Economic MPC

Economic model predictive controllers optimize control actions to satisfy generic economic or performance cost functions. The name Economic MPC derives from applications in which the cost function to minimize is the operating cost of the system under control.

Traditional implicit MPC controllers minimize a quadratic performance criterion (cost function) using a linear prediction model.

A quadratic cost function is adequate for tracking specified output and manipulated variable references. However, some applications can require optimizing for performance criteria, such as fuel consumption or production rates. Such performance criteria can be a combination of linear or nonlinear functions of the system states, inputs, or outputs.

An economic MPC controller:

  • Can use a linear or nonlinear prediction model

  • Uses your generic performance cost function instead of (or in addition to) the built-in quadratic cost function

  • Computes optimal control moves by solving a nonlinear optimization problem using the SQP algorithm in fmincon (Optimization Toolbox)

To implement an economic MPC controller, create a nonlinear MPC controller object, and specify:

For more information on nonlinear MPC controller objects, see nlmpc.

You can simulate economic MPC controllers:


Designing an economic MPC controller using the MPC Designer app is not supported.

An economic MPC controller requires Optimization Toolbox™ software.

See Also



Related Topics