
somewhere in the complex plane, but I had forgotten (or never
knew) where they were supposed to be. The branch cuts for
most of the inverse trig functions are symmetric with respect
to the origin. But the branch cut for acosh(z) is unusual. Near
z=1, acosh(z) behaves like (z— 1)1/2. For large negative real z,
acosh(z) behaves like log(z). So the branch cut for acosh(z)
consists of the portion of the real axis to the left of +1.

Since the branch' cut for acosh(z) is a portion of the real
axis, we expect the function to be perfectly well behaved near

the imaginary axis. But the textbook formula involves

atanh

(2 — 1), This maps the imaginary axis onto the negative real
axis and introduces spurious jumps. Try using the formula to
compute acosh(z) for z= 2i +.0001. Both values should be
close to 1.4436 + 1.5709i. But we get the wrong sign when z s
in the left half plane.

Kahan’s solution to all these difficulties is to use a better

formula.
acosh(z) = 2 log(((z + 1)/2) 2 + ((z— 1)12)"%)

This involves two square roots, but it is still faster than the
textbook formula modified to overcome all its deficiencies. We
will incorporate this, and some of Kahan’s algorithms for
other trig functions, into MATLAB 5.3, available later this year.
As I was writing this column, a colleague told me about the
Web page of John Richardson, homel.gte.net/jrsr/complex.html.
Richardson describes an interesting way to visualize complex
functions by mapping complex numbers to color values. Zero
is mapped to black, large values to white, real values to shades
of red, and imaginary values to shades of blue and green. I've
used his approach to produce graphs of the inverse trig
functions and have added contour lines for the real and
imaginary parts of the function values. The heavy black lines
are the branch cuts. Cleve Moler is chair-
man and co-founder of

The MathWorks.

There isn’t room in this column to include all of the

graphs, or the code that produced them. If you would like to

see more, please visit, His e-mail address is

www.mathworks.com/publications/newsletter/summer98.cleve.shtml. Ml moler@mathworks.com.

MATLAB News & Notes Summer 1998 15

