MATLAB Examples

Develop your parallel MATLAB® code on your local machine and scale up to a cluster. Clusters provide more computational resources to speed up and distribute your computations. You can run

Sharpen an image using gpuArrays and GPU-enabled functions.

The basics of working with spmd statements, and how they provide an interactive means of performing parallel computations. We do this by performing relatively simple computations to

In this example, we look at the gop function and the functions that build on it: gplus and gcat. These seemingly simple functions turn out to be very powerful tools in parallel programming.

How arrayfun can be used to run a MATLAB® function natively on the GPU. When the MATLAB function contains many element-wise operations, arrayfun can provide improved performance when

Use pagefun to improve the performance of applying a large number of independent rotations and translations to objects in a 3-D environment. This is typical of a range of problems which

Looks at how we can benchmark the solving of a linear system on the GPU. The MATLAB® code to solve for x in A*x = b is very simple. Most frequently, we use matrix left division, also known as

Uses Conway's "Game of Life" to demonstrate how stencil operations can be performed using a GPU.

Uses Parallel Computing Toolbox™ to perform a two-dimensional Fast Fourier Transform (FFT) on a GPU. The two-dimensional Fourier transform is used in optics to calculate far-field

Measure some of the key performance characteristics of a GPU.

Switch between the different random number generators that are supported on the GPU and examines the performance of each of them.

How prices for financial options can be calculated on a GPU using Monte-Carlo methods. Three simple types of exotic option are used as examples, but more complex options can be priced in a

Demonstrates how advanced features of the GPU can be accessed using MEX files. It builds on the example Stencil Operations on a GPU. The previous example uses Conway's "Game of Life" to

Run MATLAB code on multiple GPUs in parallel, first on your local machine, then scaling up to a cluster. The example uses the logistic map, an equation that models the growth of a population, as

Benchmarks the parfor construct by repeatedly playing the card game of blackjack, also known as 21. We use parfor to play the card game multiple times in parallel, varying the number of

How a simple, well-known mathematical problem, the Mandelbrot Set, can be expressed in MATLAB® code. Using Parallel Computing Toolbox™ this code is then adapted to make use of GPU hardware

Uses Parallel Computing Toolbox™ to play the card game of blackjack, also known as 21. We simulate a number of players that are independently playing thousands of hands at a time, and display

Perform a parameter sweep in parallel and plot progress during parallel computations. You can use a DataQueue to monitor results during computations on a parallel pool. You can also use a

Access a large dataset in the cloud and process it in a cloud cluster using MATLAB capabilities for big data.

Plays the card game of blackjack, also known as 21. We simulate a number of players that are independently playing thousands of hands at a time, and display payoff statistics. Simulating the

Use the parallel profiler. It is intended to be a quick-start guide to using the parallel profiler graphical user interface (GUI) and its basic commands. Links are provided to the other

Profile the implicit communication that occurs when using an unevenly distributed array.

Benchmark solving a linear system on a cluster. The MATLAB® code to solve for x in A*x = b is very simple. Most frequently, one uses matrix left division, also known as mldivide or the backslash

Profile explicit communication to the nearest neighbor lab. It illustrates the use of labSend, labReceive, and labSendReceive, showing both the slow (incorrect) and the fast (optimal)

In this example, we show how to benchmark an application using independent jobs on the cluster, and we analyze the results in some detail. In particular, we:

Looks at why it is so hard to give a concrete answer to the question "How will my (parallel) application perform on my multi-core machine or on my cluster?" The answer most commonly given is "It

Uses the Parallel Computing Toolbox™ to play the card game of blackjack, also known as 21. We simulate a number of players that are independently playing thousands of hands at a time, and

Solve an embarrassingly parallel problem with uneven work distribution using for drange. The for drange splits iterations equally. As a result it can do suboptimal load balancing, which is

Is derived from Gerard Schuster's MATLAB example and book Seismic Interferometry

These are the files used in the webinar on Feb. 23, 2011. This file provides a brief description of the contents of the demo files and the steps needed to download the public data sources for use

In this example we see how to use callback functions in the Parallel Computing Toolbox™ to notify us when a task has completed and to update graphics when task results are available. We also see

The Parallel Computing Toolbox™ enables us to execute our MATLAB® programs on a cluster of computers. In this example, we look at how to divide a large collection of MATLAB operations into

In this example, we look at two common cases when we might want to write a wrapper function for the Parallel Computing Toolbox™. Those wrapper functions will be our task functions and will

In this example, we look at how we can reduce the run time of our jobs in the Parallel Computing Toolbox™ by minimizing the network traffic. It is likely that the network bandwidth is severely

Change the behavior of the examples in the Parallel Computing Toolbox™. There are at least two versions of each example in the Parallel Computing Toolbox: a sequential version and a

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Contact your local office