# impulseplot

Plot impulse response of dynamic system

## Description

The `impulseplot`

function plots the impulse response of a
dynamic system model and returns an
`ImpulsePlot`

chart object. To customize the plot, modify the properties of
the chart object using dot notation. For more information, see Customize Linear Analysis Plots at Command Line (Control System Toolbox).

To obtain impulse response data or create an impulse plot with default plotting options,
use `impulse`

.

## Creation

### Syntax

### Description

plots the impulse response of the dynamic system model `ip`

= impulseplot(`sys`

)`sys`

and
returns the corresponding chart object.

simulates the response for the time steps specified by `ip`

= initialplot(___,`t`

)`t`

. To define
the time steps, you can specify:

Final simulation time using a scalar value.

The initial and final simulation times using a two-element vector.

*(since R2023b)*All the time steps using a vector.

specifies additional options for computing the step response, such as the step amplitude
(`ip`

= impulseplot(___,`config`

)*dU*) or input offset (*U*). Use `RespConfig`

to create `config`

.

plots the impulse response with the plotting options specified in
`ip`

= impulseplot(___,`plotoptions`

)`plotoptions`

. Settings you specify in
`plotoptions`

override the plotting preferences for the current
MATLAB^{®} session. This syntax is useful when you want to write a script to generate
multiple plots that look the same regardless of the local preferences.

plots the impulse response in the specified parent graphics container, such as a
`ip`

= impulseplot(`parent`

,___)`Figure`

or `TiledChartLayout`

, and sets the
`Parent`

property. Use this syntax when you want to create a plot
in a specified open figure or when creating apps in App Designer.

### Input Arguments

`sys`

— Dynamic system

dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

Continuous-time or discrete-time numeric LTI models, such as

`tf`

,`zpk`

, or`ss`

models.Generalized or uncertain LTI models such as

`genss`

or`uss`

models. (Using uncertain models requires Robust Control Toolbox™ software.)For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning response data.

For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns response data for the nominal model only.

Sparse state-space models such as

`sparss`

and`mechss`

models.Identified LTI models, such as

`idtf`

,`idss`

, or`idproc`

models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. See Step Responses of Identified Models with Confidence Regions.Linear time-varying (

`ltvss`

(Control System Toolbox)) and linear parameter-varying (`lpvss`

(Control System Toolbox)) models.

This function does not support frequency-response data models such as
`frd`

, `genfrd`

, or `idfrd`

models.

If `sys`

is an array of models, the function plots the responses of all models in the array on the same axes. See Step Response of Systems in a Model Array.

`LineSpec`

— Line style, marker, and color

string | character vector

Line style, marker, and color, specified as a string or character vector containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.

**Example: **`'--or'`

is a red dashed line with circle markers

Line Style | Description |
---|---|

`"-"` | Solid line |

`"--"` | Dashed line |

`":"` | Dotted line |

`"-."` | Dash-dotted line |

Marker | Description |
---|---|

`"o"` | Circle |

`"+"` | Plus sign |

`"*"` | Asterisk |

`"."` | Point |

`"x"` | Cross |

`"_"` | Horizontal line |

`"|"` | Vertical line |

`"s"` | Square |

`"d"` | Diamond |

`"^"` | Upward-pointing triangle |

`"v"` | Downward-pointing triangle |

`">"` | Right-pointing triangle |

`"<"` | Left-pointing triangle |

`"p"` | Pentagram |

`"h"` | Hexagram |

Color | Description |
---|---|

`"r"` | red |

`"g"` | green |

`"b"` | blue |

`"c"` | cyan |

`"m"` | magenta |

`"y"` | yellow |

`"k"` | black |

`"w"` | white |

`t`

— Time steps

positive scalar | two-element vector | vector | `[]`

Time steps at which to compute the response, specified as one of the following:

Positive scalar

`tFinal`

— Compute the response from`t = 0`

to`t = tFinal`

.Two-element vector

`[t0 tFinal]`

— Compute the response from`t = t0`

to`t = tFinal`

.*(since R2023b)*Vector

`Ti:dt:Tf`

— Compute the response for the time points specified in`t`

.For continuous-time systems,

`dt`

is the sample time of a discrete approximation to the continuous system.For discrete-time systems with a specified sample time,

`dt`

must match the sample time property`Ts`

of`sys`

.For discrete-time systems with an unspecified sample time (

`Ts = -1`

),`dt`

must be`1`

.

`[]`

— Automatically select time values based on system dynamics.

When you specify a time range using either `tFinal`

or `[t0 tFinal]`

:

For continuous-time systems, the function automatically determines the size of the time step and number of points based on the system dynamics.

For discrete-time systems with a specified sample time, the function uses the sample time of

`sys`

as the step size.For discrete-time systems with unspecified sample time (

`Ts = -1`

), the function interprets`tFinal`

as the number of sampling periods to simulate with a sample time of 1 second.

Express `t`

using the time units specified in the
`TimeUnit`

property of `sys`

.

If you specified a step delay `td`

using `config`

, the
function applies the step at `t = t0+td`

.

`p`

— LPV model parameter trajectory

matrix | function handle

Parameter trajectory of the LPV model, specified as a matrix or a function handle.

For exogenous or explicit trajectories, specify

`p`

as a matrix with dimensions*N*-by-*Np*, where*N*is the number of time samples and*Np*is the number of parameters.Thus, the row vector

`p(i,:)`

contains the parameter values at the*i*th time step.For endogenous or implicit trajectories, specify

`p`

as a function handle of the form*p*=*F*(*k*,*x*,*u*) that gives parameters as a function of time sample*k*, state*x*, and input*u*.`impulse`

only supports this option for discrete-time LPV models.This option is useful when you want to simulate quasi-LPV models.

`config`

— Response configuration

`RespConfig`

options set

Configuration of the applied impulse signal, specified as a `RespConfig`

object. By default, `impulse`

applies an input at time `t = 0`

. Use this input argument to change
the response configuration, such as specifying a delay or input offset. See Configure Options for Impulse Response (Control System Toolbox) for an
example.

For `lpvss`

(Control System Toolbox) and
`ltvss`

(Control System Toolbox)
models with offsets
(*x*_{0}(*t*),*u*_{0}(*t*)),
you can use `RespConfig`

to define the input relative to
*u*_{0}(*t*,*p*)
and initialize the simulation with the state
*x*_{0}(*t*,*p*).

`plotoptions`

— Time response plot options

`timeoptions`

object

Time response plot options, specified as a `timeoptions`

(Control System Toolbox) object. You can use these options to customize the plot appearance. Settings you specify in `plotoptions`

override the preference settings for the current MATLAB session.

`parent`

— Parent container

`Figure`

object (default) | `TiledChartLayout`

object | `UIFigure`

object | `UIGridLayout`

object | `UIPanel`

object | `UITab`

object

Parent container of the chart, specified as one of the following objects:

`Figure`

`TiledChartLayout`

`UIFigure`

`UIGridLayout`

`UIPanel`

`UITab`

## Properties

**Note**

The properties listed here are only a subset. For a complete list, see ImpulsePlot Properties (Control System Toolbox).

`Responses`

— Model responses

`ImpulseResponse`

object | array of `ImpulseResponse`

objects

Model responses, specified as an `ImpulseResponse`

object or an array of such objects. Use this property to modify the dynamic system model or appearance for each response in the plot. Each `ImpulseResponse`

object has the following fields.

`SourceData`

— Source data

structure

Source data for the response, specified as a structure with the following fields.

`Model`

— Dynamic system

dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models.

When you initially create a plot, `Model`

matches the value you specify for `sys`

.

`TimeSpec`

— Time values

scalar | vector | `[]`

Time steps at which to compute the response, specified as one of the following:

Positive scalar

`tFinal`

— Compute the response from`t = 0`

to`t = tFinal`

.Two-element vector

`[t0 tFinal]`

— Compute the response from`t = t0`

to`t = tFinal`

.*(since R2023b)*Vector

`Ti:dt:Tf`

— Compute the response for the time points specified in`t`

.For continuous-time systems,

`dt`

is the sample time of a discrete approximation to the continuous system.For discrete-time systems with a specified sample time,

`dt`

must match the sample time property`Ts`

of`sys`

.For discrete-time systems with an unspecified sample time (

`Ts = -1`

),`dt`

must be`1`

.

`[]`

— Automatically select time values based on system dynamics.

When you specify a time range using either `tFinal`

or `[t0 tFinal]`

:

For continuous-time systems, the function automatically determines the size of the time step and number of points based on the system dynamics.

For discrete-time systems with a specified sample time, the function uses the sample time of

`sys`

as the step size.For discrete-time systems with unspecified sample time (

`Ts = -1`

), the function interprets`tFinal`

as the number of sampling periods to simulate with a sample time of 1 second.

Express `t`

using the time units specified in the
`TimeUnit`

property of `sys`

.

If you specified a step delay `td`

using `config`

, the
function applies the step at `t = t0+td`

.

`Config`

— Response configuration options

`RespConfig`

object

Response configuration options, specified as a `RespConfig`

object.

`Name`

— Response name

string | character vector

Response name, specified as a string or character vector and stored as a string.

`Visible`

— Response visibility

`"on"`

(default) | on/off logical value

Response visibility, specified as one of the following logical on/off values:

`"on"`

,`1`

, or`true`

— Display the response in the plot.`"off"`

,`0`

, or`false`

— Do not display the response in the plot.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

.

`LegendDisplay`

— Option to list response in legend

`"on"`

(default) | on/off logical value

Option to list response in legend, specified as one of the following logical on/off values:

`"on"`

,`1`

, or`true`

— List the response in the legend.`"off"`

,`0`

, or`false`

— Do not list the response in the legend.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

.

`MarkerStyle`

— Marker style

`"none"`

| `"o"`

| `"+"`

| `"*"`

| `"."`

| ...

Marker style, specified as one of the following values.

Marker | Description |
---|---|

`"none"` | No marker |

`"o"` | Circle |

`"+"` | Plus sign |

`"*"` | Asterisk |

`"."` | Point |

`"x"` | Cross |

`"_"` | Horizontal line |

`"|"` | Vertical line |

`"s"` | Square |

`"d"` | Diamond |

`"^"` | Upward-pointing triangle |

`"v"` | Downward-pointing triangle |

`">"` | Right-pointing triangle |

`"<"` | Left-pointing triangle |

`"p"` | Pentagram |

`"h"` | Hexagram |

`Color`

— Plot color

RGB triplet | hexadecimal color code | color name

Plot color, specified as an RGB triplet or a hexadecimal color code and stored as an RGB triplet.

Alternatively, you can specify some common colors by name. The following table lists these colors and their corresponding RGB triplets and hexadecimal color codes.

Color Name | RGB Triplet | Hexadecimal Color Code |
---|---|---|

| `[1 0 0]` | `#FF0000` |

| `[0 1 0]` | `#00FF00` |

| `[0 0 1]` | `#0000FF` |

| `[0 1 1]` | `#00FFFF` |

| `[1 0 1]` | `#FF00FF` |

| `[1 1 0]` | `#FFFF00` |

| `[0 0 0]` | `#000000` |

| `[1 1 1]` | `#FFFFFF` |

`LineStyle`

— Line style

`"-"`

| `"--"`

| `":"`

| `"-."`

Line style, specified as one of the following values.

Line Style | Description |
---|---|

`"-"` | Solid line |

`"--"` | Dashed line |

`":"` | Dotted line |

`"-."` | Dash-dotted line |

`MarkerSize`

— Marker size

positive scalar

Marker size, specified as a positive scalar.

`LineWidth`

— Line width

positive scalar

Line width, specified as a positive scalar.

`Characteristics`

— Response characteristics

`CharacteristicsManager`

object

Response characteristics to display in the plot, specified as a
`CharacteristicsManager`

object with the following properties.

`PeakResponse`

— Peak response

`CharacteristicOption`

object

Peak response, specified as a `CharacteristicOption`

object with the following
property.

`Visible`

— Peak response visibility

`"off"`

(default) | on/off logical value

Peak response visibility, specified as one of the following logical on/off values:

`"on"`

,`1`

, or`true`

— Display the peak response.`"off"`

,`0`

, or`false`

— Do not display the peak response.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

.

`TransientTime`

— Transient time

`CharacteristicOption`

object

Transient time, specified as a `CharacteristicOption`

object with the following
properties.

`Threshold`

— Threshold for detecting steady state

`0.02`

(default) | scalar value between 0 and 1

Threshold for detecting steady state, specified as a scalar value between
0 and 1. For example, to measure when the response remains with 5% of the
steady-state value, set a threshold value of `0.05`

.

`Visible`

— Transient time visibility

`"off"`

(default) | on/off logical value

Transient time visibility, specified as one of the following logical on/off values:

`"on"`

,`1`

, or`true`

— Display the peak response.`"off"`

,`0`

, or`false`

— Do not display the peak response.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

.

`ConfidenceRegion`

— Confidence region

`CharacteristicOption`

object

Confidence region for identified models, specified as a
`CharacteristicOption`

object with the following properties.

`Visible`

— Confidence region visibility

`"off"`

(default) | on/off logical value

Confidence region visibility, specified as one of the following logical on/off values:

`"on"`

,`1`

, or`true`

— Display the confidence region.`"off"`

,`0`

, or`false`

— Do not display the confidence region.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

.

`NumberOfStandardDeviations`

— Number of standard deviations

`1`

(default) | positive scalar

Number of standard deviations to display for the confidence region, specified as a positive scalar.

#### Dependencies

`ConfidenceRegion`

is supported only for identified
models.

`TimeUnit`

— Time units

`"seconds"`

| `"milliseconds"`

| `"minutes"`

| ...

Time units, specified as one of the following values:

`"nanoseconds"`

`"microseconds"`

`"milliseconds"`

`"seconds"`

`"minutes"`

`"hours"`

`"days"`

`"weeks"`

`"months"`

`"years"`

#### Dependencies

By default, the response uses the time units of the plotted linear system. You can override the default units by specifying toolbox preferences. For more information, see Specify Toolbox Preferences for Linear Analysis Plots.

`Normalize`

— Option to normalize plot

`"off"`

(default) | on/off logical value

Option to normalize plot, specified as one of the following logical on/off values:

`"on"`

,`1`

, or`true`

— Normalize the plot.`"off"`

,`0`

, or`false`

— Do not normalize the plot.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

.

`Visible`

— Chart visibility

`"on"`

(default) | on/off logical value

Chart visibility, specified as one of the following logical on/off values:

`"on"`

,`1`

, or`true`

— Display the chart.`"off"`

,`0`

, or`false`

— Hide the chart without deleting it. You still can access the properties of chart when it is not visible.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

.

`IOGrouping`

— Grouping of inputs and outputs pairs

`"none"`

(default) | `"inputs"`

| `"outputs"`

| `"all"`

Grouping of inputs and outputs pairs, specified as one of the following:

`"none"`

— Do not group inputs or outputs.`"inputs"`

— Group only inputs.`"outputs"`

— Group only outputs.`"all"`

— Group all input-output pairs.

`InputVisible`

— Option to display inputs

on/off logical value | array of on/off logical values

Option to display inputs, specified as one of the following logical on/off values or an array of such values:

`"on"`

,`1`

, or`true`

— Display the corresponding input.`"off"`

,`0`

, or`false`

— Hide the corresponding input.

`InputVisible`

is an array when the plotted system has multiple inputs. By
default, all inputs are visible in the plot.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

or an array of such values.

`OutputVisible`

— Option to display outputs

on/off logical value | array of on/off logical values

Option to display outputs, specified as one of the following logical on/off values or an array of such values:

`"on"`

,`1`

, or`true`

— Display the corresponding output.`"off"`

,`0`

, or`false`

— Hide the corresponding output.

`OutputVisible`

is an array when the plotted system has multiple outputs.
By default, all outputs are visible in the plot.

The value is stored as an on/off logical value of type `matlab.lang.OnOffSwitchState`

or an array of such values.

## Object Functions

`addResponse` | Add dynamic system response to existing response plot |

`showConfidence` | Display confidence regions on response plots for identified models |

## Examples

### Customize Impulse Plot Using Chart Object

Generate a random state-space model with 5 states and create the impulse response plot with chart object `ip`

.

```
rng("default")
sys = rss(5);
ip = impulseplot(sys);
```

Change the time units to minutes and turn on the grid.

ip.TimeUnit = "minutes"; grid on

The impulse plot automatically updates when you modify the chart object properties.

### Impulse Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create an impulse plot with red colored grid lines.

Create the MIMO state-space model `sys_mimo`

.

J = [8 -3 -3; -3 8 -3; -3 -3 8]; F = 0.2*eye(3); A = -J\F; B = inv(J); C = eye(3); D = 0; sys_mimo = ss(A,B,C,D); size(sys_mimo)

State-space model with 3 outputs, 3 inputs, and 3 states.

Create an impulse plot with chart object `ip`

and display the grid.

```
ip = impulseplot(sys_mimo);
grid on
```

Set the grid color to red.

ip.AxesStyle.GridColor = [1 0 0];

The impulse plot automatically updates when you modify the chart object. For MIMO models, `impulseplot`

produces a grid of plots, each plot displaying the impulse response of one I/O pair.

### Plot Impulse Responses of Identified Models with Confidence Region

Compare the impulse response of a parametric identified model to a nonparametric (empirical) model, and view their 3-σ confidence regions. (Identified models require System Identification Toolbox™ software.)

Identify a parametric and a nonparametric model from sample data.

load iddata1 z1 sys1 = ssest(z1,4); sys2 = impulseest(z1);

Plot the impulse responses of both identified models. Use the plot handle to display the 3-σ confidence regions.

t = -1:0.1:5; h = impulseplot(sys1,'r',sys2,'b',t); showConfidence(h,3) legend('parametric','nonparametric')

ans = Legend (parametric, nonparametric) with properties: String: {'parametric' 'nonparametric'} Location: 'northeast' Orientation: 'vertical' FontSize: 9 Position: [0.6361 0.7695 0.2499 0.0789] Units: 'normalized' Use GET to show all properties

The nonparametric model `sys2`

shows higher uncertainty.

### Customized Impulse Response Plot at Specified Time

For this example, examine the impulse response of the following zero-pole-gain model and limit the impulse plot to `tFinal`

= 15 s. Use 15-point blue text for the title.

sys = zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]); tFinal = 15;

Create the impulse response plot and specify the title size and color..

ip = impulseplot(sys,tFinal); ip.Title.FontSize = 15; ip.Title.Color = [0 0 1];

## Version History

**Introduced in R2012a**

## See Also

### Topics

- Customize Linear Analysis Plots at Command Line (Control System Toolbox)

## MATLAB Command

You clicked a link that corresponds to this MATLAB command:

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)