MATLAB Examples

Create and Process Messages Using Database Definitions

This example shows you how to create, receive and process messages using information stored in CAN database files. This example uses the CAN database file, demoVNT_CANdbFiles.dbc.

Contents

Open the Database File

Open the database file and examine the Messages property to see the names of all message defined in this database.

db = canDatabase('demoVNT_CANdbFiles.dbc')
db.Messages
db = 

  Database with properties:

             Name: 'demoVNT_CANdbFiles'
             Path: 'C:\TEMP\Bdoc18b_931964_4676\ib036F93\26\tpdca95399\ex80654288\demoVNT_CANdbFiles.dbc'
            Nodes: {}
         NodeInfo: [0x0 struct]
         Messages: {5x1 cell}
      MessageInfo: [5x1 struct]
       Attributes: {}
    AttributeInfo: [0x0 struct]
         UserData: []


ans =

  5x1 cell array

    {'DoorControlMsg'   }
    {'EngineMsg'        }
    {'SunroofControlMsg'}
    {'TransmissionMsg'  }
    {'WindowControlMsg' }

View Message Information

Use messageInfo to view message information, including the identifier, data length, and a signal list.

messageInfo(db, 'EngineMsg')
ans = 

  struct with fields:

             Name: 'EngineMsg'
     ProtocolMode: 'CAN'
          Comment: ''
               ID: 100
         Extended: 0
            J1939: []
           Length: 8
              DLC: 8
              BRS: 0
          Signals: {2x1 cell}
       SignalInfo: [2x1 struct]
          TxNodes: {0x1 cell}
       Attributes: {}
    AttributeInfo: [0x0 struct]

You can also query for information on all messages at once.

messageInfo(db)
ans = 

  5x1 struct array with fields:

    Name
    ProtocolMode
    Comment
    ID
    Extended
    J1939
    Length
    DLC
    BRS
    Signals
    SignalInfo
    TxNodes
    Attributes
    AttributeInfo

View Signal Information

Use signalInfo to view signal definition information, including type, byte ordering, size, and scaling values that translate raw signals to physical values.

signalInfo(db, 'EngineMsg', 'EngineRPM')
ans = 

  struct with fields:

             Name: 'EngineRPM'
          Comment: ''
         StartBit: 0
       SignalSize: 32
        ByteOrder: 'LittleEndian'
           Signed: 0
        ValueType: 'Integer'
            Class: 'uint32'
           Factor: 0.1000
           Offset: 250
          Minimum: 250
          Maximum: 9500
            Units: 'rpm'
       ValueTable: [0x1 struct]
      Multiplexor: 0
      Multiplexed: 0
    MultiplexMode: 0
          RxNodes: {0x1 cell}
       Attributes: {}
    AttributeInfo: [0x0 struct]

You can also query for information on all signals in the message at once.

signalInfo(db, 'EngineMsg')
ans = 

  2x1 struct array with fields:

    Name
    Comment
    StartBit
    SignalSize
    ByteOrder
    Signed
    ValueType
    Class
    Factor
    Offset
    Minimum
    Maximum
    Units
    ValueTable
    Multiplexor
    Multiplexed
    MultiplexMode
    RxNodes
    Attributes
    AttributeInfo

Create a Message Using Database Definitions

Specify the name of the message when you create a new message to have the database definition applied. CAN signals in this messages are represented in engineering units in addition to the raw data bytes.

msgEngineInfo = canMessage(db, 'EngineMsg')
msgEngineInfo = 

  Message with properties:

   Message Identification
    ProtocolMode: 'CAN'
              ID: 100
        Extended: 0
            Name: 'EngineMsg'

   Data Details
       Timestamp: 0
            Data: [0 0 0 0 0 0 0 0]
         Signals: [1x1 struct]
          Length: 8

   Protocol Flags
           Error: 0
          Remote: 0

   Other Information
        Database: [1x1 can.Database]
        UserData: []

View Signal Information

Use the Signals property to see signal values for this message. You can directly write to and read from these signals to pack or unpack data from the message.

msgEngineInfo.Signals
ans = 

  struct with fields:

    VehicleSpeed: 0
       EngineRPM: 250

Change Signal Information

Write directly to the signal to change a value and read its current value back.

msgEngineInfo.Signals.EngineRPM = 5500.25
msgEngineInfo.Signals
msgEngineInfo = 

  Message with properties:

   Message Identification
    ProtocolMode: 'CAN'
              ID: 100
        Extended: 0
            Name: 'EngineMsg'

   Data Details
       Timestamp: 0
            Data: [23 205 0 0 0 0 0 0]
         Signals: [1x1 struct]
          Length: 8

   Protocol Flags
           Error: 0
          Remote: 0

   Other Information
        Database: [1x1 can.Database]
        UserData: []


ans = 

  struct with fields:

    VehicleSpeed: 0
       EngineRPM: 5.5003e+03

When you write directly to the signal, the value is translated, scaled, and packed into the message data using the database definition.

msgEngineInfo.Signals.VehicleSpeed = 70.81
msgEngineInfo.Signals
msgEngineInfo = 

  Message with properties:

   Message Identification
    ProtocolMode: 'CAN'
              ID: 100
        Extended: 0
            Name: 'EngineMsg'

   Data Details
       Timestamp: 0
            Data: [23 205 0 0 71 0 0 0]
         Signals: [1x1 struct]
          Length: 8

   Protocol Flags
           Error: 0
          Remote: 0

   Other Information
        Database: [1x1 can.Database]
        UserData: []


ans = 

  struct with fields:

    VehicleSpeed: 71
       EngineRPM: 5.5003e+03

Receive Messages with Database Information

Attach a database to a CAN channel that receives messages to apply database definitions to incoming messages automatically. The database decodes only messages that are defined. All other messages are received in their raw form.

rxCh = canChannel('MathWorks', 'Virtual 1', 2);
rxCh.Database = db
rxCh = 

  Channel with properties:

   Device Information
            DeviceVendor: 'MathWorks'
                  Device: 'Virtual 1'
      DeviceChannelIndex: 2
      DeviceSerialNumber: 0
            ProtocolMode: 'CAN'

   Status Information
                 Running: 0
       MessagesAvailable: 0
        MessagesReceived: 0
     MessagesTransmitted: 0
    InitializationAccess: 1
        InitialTimestamp: [0x0 datetime]
           FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

   Channel Information
               BusStatus: 'N/A'
              SilentMode: 0
         TransceiverName: 'N/A'
        TransceiverState: 'N/A'
       ReceiveErrorCount: 0
      TransmitErrorCount: 0
                BusSpeed: 500000
                     SJW: []
                   TSEG1: []
                   TSEG2: []
            NumOfSamples: []

   Other Information
                Database: [1x1 can.Database]
                UserData: []

Receive Messages

Start the channel, generate some message traffic and receive messages with physical message decoding.

start(rxCh);
generateMsgsDb();
rxMsg = receive(rxCh, Inf, 'OutputFormat', 'timetable');
rxMsg(1:15, :)
ans =

  15x8 timetable

        Time        ID     Extended           Name               Data        Length      Signals       Error    Remote
    ____________    ___    ________    ___________________    ___________    ______    ____________    _____    ______

    0.016577 sec    100     false      'EngineMsg'            [1x8 uint8]      8       [1x1 struct]    false    false 
    0.016595 sec    200     false      'TransmissionMsg'      [1x8 uint8]      8       [1x1 struct]    false    false 
    0.016598 sec    400     false      'DoorControlMsg'       [1x8 uint8]      8       [1x1 struct]    false    false 
    0.016602 sec    600     false      'WindowControlMsg'     [1x4 uint8]      4       [1x1 struct]    false    false 
    0.016606 sec    800     false      'SunroofControlMsg'    [1x2 uint8]      2       [1x1 struct]    false    false 
    0.027105 sec    100     false      'EngineMsg'            [1x8 uint8]      8       [1x1 struct]    false    false 
    0.058361 sec    100     false      'EngineMsg'            [1x8 uint8]      8       [1x1 struct]    false    false 
    0.058373 sec    200     false      'TransmissionMsg'      [1x8 uint8]      8       [1x1 struct]    false    false 
    0.089592 sec    100     false      'EngineMsg'            [1x8 uint8]      8       [1x1 struct]    false    false 
    0.12078 sec     100     false      'EngineMsg'            [1x8 uint8]      8       [1x1 struct]    false    false 
    0.12079 sec     200     false      'TransmissionMsg'      [1x8 uint8]      8       [1x1 struct]    false    false 
    0.12079 sec     400     false      'DoorControlMsg'       [1x8 uint8]      8       [1x1 struct]    false    false 
    0.15208 sec     100     false      'EngineMsg'            [1x8 uint8]      8       [1x1 struct]    false    false 
    0.18334 sec     100     false      'EngineMsg'            [1x8 uint8]      8       [1x1 struct]    false    false 
    0.18335 sec     200     false      'TransmissionMsg'      [1x8 uint8]      8       [1x1 struct]    false    false 

Stop the channel and clear it from the workspace.

stop(rxCh);
clear rxCh

Examine a Received Message

Inspect a received message to see the applied database decoding.

rxMsg(10, :)
rxMsg.Signals{10}
ans =

  1x8 timetable

       Time        ID     Extended       Name           Data        Length      Signals       Error    Remote
    ___________    ___    ________    ___________    ___________    ______    ____________    _____    ______

    0.12078 sec    100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 


ans = 

  struct with fields:

    VehicleSpeed: 50
       EngineRPM: 3.5696e+03

Extract All Instances of a Specified Message

Use MATLAB notation to extract all instances of a specified message by name.

allMsgEngine = rxMsg(strcmpi('EngineMsg', rxMsg.Name), :);
allMsgEngine(1:15, :)
ans =

  15x8 timetable

        Time        ID     Extended       Name           Data        Length      Signals       Error    Remote
    ____________    ___    ________    ___________    ___________    ______    ____________    _____    ______

    0.016577 sec    100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.027105 sec    100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.058361 sec    100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.089592 sec    100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.12078 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.15208 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.18334 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.21472 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.24593 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.27707 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.30835 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.33955 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.37084 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.40211 sec     100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 
    0.4334 sec      100     false      'EngineMsg'    [1x8 uint8]      8       [1x1 struct]    false    false 

Plot Physical Signal Values

Plot the values of database decoded signals over time. Reference the message timestamps and the signal values in variables.

signalTimetable = canSignalTimetable(rxMsg, 'EngineMsg');
signalTimetable(1:15, :)
plot(signalTimetable.Time, signalTimetable.VehicleSpeed)
title('Vehicle Speed from EngineMsg', 'FontWeight', 'bold')
xlabel('Timestamp')
ylabel('Vehicle Speed')
ans =

  15x2 timetable

        Time        VehicleSpeed    EngineRPM
    ____________    ____________    _________

    0.016577 sec          0             250  
    0.027105 sec          0             250  
    0.058361 sec          0             250  
    0.089592 sec         50          3569.6  
    0.12078 sec          50          3569.6  
    0.15208 sec          50          3569.6  
    0.18334 sec          50          3569.6  
    0.21472 sec          55          3621.3  
    0.24593 sec          55          3621.3  
    0.27707 sec          55          3621.3  
    0.30835 sec          55          3621.3  
    0.33955 sec          55          3663.9  
    0.37084 sec          55          3663.9  
    0.40211 sec          55          3663.9  
    0.4334 sec           54          3663.9