MATLAB Examples

## Function of phase-unwrapping by using TV (Total Variation) minimization algorithm.[1][2]

Called functions explicitlly shown in this function body: denoised_unwrap, phase_wrap.

Called functions in whole function execution: denoised_unwrap, phase_wrap, TV_min.

How to use

a) unwrapped_phase = phase_unwrap_TV_min(wrapped_phase,'yes'): final residual wrapped phase is added so HN (High Noise) originally shown in wrapped_phase is clearly distinguishable on output unwrapped phase. Sometimes, there are still 2*pi jumps on output but these jumps are easily dealt with simple unwrap method such as unwrap command in Matlab.

b) unwrapped_phase = phase_unwrap_TV_min(wrapped_phase,'no'): final residual wrapped phase is not added so HN and possible 2*pi jumps on ouput are blurry.

[m, n] = size(wrapped_phase); N_c = round(numel(wrapped_phase)*0.001);
다음 사용 중 오류가 발생함: phase_unwrap_TV_min (line 19)
입력 인수가 부족합니다.

## 1st-mode unwrapped_phase

unwrapped_phase_1st_mode = denoised_unwrap(wrapped_phase);

## Calculating rest mode

unwrapped_phase = unwrapped_phase_1st_mode;
number_of_iteration = 0;
while(1)
phase_r = phase_wrap(wrapped_phase - unwrapped_phase); % Residual wrapped phase.
% Counting numer of phase jump present in residual wrapped phase
N = 0;
for i = 1 : m
for j = 1 : n
if (abs(phase_r(i,j)) >= 2*pi)
N = N + 1;
end
end
end
if (N < N_c)
unwrapped_phase = unwrapped_phase + phase_r; % Eq.(11) of Ref.[1].
break;
else
%Experience tells HN (High Noise) becomes blurry when final
%residual wrapped phase is not added to output.
break;
end
else
unwrapped_phase = unwrapped_phase + denoised_unwrap(phase_r);
end
number_of_iteration = number_of_iteration + 1;
if (number_of_iteration > 500)
break;
end
end
end

## Reference

1. H. Y. H. Huang, L. Tian, Z. Zhang, Y. Liu, Z. Chen, and G. Barbastathis, “Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising,” Opt. Express, vol. 20, no. 13, p. 14075, Jun. 2012.
2. ANTONIN CHAMBOLLE, “An Algorithm for Total Variation Minimization and Applications,” J. Math. Imaging Vis., vol. 20, no. 1/2, pp. 89?97, Jan. 2004.