Documentation

This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.

rosser

Classic symmetric eigenvalue test problem

Syntax

Description

example

A = rosser returns the Rosser matrix in double precision.

example

A = rosser(classname) returns the Rosser matrix with a class specified by classname. Specify classname as 'single' to return the Rosser matrix in single precision.

Examples

collapse all

Generate the Rosser matrix

rosser returns the Rosser matrix.

rosser
ans =

   611   196  -192   407    -8   -52   -49    29
   196   899   113  -192   -71   -43    -8   -44
  -192   113   899   196    61    49     8    52
   407  -192   196   611     8    44    59   -23
    -8   -71    61     8   411  -599   208   208
   -52   -43    49    44  -599   411   208   208
   -49    -8     8    59   208   208    99  -911
    29   -44    52   -23   208   208  -911    99

Generate matrix of class ‘single'

Specify classname as single to return a Rosser matrix of that class.

Y = rosser('single')
Y =

   611   196  -192   407    -8   -52   -49    29
   196   899   113  -192   -71   -43    -8   -44
  -192   113   899   196    61    49     8    52
   407  -192   196   611     8    44    59   -23
    -8   -71    61     8   411  -599   208   208
   -52   -43    49    44  -599   411   208   208
   -49    -8     8    59   208   208    99  -911
    29   -44    52   -23   208   208  -911    99

whos('Y')
  Name      Size            Bytes  Class     Attributes

  Y         8x8               256  single              

Input Arguments

collapse all

classname — Input class'double' (default) | 'single'

Input class, specified as 'double' (default) or 'single'. rosser(C) produces a matrix of the specified class.

More About

collapse all

Rosser Matrix

The Rosser matrix is a well known matrix used, for example, to evaluate eigenvalue algorithms. The matrix is 8-by-8 with integer elements. It has:

  • A double eigenvalue

  • Three nearly equal eigenvalues

  • Dominant eigenvalues of the opposite sign

  • A zero eigenvalue

  • A small, nonzero eigenvalue

See Also

Introduced before R2006a

Was this topic helpful?