MATLAB Examples

Fitting Copulas to Data

This example shows how to use copulafit to calibrate copulas with data. To generate data Xsim with a distribution "just like" (in terms of marginal distributions and correlations) the distribution of data in the matrix X , you need to fit marginal distributions to the columns of X , use appropriate cdf functions to transform X to U , so that U has values between 0 and 1, use copulafit to fit a copula to U , generate new data Usim from the copula, and use appropriate inverse cdf functions to transform Usim to Xsim .

Load and plot the simulated stock return data.

load stockreturns
x = stocks(:,1);
y = stocks(:,2);

scatterhist(x,y,'Direction','out')

Transform the data to the copula scale (unit square) using a kernel estimator of the cumulative distribution function.

u = ksdensity(x,x,'function','cdf');
v = ksdensity(y,y,'function','cdf');

scatterhist(u,v,'Direction','out')
xlabel('u')
ylabel('v')

Fit a t copula.

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')
Rho =

    1.0000    0.7220
    0.7220    1.0000


nu =

   3.1634e+06

Generate a random sample from the t copula.

r = copularnd('t',Rho,nu,1000);
u1 = r(:,1);
v1 = r(:,2);

scatterhist(u1,v1,'Direction','out')
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')

Transform the random sample back to the original scale of the data.

x1 = ksdensity(x,u1,'function','icdf');
y1 = ksdensity(y,v1,'function','icdf');

scatterhist(x1,y1,'Direction','out')
set(get(gca,'children'),'marker','.')

As the example illustrates, copulas integrate naturally with other distribution fitting functions.