Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

toposort

Topological order of directed acyclic graph

Syntax

n = toposort(G)
n = toposort(G,'Order',algorithm)
[n,H] = toposort(___)

Description

example

n = toposort(G) returns the topological order of the nodes in G such that i < j for every edge (n(i),n(j)) in G. The directed graph G cannot have any cycles.

example

n = toposort(G,'Order',algorithm) specifies the ordering algorithm. For example, toposort(G,'Order','stable') uses a stable ordering algorithm based on the lexicographical order of the nodes.

example

[n,H] = toposort(___) additionally returns directed graph H whose nodes are in the given topological order. You can use any of the input argument combinations in previous syntaxes.

Examples

collapse all

Create and plot a graph that represents a progression of university-level Mathematics courses. An edge between two courses signifies a course requirement.

A = [0 1 1 0 0 0 0
     0 0 0 1 0 0 0
     0 1 0 1 0 0 1
     0 0 0 0 1 1 0
     0 0 0 0 0 0 0
     0 0 0 0 1 0 0
     0 0 0 0 1 0 0];
names = {'Calculus I','Linear Algebra','Calculus II', ...
    'Multivariate Calculus','Topology', ...
    'Differential Equations','Real Analysis'};
G = digraph(A,names);
plot(G)

Find the topological sorting of the courses to determine the proper order in which they should be completed.

N = toposort(G)
N = 

     1     3     7     2     4     6     5

G.Nodes.Name(N,:)
ans = 7x1 cell array
    {'Calculus I'            }
    {'Calculus II'           }
    {'Real Analysis'         }
    {'Linear Algebra'        }
    {'Multivariate Calculus' }
    {'Differential Equations'}
    {'Topology'              }

Create a directed graph using a logical adjacency matrix, and then plot the graph.

rng default;
A = tril(sprand(10, 10, 0.3), -1)~=0;
G = digraph(A);
[~,G] = toposort(G);
plot(G)

Find the topological sorting of the graph nodes. Even though G is already in topological order, (1 2 3 4 5 6 7 8 9 10), toposort reorders the nodes.

toposort(G)
ans = 

     2     1     4    10     9     8     5     7     3     6

Specify Order as 'stable' to use the stable ordering algorithm, so that the sort orders the nodes with smaller indices first. Stable sort does not rearrange G if it is already in topological order.

toposort(G,'Order','stable')
ans = 

     1     2     3     4     5     6     7     8     9    10

Input Arguments

collapse all

Input graph, specified as a digraph object. G must be a directed acyclic graph. Use isdag to confirm that G does not contain cycles.

Use digraph to create a directed graph.

Example: G = digraph([1 2],[2 3])

Ordering algorithm, specified as 'fast' or 'stable':

'fast' (default)

Based on a depth-first search. A node is added to the beginning of the list after considering all of its descendents.

If G is already in topological order, this method might still reorder the nodes.

'stable'

Based on lexicographical order. n(1) is the node with smallest index, n(2) the next smallest given n(1), and so on.

If G is in topological order then H is unchanged and n is 1:numnodes(G).

Example: [n,H] = toposort(G,'Order','stable')

Data Types: char

Output Arguments

collapse all

Node indices, returned as a row vector.

Topologically sorted graph, returned as a digraph object. H is the same graph as G, but has the nodes reordered according to n.

More About

collapse all

Topological Order

The topological ordering of a directed graph is an ordering of the nodes in the graph such that each node appears before its successors (descendents).

Consider a directed graph whose nodes represent tasks and whose edges represent dependencies that certain tasks must be completed before others. For such a graph, the topological sorting of the graph nodes produces a valid sequence in which the tasks could be performed.

Introduced in R2015b

Was this topic helpful?