Secant of angle in radians




Y = sec(X) returns the secant of the elements of X. The sec function operates element-wise on arrays. The function accepts both real and complex inputs. For real values of X in the interval [-Inf, Inf], sec returns real values in the interval [-Inf ,-1] and [1,Inf]. For complex values of X, sec returns complex values. All angles are in radians.


collapse all

Plot Secant Function

Plot the secant over the domain $-\pi/2<x<\pi/2$ and $\pi/2<x<3\pi/2$ .

x1 = -pi/2+0.01:0.01:pi/2-0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2)), grid on

Secant of Vector of Complex Angles

Calculate the secant of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = sec(x)
y =

   0.6481 + 0.0000i  -0.3985 + 0.0000i   0.0198 - 0.0308i

Input Arguments

collapse all

X — Input angle in radiansnumber | vector | matrix | multidimensional array

Input angle in radians, specified as a number, vector, matrix, or multidimensional array.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

collapse all

Y — Secant of input anglescalar value | vector | matrix | N-D array

Secant of input angle, returned as real-valued or complex-valued scalar value, vector, matrix or N-D array.

More About

expand all

Secant Function

The secant of an angle, α, defined with reference to a right angled triangle is

sec(α)=1cos(α)=hypotenuseadjacent side=hb.

The secant of a complex angle, α, is


See Also

| | | |

Introduced before R2006a

Was this topic helpful?