Partial fraction expansion (partial fraction decomposition)

`[`

finds
the residues, poles, and direct term of a Partial Fraction Expansion of the ratio of two polynomials,
where the expansion is of the form`r`

,`p`

,`k`

]
= residue(`b`

,`a`

)

$$\frac{b(s)}{a(s)}=\frac{{b}_{m}{s}^{m}+{b}_{m-1}{s}^{m-1}+\dots +{b}_{1}s+{b}_{0}}{{a}_{n}{s}^{n}+{a}_{n-1}{s}^{n-1}+\dots +{a}_{1}s+{a}_{0}}=\frac{{r}_{n}}{s-{p}_{n}}+\mathrm{...}+\frac{{r}_{2}}{s-{p}_{2}}+\frac{{r}_{1}}{s-{p}_{1}}+k\left(s\right).$$

The inputs to `residue`

are vectors of coefficients
of the polynomials `b = [bm ... b1 b0]`

and ```
a
= [an ... a1 a0]
```

. The outputs are the residues ```
r
= [rn ... r2 r1]
```

, the poles `p = [pn ... p2 p1]`

,
and the polynomial `k`

. For most textbook problems, `k`

is `0`

or
a constant.

[1] Oppenheim, A.V. and R.W. Schafer. *Digital
Signal Processing*. Prentice-Hall, 1975, p. 56.

Was this topic helpful?