Documentation

This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

cot

Syntax

``Y = cot(X)``

Description

example

````Y = cot(X)` returns the cotangent of elements of `X`. The `cot` function operates element-wise on arrays. The function accepts both real and complex inputs. For real values of `X` in the interval [-Inf,Inf], `cot` returns real values in the interval [-Inf,Inf].. For complex values of `X`, `cot` returns complex values. All angles are in radians.```

Examples

collapse all

Plot the cotangent function over the domain and .

```x1 = -pi+0.01:0.01:-0.01; x2 = 0.01:0.01:pi-0.01; plot(x1,cot(x1),x2,cot(x2)), grid on```

Calculate the cotangent of the complex angles in vector `x`.

```x = [-i pi+i*pi/2 -1+i*4]; y = cot(x)```
```y = 0.0000 + 1.3130i -0.0000 - 1.0903i -0.0006 - 0.9997i ```

Input Arguments

collapse all

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: `single` | `double`
Complex Number Support: Yes

Output Arguments

collapse all

Cotangent of input angle, returned as a real-valued or complex-valued scalar, vector, matrix or multidimensional array.

collapse all

Cotangent Function

The cotangent of an angle, α, defined with reference to a right angled triangle is

.

The cotangent of a complex angle α is

`$\text{cot}\left(\alpha \right)=\frac{i\left({e}^{i\alpha }+{e}^{-i\alpha }\right)}{\left({e}^{i\alpha }-{e}^{-i\alpha }\right)}\text{\hspace{0.17em}}.$`
.