Documentation

Estimate Efficient Portfolios and Frontiers

Analyze efficient portfolios and efficient frontiers for portfolio

Objects

 PortfolioCVaR Creates PortfolioCVaR object for conditional value-at-risk portfolio optimization and analysis

Functions

expand all

 estimateFrontier Estimate specified number of optimal portfolios on the efficient frontier estimateFrontierByReturn Estimate optimal portfolios with targeted portfolio returns estimateFrontierByRisk Estimate optimal portfolios with targeted portfolio risks estimateFrontierLimits Estimate optimal portfolios at endpoints of efficient frontier plotFrontier Plot efficient frontier
 estimatePortVaR Estimate value-at-risk for PortfolioCVaR object estimatePortStd Estimate standard deviation of portfolio returns estimatePortReturn Estimate mean of portfolio returns estimatePortRisk Estimate portfolio risk according to risk proxy associated with corresponding object
 setSolver Choose main solver and specify associated solver options for portfolio optimization setSolverMINLP Choose mixed integer nonlinear programming (MINLP) solver for portfolio optimization

Examples and How To

Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object

The most basic way to obtain optimal portfolios is to obtain points over the entire range of the efficient frontier.

Obtaining Endpoints of the Efficient Frontier

Use the estimateFrontierLimits function to obtain the endpoint portfolios.

Obtaining Efficient Portfolios for Target Returns

To obtain efficient portfolios with targeted portfolio returns, the estimateFrontierByReturn function accepts one or more target portfolios returns and obtains efficient portfolios.

Obtaining Efficient Portfolios for Target Risks

To obtain efficient portfolios with targeted portfolio risks, the estimateFrontierByRisk function accepts one or more target portfolio risks and obtains efficient portfolios.

Estimate Efficient Frontiers for PortfolioCVaR Object

Given efficient portfolios, the functions estimatePortReturn and estimatePortRisk provide estimates for the return and risk.

Plotting the Efficient Frontier for a PortfolioCVaR Object

The plotFrontier function creates a plot of the efficient frontier for a given portfolio optimization problem.

Portfolio Optimization with Semicontinuous and Cardinality Constraints

This example shows how to use a Portfolio object to directly handle semicontinuous and cardinality constraints when performing portfolio optimization.

Concepts

PortfolioCVaR Object Workflow

PortfolioCVaR object workflow for creating and modeling a conditional value-at-risk (CVaR) portfolio.

Choosing and Controlling the Solver for PortfolioCVaR Optimizations

When solving portfolio optimizations for a PortfolioCVaR object, all variations of fmincon from Optimization Toolbox™ are supported.