Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

For some observed time series, a very high-order AR or MA model is needed to model the underlying process well. In this case, a combined autoregressive moving average (ARMA) model can sometimes be a more parsimonious choice.

An ARMA model expresses the conditional mean of
*y _{t}* as a function of both past
observations, $${y}_{t-1},\dots ,{y}_{t-p}$$, and past innovations, $${\epsilon}_{t-1},\dots ,{\epsilon}_{t-q}.$$The number of past observations that

The form of the ARMA(*p*,*q*) model in
Econometrics
Toolbox™ is

$${y}_{t}=c+{\varphi}_{1}{y}_{t-1}+\dots +{\varphi}_{p}{y}_{t-p}+{\epsilon}_{t}+{\theta}_{1}{\epsilon}_{t-1}+\dots +{\theta}_{q}{\epsilon}_{t-q},$$ | (1) |

In lag operator polynomial notation, $${L}^{i}{y}_{t}={y}_{t-i}$$. Define the degree *p* AR lag operator polynomial $$\varphi (L)=(1-{\varphi}_{1}L-\dots -{\varphi}_{p}{L}^{p})$$. Define the degree *q* MA lag operator polynomial $$\theta (L)=(1+{\theta}_{1}L+\dots +{\theta}_{q}{L}^{q})$$. You can write the ARMA(*p*,*q*)
model as

$$\varphi (L){y}_{t}=c+\theta (L){\epsilon}_{t}.$$ | (2) |

The signs of the coefficients in the AR lag operator polynomial, $$\varphi (L)$$, are opposite to the right side of Equation 1. When specifying and interpreting AR coefficients in Econometrics Toolbox, use the form in Equation 1.

Consider the ARMA(*p*,*q*) model in lag operator
notation,

$$\varphi (L){y}_{t}=c+\theta (L){\epsilon}_{t}.$$

From this expression, you can see that

$${y}_{t}=\mu +\frac{\theta (L)}{\varphi (L)}{\epsilon}_{t}=\mu +\psi (L){\epsilon}_{t},$$ | (3) |

$$\mu =\frac{c}{\left(1-{\varphi}_{1}-\dots -{\varphi}_{p}\right)}$$

is the unconditional mean of the process, and $$\psi (L)$$ is a rational, infinite-degree lag operator polynomial, $$(1+{\psi}_{1}L+{\psi}_{2}{L}^{2}+\dots )$$.

The `Constant`

property of an `arima`

model
object corresponds to *c*, and not the unconditional mean
*μ*.

By Wold’s decomposition [2], Equation 3 corresponds to a stationary stochastic process
provided the coefficients $${\psi}_{i}$$ are absolutely summable. This is the case when the AR polynomial, $$\varphi (L)$$, is *stable*, meaning all its roots lie
outside the unit circle. Additionally, the process is *causal*
provided the MA polynomial is *invertible*, meaning all its
roots lie outside the unit circle.

Econometrics
Toolbox enforces stability and invertibility of ARMA processes. When you
specify an ARMA model using `arima`

, you get an error if you enter
coefficients that do not correspond to a stable AR polynomial or invertible MA
polynomial. Similarly, `estimate`

imposes stationarity and
invertibility constraints during estimation.

[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel.
*Time Series Analysis: Forecasting and Control*. 3rd ed.
Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Wold, H. *A Study in the Analysis of
Stationary Time Series*. Uppsala, Sweden: Almqvist & Wiksell,
1938.