This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.


Matrix polynomial evaluation


Y = polyvalm(p,X)



Y = polyvalm(p,X) returns the evaluation of polynomial p in a matrix sense. This evaluation is the same as substituting matrix X in the polynomial, p.


collapse all

Find the characteristic polynomial of a Pascal Matrix of order 4.

X =  pascal(4)
X = 

     1     1     1     1
     1     2     3     4
     1     3     6    10
     1     4    10    20

p = poly(X)
p = 

    1.0000  -29.0000   72.0000  -29.0000    1.0000

The characteristic polynomial is

Pascal matrices have the property that the vector of coefficients of the characteristic polynomial is the same forward and backward (palindromic).

Substitute the matrix, X, into the characteristic equation, p. The result is very close to being a zero matrix. This example is an instance of the Cayley-Hamilton theorem, where a matrix satisfies its own characteristic equation.

Y = polyvalm(p,X)
Y = 

   1.0e-10 *

   -0.0013   -0.0063   -0.0104   -0.0241
   -0.0048   -0.0217   -0.0358   -0.0795
   -0.0114   -0.0510   -0.0818   -0.1805
   -0.0228   -0.0970   -0.1553   -0.3396

Input Arguments

collapse all

Polynomial coefficients, specified as a vector. For example, the vector [1 0 1] represents the polynomial x2+1, and the vector [3.13 -2.21 5.99] represents the polynomial 3.13x22.21x+5.99.

For more information, see Create and Evaluate Polynomials.

Data Types: single | double
Complex Number Support: Yes

Input matrix, specified as a square matrix.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

collapse all

Output polynomial coefficients, returned as a row vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced before R2006a

Was this topic helpful?