# angle2dcm

Convert rotation angles to direction cosine matrix

## Syntax

```dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3) dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3, rotationSequence) ```

## Description

`dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3)` calculates the direction cosine matrix given three sets of rotation angles.

`dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3, rotationSequence)` calculates the direction cosine matrix using a rotation sequence.

## Input Arguments

`rotationAng1`

`m`-by-1 array of first rotation angles, in radians.

`rotationAng2`

`m`-by-1 array of second rotation angles, in radians.

`rotationAng3`

`m`-by-1 array of third rotation angles, in radians.

`rotationSequence`

Rotation sequence. For example, the default `'ZYX'` represents a sequence where `rotationAng1` is z-axis rotation, `rotationAng2` is y-axis rotation, and `rotationAng3` is x-axis rotation.

 `'ZYX'` `'ZYZ'` `'ZXY'` `'ZXZ'` `'YXZ'` `'YXY'` `'YZX'` `'YZY'` `'XYZ'` `'XZY'` `'XYX'` `'XZX'` `'ZYX'` (default)

## Output Arguments

 `dcm` 3-by-3-by-`m` matrix containing `m` direction cosine matrices.

## Examples

Determine the direction cosine matrix from rotation angles:

```yaw = 0.7854; pitch = 0.1; roll = 0; dcm = angle2dcm( yaw, pitch, roll ) dcm = 0.7036 0.7036 -0.0998 -0.7071 0.7071 0 0.0706 0.0706 0.9950```

Determine the direction cosine matrix from rotation angles and rotation sequence:

```yaw = [0.7854 0.5]; pitch = [0.1 0.3]; roll = [0 0.1]; dcm = angle2dcm( pitch, roll, yaw, 'YXZ' ) dcm(:,:,1) = 0.7036 0.7071 -0.0706 -0.7036 0.7071 0.0706 0.0998 0 0.9950 dcm(:,:,2) = 0.8525 0.4770 -0.2136 -0.4321 0.8732 0.2254 0.2940 -0.0998 0.9506```