# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

# qrinsert

Insert column or row into QR factorization

## Syntax

```[Q1,R1] = qrinsert(Q,R,j,x) [Q1,R1] = qrinsert(Q,R,j,x,'col') [Q1,R1] = qrinsert(Q,R,j,x,'row') ```

## Description

`[Q1,R1] = qrinsert(Q,R,j,x)` returns the QR factorization of the matrix `A1`, where `A1` is ```A = Q*R``` with the column `x` inserted before `A(:,j)`. If `A` has `n` columns and ```j = n+1```, then `x` is inserted after the last column of `A`.

`[Q1,R1] = qrinsert(Q,R,j,x,'col')` is the same as `qrinsert(Q,R,j,x)`.

`[Q1,R1] = qrinsert(Q,R,j,x,'row')` returns the QR factorization of the matrix `A1`, where `A1` is ```A = Q*R``` with an extra row, `x`, inserted before `A(j,:)`.

## Examples

```A = magic(5); [Q,R] = qr(A); j = 3; x = 1:5; [Q1,R1] = qrinsert(Q,R,j,x,'row') Q1 = 0.5231 0.5039 -0.6750 0.1205 0.0411 0.0225 0.7078 -0.6966 0.0190 -0.0788 0.0833 -0.0150 0.0308 0.0592 0.0656 0.1169 0.1527 -0.9769 0.1231 0.1363 0.3542 0.6222 0.6398 0.2104 0.3077 0.1902 0.4100 0.4161 -0.7264 -0.0150 0.3385 0.4500 0.4961 -0.6366 0.1761 0.0225 R1 = 32.4962 26.6801 21.4795 23.8182 26.0031 0 19.9292 12.4403 2.1340 4.3271 0 0 24.4514 11.8132 3.9931 0 0 0 20.2382 10.3392 0 0 0 0 16.1948 0 0 0 0 0```

returns a valid QR factorization, although possibly different from

```A2 = [A(1:j-1,:); x; A(j:end,:)]; [Q2,R2] = qr(A2) Q2 = -0.5231 0.5039 0.6750 -0.1205 0.0411 0.0225 -0.7078 -0.6966 -0.0190 0.0788 0.0833 -0.0150 -0.0308 0.0592 -0.0656 -0.1169 0.1527 -0.9769 -0.1231 0.1363 -0.3542 -0.6222 0.6398 0.2104 -0.3077 0.1902 -0.4100 -0.4161 -0.7264 -0.0150 -0.3385 0.4500 -0.4961 0.6366 0.1761 0.0225 R2 = -32.4962 -26.6801 -21.4795 -23.8182 -26.0031 0 19.9292 12.4403 2.1340 4.3271 0 0 -24.4514 -11.8132 -3.9931 0 0 0 -20.2382 -10.3392 0 0 0 0 16.1948 0 0 0 0 0```

## Algorithms

The `qrinsert` function inserts the values of `x` into the `j`th column (row) of `R`. It then uses a series of Givens rotations to zero out the nonzero elements of `R` on and below the diagonal in the `j`th column (row). [1]

## References

[1] Golub, Gene H., and Charles F. Van Loan. Matrix Computations. 4th ed. Baltimore, MD: Johns Hopkins University Press, 2013, Sections 6.5.2–6.5.3, pp. 335–338.

## See Also

#### Introduced before R2006a

Was this topic helpful?

#### The Manager's Guide to Solving the Big Data Conundrum

Download white paper