Documentation

This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.

cot

Cotangent of angle in radians

Syntax

Description

example

Y = cot(X) returns the cotangent of elements of X. The cot function operates element-wise on arrays. The function accepts both real and complex inputs. For real values of X in the interval [-Inf,Inf], cot returns real values in the interval [-Inf,Inf].. For complex values of X, cot returns complex values. All angles are in radians.

Examples

collapse all

Plot Cotangent Function

Plot the cotangent function over the domain $-\pi<x<0$ and $0<x<\pi$ .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

Cotangent of Vector of Complex Angles

Calculate the cotangent of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = cot(x)
y =

   0.0000 + 1.3130i  -0.0000 - 1.0903i  -0.0006 - 0.9997i

Input Arguments

collapse all

X — Input angle in radiansnumber | vector | matrix | multidimensional array

Input angle in radians, specified as a number, vector, matrix, or multidimensional array.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

collapse all

Y — Cotangent of input anglescalar value | vector | matrix | N-D array

Cotangent of input angle, returned as a real-valued or complex-valued scalar, vector, matrix or N-D array.

More About

collapse all

Cotangent Function

The cotangent of an angle, α, defined with reference to a right angled triangle is

cot(α)=1tan(α)=adjacent sideopposite side=ba.

.

The cotangent of a complex angle α is

cot(α)=i(eiα+eiα)(eiαeiα).

.

See Also

| | | |

Introduced before R2006a

Was this topic helpful?