Documentation

This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.

sec

Secant of angle in radians

Syntax

Description

example

Y = sec(X) returns the secant of the elements of X. The sec function operates element-wise on arrays. The function accepts both real and complex inputs. For real values of X in the interval [-Inf, Inf], sec returns real values in the interval [-Inf ,-1] and [1,Inf]. For complex values of X, sec returns complex values. All angles are in radians.

Examples

collapse all

Plot Secant Function

Plot the secant over the domain $-\pi/2<x<\pi/2$ and $\pi/2<x<3\pi/2$ .

x1 = -pi/2+0.01:0.01:pi/2-0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2)), grid on

Secant of Vector of Complex Angles

Calculate the secant of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = sec(x)
y =

   0.6481 + 0.0000i  -0.3985 + 0.0000i   0.0198 - 0.0308i

Input Arguments

collapse all

X — Input angle in radiansnumber | vector | matrix | multidimensional array

Input angle in radians, specified as a number, vector, matrix, or multidimensional array.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

collapse all

Y — Secant of input anglescalar value | vector | matrix | N-D array

Secant of input angle, returned as real-valued or complex-valued scalar value, vector, matrix or N-D array.

More About

collapse all

Secant Function

The secant of an angle, α, defined with reference to a right angled triangle is

sec(α)=1cos(α)=hypotenuseadjacent side=hb.

The secant of a complex angle, α, is

sec(α)=2eiα+eiα.

See Also

| | | |

Introduced before R2006a

Was this topic helpful?