WHY CHOOSE MATHWORKS FOR TRAINING?

MathWorks courses are developed by a team of training engineers with exclusive product knowledge gained from working closely with product developers. They acquire significant hands-on experience by using new products months before they are released and are always current on new capabilities.

Expert instructors understand that not everyone learns in the same way. That’s why the team – engineers themselves with advanced degrees and years of industry experience – uses a variety of techniques to reinforce concepts and build proficiency.
# TABLE OF CONTENTS

## MATHWORKS TRAINING INFORMATION

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Training Formats</td>
</tr>
<tr>
<td>4</td>
<td>Guaranteed to Run</td>
</tr>
<tr>
<td>4</td>
<td>Training Credits</td>
</tr>
<tr>
<td>4</td>
<td>Two Easy Ways to Register</td>
</tr>
<tr>
<td>5</td>
<td>Learning Paths</td>
</tr>
<tr>
<td>5</td>
<td>MATLAB Certification</td>
</tr>
</tbody>
</table>

## Courses

### MATLAB

#### FUNDAMENTAL
- MATLAB Fundamentals
- MATLAB Fundamentals for Aerospace Applications
- MATLAB Fundamentals for Automotive Applications
- MATLAB for Financial Applications

#### INTERMEDIATE
- MATLAB for Data Processing and Visualization
- MATLAB Programming Techniques
- Building Interactive Applications in MATLAB
- Interfacing MATLAB with C Code
- Optimization Techniques in MATLAB
- Signal Processing with MATLAB
- Image Processing with MATLAB
- Machine Learning with MATLAB
- Parallel Computing with MATLAB
- MATLAB to C with MATLAB Coder
- MATLAB for Asset Allocation
- Designing Robotics Algorithms in MATLAB
- Statistical Methods in MATLAB
- Time-Series Modeling in MATLAB

#### ADVANCED
- Object-Oriented Programming with MATLAB
- Risk Management with MATLAB
- Communication Systems Design with MATLAB
- Designing LTE and LTE Advanced Physical Layer Systems with MATLAB
- Computer Vision with MATLAB

### SIMULINK

#### FUNDAMENTAL
- Simulink for System and Algorithm Modeling
- Simulink for Aerospace System Design
- Simulink for Automotive System Design
- Signal Processing with Simulink

#### INTERMEDIATE
- Integrating Code with Simulink
- Control System Design with MATLAB and Simulink

#### ADVANCED
- Verification and Validation of Simulink Models
- Generating HDL Code from Simulink
- DSP for FPGAs
- Simulink Model Management and Architecture
- Communication Systems Modeling with Simulink
- Programming Xilinx Zynq SoCs with MATLAB and Simulink
- Software Defined Radio with Zynq Using Simulink

### PHYSICAL MODELING

#### INTERMEDIATE
- Modeling Physical Systems with Simscape
- Modeling Electrical Power Systems with Simscape
- Modeling Multibody Mechanical Systems with Simscape
- Modeling Fluid Systems with Simscape
- Modeling Driveline Systems with Simscape

### CODE GENERATION

#### FUNDAMENTAL
- Testing Generated Code in Simulink

#### ADVANCED
- Embedded Coder for Production Code Generation

### STATEFLOW

#### FUNDAMENTAL
- Stateflow for Logic-Driven System Modeling
- Stateflow for Automotive Applications

### POLYSPACE PRODUCTS

#### INTERMEDIATE
- Polyspace Bug Finder for C/C++ Code Analysis

#### ADVANCED
- Polyspace Code Prover for C/C++ Code Verification
MATHWORKS TRAINING INFORMATION

TRAINING FORMATS
For details and a full schedule, visit mathworks.com/2017training.

Unfortunately, the text is not readable due to the quality of the image.
GET STARTED ON THE RIGHT PATH

Taking courses in a recommended order can help accelerate your proficiency with MATLAB and Simulink®. Learning paths aid in building a proper foundation and help you get the most out of your products.

These paths represent the suggested sequence of courses based on your particular area of interest.

For other paths not listed here, please visit mathworks.com/2017training.

<table>
<thead>
<tr>
<th>PREREQUISITE</th>
<th>CORE CURRICULUM</th>
<th>OPTIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Analytics: Analysis</td>
<td>MATLAB Fundamentals</td>
<td>MATLAB for Data Processing and Visualization</td>
</tr>
<tr>
<td>and Visualization</td>
<td></td>
<td>Parallel Computing with MATLAB</td>
</tr>
<tr>
<td>Programming and Application</td>
<td>MATLAB Fundamentals</td>
<td>MATLAB Programming Techniques and</td>
</tr>
<tr>
<td>Deployment: Code Development</td>
<td></td>
<td>Parallel Computing with MATLAB</td>
</tr>
<tr>
<td>and Management</td>
<td></td>
<td>Object Oriented Programming with MATLAB</td>
</tr>
<tr>
<td>Embedded Design: FPGA Design</td>
<td>Simulink for System and Algorithm Modeling</td>
<td>Testing Generated Code in Simulink and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generating HDL Code from Simulink</td>
</tr>
<tr>
<td>Control and Algorithm</td>
<td>Simulink for System and Algorithm Modeling</td>
<td>Control System Design with</td>
</tr>
<tr>
<td>Design: Control Design and</td>
<td></td>
<td>MATLAB and Simulink and</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td>Embedded Coder for Production Code Generation</td>
</tr>
</tbody>
</table>

PROVE YOUR MATLAB KNOWLEDGE

MATLAB Certification can help accelerate professional growth and achievement by establishing a standard of excellence that demonstrates MATLAB proficiency to customers, industry peers, and employers.

For organizations, certification is a strategic investment that pays off through increased productivity and project success. MATLAB training courses cover all concepts tested in exam questions.

For test locations, dates, and fees, visit mathworks.com/certification.
MATLAB

MATLAB Fundamentals

This three-day course provides a comprehensive introduction to the MATLAB technical computing environment. Topics include:
- Data analysis
- Visualization
- Modeling
- Programming

**Prerequisites:** Undergraduate-level mathematics and experience with basic computer operations

MATLAB Fundamentals for Aerospace Applications

Based on the MATLAB Fundamentals outline, this three-day course offers hands-on aerospace examples and exercises that apply basic techniques to realistic problems in a variety of aerospace and defense applications.

**Prerequisites:** Undergraduate-level mathematics and experience with basic computer operations

MATLAB Fundamentals for Automotive Applications

Based on the MATLAB Fundamentals outline, this three-day course offers hands-on automotive examples and exercises that apply basic techniques to realistic problems in the automotive industry.

**Prerequisites:** Undergraduate-level mathematics and experience with basic computer operations

MATLAB for Financial Applications

This three-day course provides a comprehensive introduction to the MATLAB technical computing environment for financial professionals. Topics include:
- Importing data from spreadsheets and other sources
- Visualizing data and results using advanced plots
- Querying large data sets based on logical criteria
- Developing algorithms using programming constructs
- Generating reports and exporting data to files

**Prerequisites:** Undergraduate-level mathematics and experience with basic computer operations

MATLAB for Data Processing and Visualization

This one-day course focuses on importing and preparing data for data analytics applications. The course is intended for data analysts and data scientists who need to automate the processing, analysis, and visualization of data from multiple sources. Topics include:
- Importing data
- Processing data
- Customizing visualizations
- Working with irregular data

**Prerequisites:** MATLAB Fundamentals

MATLAB Programming Techniques

This two-day course covers details of performance optimization as well as tools for writing, debugging, and profiling code. Topics include:
- Creating robust applications
- Structuring code
- Structuring data
- Creating custom toolboxes

**Prerequisites:** MATLAB Fundamentals

Average increase in competence with MATLAB after training

Based on 2015 data

109%
Building Interactive Applications in MATLAB

INTERMEDIATE
This one-day course demonstrates how to create an interactive user interface for your applications in MATLAB. No prior experience in programming graphical interfaces is required. Topics include:

- Graphics objects
- User interface controls
- Callback functions
- Graphical user interface development environment (GUIDE)
- Application deployment

Prerequisites: MATLAB Fundamentals

Interfacing MATLAB with C Code

INTERMEDIATE
This one-day course covers details of interfacing MATLAB with user-written C code. Topics include:

- Source MEX-files
- Data exchange between MATLAB and MEX-files
- The MATLAB engine interface

Prerequisites: MATLAB Fundamentals and a basic working knowledge of the C programming language

Optimization Techniques in MATLAB

INTERMEDIATE
This one-day course introduces applied optimization in the MATLAB environment, focusing on using Optimization Toolbox™ and Global Optimization Toolbox. Topics include:

- Running optimization problems in MATLAB
- Specifying objective functions and constraints
- Choosing solvers and setting options
- Evaluating results and improving performance
- Using global optimization methods

Prerequisites: MATLAB Fundamentals

Signal Processing with MATLAB

INTERMEDIATE
This two-day course shows how to analyze signals and design signal processing systems using MATLAB and Signal Processing Toolbox™. Parts of the course also use DSP System Toolbox™. Topics include:

- Creating and analyzing signals
- Performing spectral analysis
- Designing and analyzing filters
- Designing adaptive filters
- Designing multirate filters

Prerequisites: MATLAB Fundamentals

Image Processing with MATLAB

INTERMEDIATE
This two-day course provides hands-on experience with performing image analysis interactively and programatically. Examples and exercises demonstrate the use of appropriate MATLAB and Image Processing Toolbox™ functionality throughout the analysis process. Topics include:

- Importing and exporting images
- Removing noise
- Aligning images and creating a panoramic scene
- Detecting lines and circles in an image
- Segmenting objects
- Measuring and modifying object shape properties
- Performing batch analysis over sets of images

Prerequisites: MATLAB Fundamentals

Machine Learning with MATLAB

INTERMEDIATE
This two-day course focuses on data analytics and machine learning techniques in MATLAB using functionality within Statistics and Machine Learning Toolbox™ and Neural Network Toolbox™. The course demonstrates the use of unsupervised learning to discover features in large data sets and supervised learning to build predictive models. Examples and exercises highlight techniques for visualization and evaluation of results. Topics include:

- Importing and organizing data
- Finding natural patterns in data
- Building predictive models
- Evaluating and improving the model

Prerequisites: MATLAB Fundamentals

Parallel Computing with MATLAB

INTERMEDIATE
This two-day course shows how to use Parallel Computing Toolbox™ to speed up existing code and scale up across multiple computers using MATLAB Distributed Computing Server™ (MDCS). Attendees who are working with long-running simulations, or large data sets, will benefit from the hands-on demonstrations and exercises in the course. Topics include:

- Parallel for-loops
- Offloading execution
- Working with clusters
- Distributing and processing large data sets
- GPU computing

Prerequisites: MATLAB Fundamentals

Mathworks.com/2017training
“Going from never using MATLAB and Simulink, I was able to in just two days get my head around the software and appreciate its capability and the potential to use it within my department.”

Paul Dawes, SAIC Motor UK Technical Centre Limited

“This course provided what I needed to quickly get started using MATLAB. The training was better and more efficient than learning from manuals.”

Steven A. Buhler, Xerox Corporation

MATLAB to C with MATLAB Coder

INTERMEDIATE

This two-day course covers C code generation from MATLAB code using MATLAB Coder™. The focus is on making existing MATLAB code compliant, generating C code that meets optimization requirements, and integrating generated code with external modules. Topics include:

- Preparing MATLAB code for code generation
- Working with fixed-size and variable-size data
- Integrating with external code
- Optimizing generated code

Prerequisites: MATLAB Fundamentals and a basic working knowledge of the C programming language

MATLAB for Asset Allocation

INTERMEDIATE

This one-day course explains the technical details and benefits of using Financial Toolbox™ data types for portfolio optimization. The course is designed for financial professionals who want to explore the capabilities of asset allocation. Topics include:

- Optimizing mean-variance portfolios
- Defining investment constraints
- Selecting solvers, options, and metrics
- Employing custom scenarios
- Automatically generating custom reports

Prerequisites: MATLAB for Financial Applications

Designing Robotics Algorithms in MATLAB

INTERMEDIATE

This one-day course is for engineers designing mobile robotics algorithms for Robot Operating System (ROS)-enabled simulators and robots. Topics include:

- Listing the design workflows possible with Robotics System Toolbox™
- Communicating with ROS and Gazebo
- Building and testing mobile robotics algorithms
- Designing algorithms for execution and data sharing

Prerequisites: MATLAB Fundamentals, basic knowledge of Robot Operating System (ROS)
Statistical Methods in MATLAB

INTERMEDIATE

This two-day course provides hands-on experience performing statistical data analysis with MATLAB and Statistics and Machine Learning Toolbox. Examples and exercises demonstrate the use of appropriate product functionality throughout the analysis process, including:
• Data import and organization
• Exploratory analysis
• Confirmatory analysis
• Simulation

Prerequisites: MATLAB Fundamentals

Time-Series Modeling in MATLAB

INTERMEDIATE

This one-day course provides a comprehensive introduction to time-series modeling using MATLAB and Econometrics Toolbox. Topics include:
• Identifying long-term and seasonal trends in time-series data
• Creating and fitting ARIMA and GARCH time-series models to a data set
• Testing data stationarity using hypothesis tests
• Comparing different model fits for the same data
• Analyzing model dynamics using Monte Carlo simulations
• Forecasting data using fitted models

Prerequisites: MATLAB for Financial Applications and basic knowledge of time-series modeling concepts is strongly recommended

Object-Oriented Programming with MATLAB

ADVANCED

This two-day course focuses on using object-oriented programming techniques to develop and maintain complex MATLAB applications. Topics include:
• Defining robust, intuitive, and reusable custom data types
• Creating maintainable and extensible applications using inheritance and aggregation
• Enhancing the reliability and flexibility of applications with unit tests
• Enabling object synchronization using events and listeners

Prerequisites: MATLAB Programming Techniques or equivalent experience using MATLAB

Risk Management with MATLAB

ADVANCED

This one-day course provides a comprehensive introduction to risk management using MATLAB and Financial Toolbox. Topics include:
• Constructing baselines for market risk assessment and analysis
• Assessing the impact of market risk and relative portfolio performance
• Computing and simulating commonly used risk metrics
• Creating and analyzing GARCH risk-oriented models
• Evaluating and assessing credit risk
• Understanding credit copulas
• Calculating transition probabilities to forecast default rates
• Classifying credit ratings based on historical data

Prerequisites: MATLAB for Financial Applications and knowledge of risk management concepts

Communication Systems Design with MATLAB

ADVANCED

This one-day course shows how to design and simulate digital communication systems using MATLAB. Different channel impairments and their modeling are demonstrated.

Prerequisites: MATLAB Fundamentals and knowledge of digital communication systems

Designing LTE and LTE Advanced Physical Layer Systems with MATLAB

ADVANCED

This three-day course provides an overview of the LTE and LTE Advanced physical layer. Using MATLAB and LTE System Toolbox, attendees will learn how to generate reference LTE waveforms and build and simulate an end-to-end LTE PHY model. Topics include:
• Review of the advanced communications techniques forming the core of an LTE system:
  • OFDMA and SC-FDMA multi-carrier techniques
  • MIMO multi-antenna systems
• Descriptions of all of the signals and elements of the processing chain for the uplink and downlink LTE physical channels
• Methods for golden reference verification with the standard

Prerequisites: MATLAB Fundamentals and knowledge of wireless communications systems
Computer Vision with MATLAB

ADVANCED

This two-day course provides hands-on experience with performing computer vision tasks. Examples and exercises demonstrate the use of appropriate MATLAB and Computer Vision System Toolbox™ functionality. Topics include:

- Importing, displaying, and annotating images and videos
- Detecting, extracting, and matching object features
- Automatically aligning images using geometric transformations
- Detecting objects in images and videos
- Tracking objects and estimating their motion in a video
- Removing lens distortion from images
- Measuring planar objects

Prerequisites: MATLAB Fundamentals or equivalent experience using MATLAB. Image Processing with MATLAB and basic knowledge of image processing and computer vision concepts.

SIMULINK

Simulink for System and Algorithm Modeling

FUNDAMENTAL

If your application involves signal processing or communications, see Signal Processing with Simulink.

This two-day course is for engineers who are new to system and algorithm modeling and design validation in Simulink. The course demonstrates how to apply basic modeling techniques and tools to develop Simulink block diagrams. Topics include:

- Creating and modifying Simulink models and simulating system dynamics
- Modeling continuous-time, discrete-time, and hybrid systems
- Modifying solver settings for simulation accuracy and speed
- Building hierarchy into a Simulink model
- Creating reusable model components using subsystems, libraries, and model references

Prerequisites: MATLAB Fundamentals

Simulink for Aerospace System Design

FUNDAMENTAL

Based on the Simulink for System and Algorithm Modeling outline, this two-day course is for aerospace engineers who are new to system and algorithm modeling and teaches attendees how to validate designs using Simulink.

Prerequisites: MATLAB Fundamentals, MATLAB Fundamentals for Aerospace Applications, or MATLAB Fundamentals for Automotive Applications

HAVE TRAINERS COME TO YOU

Available worldwide, onsite training is ideal for large groups or those who want customized instruction. To maximize your productivity, instructors can tailor the curriculum to meet your specific needs, and address challenges and process issues familiar to attendees.
### Simulink for Automotive System Design

**FUNDAMENTAL**

Based on the *Simulink for System and Algorithm Modeling* outline, this two-day course is for automotive engineers who are new to system and algorithm modeling and teaches attendees how to validate designs using Simulink.

**Prerequisites:** MATLAB Fundamentals, MATLAB Fundamentals for Aerospace Applications, or MATLAB Fundamentals for Automotive Applications

### Signal Processing with Simulink

**FUNDAMENTAL**

This three-day course covers basic modeling techniques and tools for developing Simulink block diagrams for signal processing applications. Topics include:

- Modeling single-channel and multichannel discrete dynamic systems
- Implementing sample-based and frame-based processing
- Modeling mixed-signal (hybrid) systems
- Developing custom blocks and libraries
- Modeling condition-based systems
- Performing spectral analysis with Simulink
- Integrating filter designs into Simulink
- Modeling multirate systems
- Incorporating external code
- Automating modeling tasks

**Prerequisites:** MATLAB Fundamentals and basic knowledge of digital signal processing

### Integrating Code with Simulink

**INTERMEDIATE**

This one-day course presents multiple methods for integrating C code and MATLAB code into Simulink models. Topics include:

- Writing C MEX S-functions
- Integrating MATLAB code
- Integrating C code

**Prerequisites:** MATLAB Fundamentals and Simulink for System and Algorithm Modeling

### Control System Design with MATLAB and Simulink

**INTERMEDIATE**

This two-day course provides a general understanding of how to accelerate the design process for closed-loop control systems using MATLAB and Simulink products. Topics include:

- Control system design overview
- System modeling
- System analysis
- Control design
- Controller implementation

**Prerequisites:** MATLAB Fundamentals and Simulink for System and Algorithm Modeling

### INCREASE YOUR SUCCESS RATE

Each course contains a set of learning objectives designed to help participants quickly master necessary skills. Our hands-on approach allows participants to practice, apply, and evaluate their knowledge in the classroom.

### OUR TRAINING FORMAT WORKS

According to post-training surveys, even individuals with multiple years of experience using MATLAB and Simulink are known to benefit from their classroom experience with MathWorks engineers.
Verification and Validation of Simulink Models

This one-day course describes techniques for testing Simulink model behavior against system requirements. Topics include:

- Identifying the role of verification and validation in Model-Based Design
- Creating test cases for Simulink models
- Analyzing simulation results to verify model behavior
- Automating testing activities and managing results
- Formally verifying model behavior
- Automatically generating artifacts to communicate results

Prerequisites: MATLAB Fundamentals and Simulink for System and Algorithm Modeling. This course is intended for intermediate or advanced Simulink users.

Generating HDL Code from Simulink

This two-day course shows how to generate and verify HDL code from a Simulink model using HDL Coder™ and HDL Verifier™. Topics include:

- Preparing Simulink models for HDL code generation
- Generating HDL code and test bench for a compatible Simulink model
- Performing speed and area optimizations
- Integrating handwritten code and existing IP
- Verifying generated HDL code using test bench and co-simulation

Prerequisites: Signal Processing with Simulink

DSP for FPGAs

This three-day course reviews DSP fundamentals from the perspective of implementation within the FPGA fabric. Particular emphasis will be given to highlighting the cost, with respect to both resources and performance associated with the implementation of various DSP techniques and algorithms. Topics include:

- DSP fixed-point arithmetic
- Signal-flow graph techniques
- HDL code generation for FPGAs
- Fast Fourier Transform (FFT) implementation
- Design and implementation of FIR, IIR, and CIC filters
- CORDIC algorithm
- Design and implementation of adaptive algorithms such as LMS and QR algorithm
- Techniques for synchronization and digital communications timing recovery

Prerequisites: MATLAB Fundamentals and Simulink for System and Algorithm Modeling

Simulink Model Management and Architecture

This two-day course describes techniques for applying Model-Based Design in a common design workflow. It provides guidance on managing and sharing Simulink models when working in a large-scale project environment. Topics include:

- Implementing interface control of Simulink subsystems and models
- Managing requirements in Simulink models
- Partitioning models using Simulink subsystems, libraries, and model references
- Managing a model and all its dependencies
- Controlling the location, scope, and code generation behavior of model data
- Establishing and enforcing modeling standards
- Documenting a Simulink model

Prerequisites: MATLAB Fundamentals and Simulink for System and Algorithm Modeling
Communication Systems Modeling with Simulink

ADVANCED

This one-day course uses hands-on examples to demonstrate how to design end-to-end communication systems using Simulink, Communications System Toolbox™, and DSP System Toolbox. Topics include:

• Modeling using Communications System Toolbox
• Analyzing the bit error rate (BER) of a communication system
• Adding channel impairments
• Designing receiver algorithms

Prerequisites: MATLAB Fundamentals, Signal Processing with MATLAB, and Signal Processing with Simulink

Programming Xilinx Zynq SoCs with MATLAB and Simulink

ADVANCED

This two-day course focuses on developing and configuring models in the Simulink environment and deploying on Xilinx® Zynq®-7000 All Programmable SoCs. The course is designed for Simulink users who intend to generate, validate, and deploy embedded code and HDL code for software/hardware codesign using Embedded Coder® and HDL Coder. A ZedBoard™ is provided to each attendee for use throughout the course. The board is programmed during the class and is yours to keep after the training. Topics include:

• Zynq platform overview and environment setup
• Parameter tuning with external mode
• Processor-in-the-loop verification
• Data interface with real-time application
• Developing device drivers

Prerequisites: Simulink for System and Algorithm Modeling (or Simulink for Automotive System Design or Simulink for Aerospace System Design). Knowledge of C and HDL programming languages.

Software Defined Radio with Zynq Using Simulink

NEW

ADVANCED

This hands-on, one-day course focuses on modeling, configuring, and deploying software-defined radio (SDR)-based designs in MATLAB and Simulink and deploying on PicoZed™ SDR. Topics include:

• Modeling communication systems using Simulink
• Implementing radio-in-the-loop architecture with PicoZed and Simulink
• Prototype deployment with real-time data via HW/SW codesign

Prerequisites: Programming Xilinx Zynq SoCs with MATLAB and Simulink

PHYSICAL MODELING

Modeling Physical Systems with Simscape

INTERMEDIATE

This one-day course discusses how to model systems in several physical domains and combine them into a multidomain system in the Simulink environment using Simscape™. Topics include:

• Creating models in various physical domains, such as electrical, mechanical, and hydraulic
• Interpreting Simscape diagrams
• Combining Simulink models and Simscape models
• Modeling energy transfer between different physical domains
• Creating user-defined Simscape components

Prerequisites: MATLAB Fundamentals and Simulink for System and Algorithm Modeling

Number of countries where MathWorks training is held
Based on 2015 data
Modeling Electrical Power Systems with Simscape

INTERMEDIATE

This one-day course discusses how to model electrical power systems in the Simulink environment using Simscape Power Systems™ (formerly SimPowerSystems™). Topics include:

• Creating three-phase systems with passive components
• Creating three-phase systems with electrical machines
• Analyzing and controlling electrical power systems
• Modeling power electronic components
• Speeding up simulation of electrical models

Prerequisites: MATLAB Fundamentals, Simulink for System and Algorithm Modeling, and Modeling Physical Systems with Simscape

Modeling Driveline Systems with Simscape

INTERMEDIATE

This one-day course focuses on modeling mechanical systems for automotive applications in the Simulink environment using Simscape Driveline™ (formerly SimDriveline™). Topics include:

• Modeling vehicle bodies and tires
• Designing and optimizing braking systems
• Designing mechanical power transmission mechanisms
• Creating multidomain automotive models with closed-loop controllers

Prerequisites: MATLAB Fundamentals, Simulink for System and Algorithm Modeling, and Modeling Physical Systems with Simscape

Modeling Multibody Mechanical Systems with Simscape

INTERMEDIATE

This one-day course discusses how to model rigid-body mechanical systems in the Simulink environment using Simscape Multibody™ (formerly SimMechanics™). Topics include:

• Modeling simple multibody systems
• Combining Simulink, Simscape, and Simscape Multibody blocks
• Importing models from CAD software
• Creating reusable models of mechanical systems

Prerequisites: MATLAB Fundamentals and Simulink for System and Algorithm Modeling

Modeling Fluid Systems with Simscape

INTERMEDIATE

This one-day course focuses on modeling hydraulic systems in Simulink using Simscape Fluids™ (formerly SimHydraulics®). Topics include:

• Modeling fluid power and fluid delivery systems
• Actuating and controlling hydraulic system models
• Connecting fluid, mechanical, and thermal modeling domains
• Creating custom model components using blocks, data, or equations

Prerequisites: MATLAB Fundamentals, Simulink for System and Algorithm Modeling, and Modeling Physical Systems with Simscape

CODE GENERATION

Testing Generated Code in Simulink

FUNDAMENTAL

This one-day course provides a working introduction to designing and testing embedded applications with Simulink Coder™ and Embedded Coder. Themes of simulation speedup, parameter tuning in the deployed application, structure of embedded code, code verification, and execution profiling are explored in the context of Model-Based Design. Topics include:

• Simulation speedup with code generation
• Parameter tuning with external mode
• Code generation
• Hardware-in-the-loop verification
• Software-in-the-loop verification
• Code execution profiling

Prerequisites: Simulink for System and Algorithm Modeling (or Simulink for Automotive System Design or Simulink for Aerospace System Design). Knowledge of C programming.
Embedded Coder for Production Code Generation

ADVANCED

This three-day course focuses on developing models in the Simulink environment to deploy on embedded systems. The course is designed for Simulink users who intend to generate, validate, and deploy embedded code using Embedded Coder. Topics Include:

- Generated code structure and execution
- Code generation options and optimizations
- Integrating generated code with external code
- Customizing data
- Generating code for multirate systems
- Deploying code

Prerequisites: Simulink for System and Algorithm Modeling (or Simulink for Automotive System Design or Simulink for Aerospace System Design). Knowledge of C programming.

STATEFLOW

Stateflow for Logic-Driven System Modeling

FUNDAMENTAL

This two-day course shows how to implement complex decision flows and finite-state machines using Stateflow®. The course focuses on how to employ flow charts, state machines, truth tables, and state transition tables in Simulink designs. Topics include:

- State machines
- Hierarchical and parallel state diagrams
- Events and functions in state machines
- Truth tables and state transition tables
- Design considerations

Prerequisites: MATLAB Fundamentals and Simulink for System and Algorithm Modeling

Stateflow for Automotive Applications

FUNDAMENTAL

This version of Stateflow for Logic-Driven System Modeling is for automotive engineers who wish to model and simulate event-driven and logic systems. This course offers hands-on automotive examples and exercises that apply basic techniques to realistic problems in the automotive industry.

Prerequisites: MATLAB Fundamentals for Automotive Applications and Simulink for Automotive System Design

POLYSPACE PRODUCTS

Polyspace Bug Finder for C/C++ Code Analysis

INTERMEDIATE

This one-day course discusses the use of Polyspace Bug Finder™ to discover coding defects, improve software quality metrics, and ensure product integrity. This hands-on course is intended for engineers who develop software or models targeting embedded systems. Topics include:

- Creating a code analysis project
- Reviewing and understanding analysis results
- Emulating target execution environments
- Applying MISRA C® rules
- Reporting

Prerequisites: Strong knowledge of C or C++

Polyspace Code Prover for C/C++ Code Verification

ADVANCED

This two-day course discusses the use of Polyspace Bug Finder and Polyspace Code Prover™ to prove code correctness, improve software quality metrics, and ensure product integrity. Topics include:

- Creating a verification project
- Reviewing and understanding verification results
- Emulating target execution environments
- Handling missing functions and data
- Managing unproven code (color-coded in orange by Polyspace products)
- Applying MISRA C® rules
- Reporting

Prerequisites: Strong knowledge of C or C++