<table>
<thead>
<tr>
<th>Date</th>
<th>Edition</th>
<th>Revision History</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2004</td>
<td>Online only</td>
<td>New for Version 1.0 (Release 13SP1+)</td>
</tr>
<tr>
<td>June 2004</td>
<td>First printing</td>
<td>Revised for Version 1.0.1 (Release 14)</td>
</tr>
<tr>
<td>October 2004</td>
<td>Online only</td>
<td>Revised for Version 1.0.2 (Release 14SP1)</td>
</tr>
<tr>
<td>March 2005</td>
<td>Online only</td>
<td>Revised for Version 1.0.3 (Release 14SP2)</td>
</tr>
<tr>
<td>September 2005</td>
<td>Second printing</td>
<td>Revised for Version 2.0 (Release 14SP3)</td>
</tr>
<tr>
<td>March 2006</td>
<td>Online only</td>
<td>Revised for Version 2.0.1 (Release 2006a)</td>
</tr>
<tr>
<td>September 2006</td>
<td>Online only</td>
<td>Revised for Version 2.0.2 (Release 2006b)</td>
</tr>
<tr>
<td>March 2007</td>
<td>Online only</td>
<td>Revised for Version 2.1 (Release 2007a)</td>
</tr>
<tr>
<td>September 2007</td>
<td>Third printing</td>
<td>Revised for Version 2.2 (Release 2007b)</td>
</tr>
<tr>
<td>March 2008</td>
<td>Online only</td>
<td>Revised for Version 2.3 (Release 2008a)</td>
</tr>
<tr>
<td>October 2008</td>
<td>Online only</td>
<td>Revised for Version 2.3.1 (Release 2009a)</td>
</tr>
<tr>
<td>March 2009</td>
<td>Online only</td>
<td>Revised for Version 2.3.2 (Release 2009b)</td>
</tr>
<tr>
<td>September 2009</td>
<td>Online only</td>
<td>Revised for Version 3.0 (Release 2010a)</td>
</tr>
<tr>
<td>March 2010</td>
<td>Online only</td>
<td>Revised for Version 3.1 (Release 2010b)</td>
</tr>
<tr>
<td>September 2010</td>
<td>Online only</td>
<td>Revised for Version 3.1.1 (Release 2011a)</td>
</tr>
<tr>
<td>April 2011</td>
<td>Online only</td>
<td>Revised for Version 3.1.2 (Release 2011b)</td>
</tr>
<tr>
<td>September 2011</td>
<td>Online only</td>
<td>Revised for Version 3.2.1 (Release 2012a)</td>
</tr>
<tr>
<td>March 2012</td>
<td>Online only</td>
<td>Revised for Version 3.2.2 (Release 2012b)</td>
</tr>
<tr>
<td>September 2012</td>
<td>Online only</td>
<td>Revised for Version 3.2.3 (Release 2013a)</td>
</tr>
<tr>
<td>March 2013</td>
<td>Online only</td>
<td>Revised for Version 3.2.4 (Release 2013b)</td>
</tr>
<tr>
<td>September 2013</td>
<td>Online only</td>
<td>Revised for Version 3.2.5 (Release 2014a)</td>
</tr>
<tr>
<td>March 2014</td>
<td>Online only</td>
<td>Revised for Version 3.3 (Release 2014b)</td>
</tr>
<tr>
<td>October 2014</td>
<td>Online only</td>
<td>Revised for Version 3.3.1 (Release 2015a)</td>
</tr>
<tr>
<td>March 2015</td>
<td>Online only</td>
<td>Revised for Version 3.3.2 (Release 2015b)</td>
</tr>
<tr>
<td>September 2015</td>
<td>Online only</td>
<td>Revised for Version 3.4 (Release 2016a)</td>
</tr>
<tr>
<td>March 2016</td>
<td>Online only</td>
<td>Revised for Version 3.4.1 (Release 2016b)</td>
</tr>
<tr>
<td>September 2016</td>
<td>Online only</td>
<td>Revised for Version 3.4.2 (Release 2017a)</td>
</tr>
<tr>
<td>March 2017</td>
<td>Online only</td>
<td>Revised for Version 3.4.3 (Release 2017b)</td>
</tr>
<tr>
<td>September 2017</td>
<td>Online only</td>
<td>Revised for Version 3.4.4 (Release 2018a)</td>
</tr>
<tr>
<td>March 2018</td>
<td>Online only</td>
<td>Revised for Version 4.0 (Release 2018b)</td>
</tr>
<tr>
<td>September 2018</td>
<td>Online only</td>
<td>Revised for Version 4.1 (Release 2019a)</td>
</tr>
</tbody>
</table>
Getting Started

Introducing Global Optimization Toolbox Functions

Global Optimization Toolbox Product Description 1-2
 Key Features .. 1-2

Comparison of Six Solvers .. 1-3
 Function to Optimize ... 1-3
 Six Solution Methods ... 1-4
 Compare Syntax and Solutions 1-11

Solver Behavior with a Nonsmooth Problem 1-13

What Is Global Optimization? 1-22
 Local vs. Global Optima 1-22
 Basins of Attraction .. 1-23

Optimization Workflow ... 1-28

Table for Choosing a Solver 1-29

Global Optimization Toolbox Solver Characteristics 1-31
 Solver Choices .. 1-31
 Explanation of “Desired Solution” 1-32
 Choosing Between Solvers for Smooth Problems 1-34
 Choosing Between Solvers for Nonsmooth Problems 1-35
 Solver Characteristics ... 1-36
 Why Are Some Solvers Objects? 1-39
Write Files for Optimization Functions

2

Compute Objective Functions .. 2-2
 Objective (Fitness) Functions 2-2
 Write a Function File .. 2-2
 Write a Vectorized Function 2-3
 Gradients and Hessians 2-4

Maximizing vs. Minimizing .. 2-6

Write Constraints .. 2-8
 Consult Optimization Toolbox Documentation 2-8
 Set Bounds .. 2-8
 Ensure ga Options Maintain Feasibility 2-9
 Gradients and Hessians 2-9
 Vectorized Constraints 2-9

Set and Change Options .. 2-12

View Options .. 2-14

Using GlobalSearch and MultiStart

3

Problems That GlobalSearch and MultiStart Can Solve 3-2

Workflow for GlobalSearch and MultiStart 3-3

Create Problem Structure .. 3-5
 About Problem Structures 3-5
 Using the createOptimProblem Function 3-5
 Exporting from the Optimization app 3-8

Create Solver Object .. 3-13
 What Is a Solver Object? 3-13
 Properties (Global Options) of Solver Objects 3-13
 Creating a Nondefault GlobalSearch Object 3-15
 Creating a Nondefault MultiStart Object 3-15
Using Direct Search

What Is Direct Search? .. 4-2

Optimize Using the GPS Algorithm 4-3
 Objective Function ... 4-3
 Finding the Minimum of the Function 4-4
 Plotting the Objective Function Values and Mesh Sizes 4-6

Coding and Minimizing an Objective Function Using Pattern Search ... 4-9

Constrained Minimization Using Pattern Search 4-14

Effects of Some Pattern Search Options 4-19

Pattern Search Terminology 4-27
 Patterns ... 4-27
 Meshes ... 4-28
 Polling ... 4-29
 Expanding and Contracting 4-29

How Pattern Search Polling Works 4-30
 Context ... 4-30
 Successful Polls .. 4-31
 An Unsuccessful Poll ... 4-34
 Successful and Unsuccessful Polls in MADS 4-35
 Displaying the Results at Each Iteration 4-35
 More Iterations .. 4-36
 Poll Method .. 4-37
 Complete Poll .. 4-39
 Stopping Conditions for the Pattern Search 4-39
 Robustness of Pattern Search 4-41
Vectorize the Objective and Constraint Functions 4-111
 Vectorize for Speed .. 4-111
 Vectorized Objective Function 4-111
 Vectorized Constraint Functions 4-114
 Example of Vectorized Objective and Constraints 4-114

Optimize an ODE in Parallel 4-116

Optimization of Stochastic Objective Function 4-128

Using the Genetic Algorithm

What Is the Genetic Algorithm? 5-3

Minimize Rastrigin's Function 5-5
 Rastrigin's Function .. 5-5
 Finding the Minimum of Rastrigin's Function 5-7
 Finding the Minimum from the Command Line 5-9
 Displaying Plots ... 5-10

Genetic Algorithm Terminology 5-15
 Fitness Functions .. 5-15
 Individuals .. 5-15
 Populations and Generations 5-15
 Diversity .. 5-16
 Fitness Values and Best Fitness Values 5-16
 Parents and Children 5-17

How the Genetic Algorithm Works 5-18
 Outline of the Algorithm 5-18
 Initial Population ... 5-19
 Creating the Next Generation 5-19
 Plots of Later Generations 5-21
 Stopping Conditions for the Algorithm 5-22
 Selection .. 5-25
 Reproduction Options 5-25
 Mutation and Crossover 5-26
Coding and Minimizing a Fitness Function Using the Genetic Algorithm .. 5-28

Constrained Minimization Using the Genetic Algorithm 5-34

Genetic Algorithm Options ... 5-40

Mixed Integer Optimization ... 5-50
 Solving Mixed Integer Optimization Problems 5-50
 Characteristics of the Integer ga Solver 5-52
 Effective Integer ga .. 5-58
 Integer ga Algorithm ... 5-59

Solving a Mixed Integer Engineering Design Problem Using
the Genetic Algorithm ... 5-60

Nonlinear Constraint Solver Algorithms 5-72
 Augmented Lagrangian Genetic Algorithm 5-72
 Penalty Algorithm ... 5-74

Create Custom Plot Function .. 5-75
 About Custom Plot Functions ... 5-75
 Creating the Custom Plot Function 5-75
 Using the Plot Function .. 5-76
 How the Plot Function Works ... 5-77

Reproduce Results in Optimization App 5-80

Resume ga .. 5-81
 Resuming ga From the Final Population 5-81
 Resuming ga From a Previous Run 5-85

Options and Outputs ... 5-87
 Running ga with the Default Options 5-87
 Setting Options at the Command Line 5-88
 Additional Output Arguments ... 5-89

Use Exported Options and Problems 5-90

Reproduce Results ... 5-92

Run ga from a File ... 5-94
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Diversity</td>
<td>5-97</td>
</tr>
<tr>
<td>Importance of Population Diversity</td>
<td>5-97</td>
</tr>
<tr>
<td>Setting the Initial Range</td>
<td>5-97</td>
</tr>
<tr>
<td>Custom Plot Function and Linear Constraints in ga</td>
<td>5-102</td>
</tr>
<tr>
<td>Setting the Population Size</td>
<td>5-106</td>
</tr>
<tr>
<td>Fitness Scaling</td>
<td>5-108</td>
</tr>
<tr>
<td>Scaling the Fitness Scores</td>
<td>5-108</td>
</tr>
<tr>
<td>Comparing Rank and Top Scaling</td>
<td>5-110</td>
</tr>
<tr>
<td>Vary Mutation and Crossover</td>
<td>5-112</td>
</tr>
<tr>
<td>Setting the Amount of Mutation</td>
<td>5-112</td>
</tr>
<tr>
<td>Setting the Crossover Fraction</td>
<td>5-114</td>
</tr>
<tr>
<td>Comparing Results for Varying Crossover Fractions</td>
<td>5-119</td>
</tr>
<tr>
<td>Global vs. Local Minima Using ga</td>
<td>5-122</td>
</tr>
<tr>
<td>Searching for a Global Minimum</td>
<td>5-122</td>
</tr>
<tr>
<td>Running the Genetic Algorithm on the Example</td>
<td>5-124</td>
</tr>
<tr>
<td>Hybrid Scheme in the Genetic Algorithm</td>
<td>5-130</td>
</tr>
<tr>
<td>Set Maximum Number of Generations</td>
<td>5-136</td>
</tr>
<tr>
<td>Vectorize the Fitness Function</td>
<td>5-139</td>
</tr>
<tr>
<td>Vectorize for Speed</td>
<td>5-139</td>
</tr>
<tr>
<td>Vectorized Constraints</td>
<td>5-140</td>
</tr>
<tr>
<td>Nonlinear Constraints Using ga</td>
<td>5-141</td>
</tr>
<tr>
<td>Custom Output Function for Genetic Algorithm</td>
<td>5-146</td>
</tr>
<tr>
<td>Custom Data Type Optimization Using the Genetic Algorithm</td>
<td>5-151</td>
</tr>
<tr>
<td>When to Use a Hybrid Function</td>
<td>5-161</td>
</tr>
</tbody>
</table>

Particle Swarm Optimization

What Is Particle Swarm Optimization? 6-2
Optimize Using Particle Swarm ... 6-3

Particle Swarm Output Function .. 6-6

Particle Swarm Optimization Algorithm 6-10
 Algorithm Outline .. 6-10
 Initialization ... 6-10
 Iteration Steps ... 6-11
 Stopping Criteria ... 6-12

Tune Particle Swarm Optimization Process 6-15

Surrogate Optimization

What Is Surrogate Optimization? 7-2

Surrogate Optimization Algorithm 7-4
 Serial surrogateopt Algorithm 7-4
 Parallel surrogateopt Algorithm 7-10

Surrogate Optimization of Multidimensional Function 7-12

Modify surrogateopt Options ... 7-20

Interpret surrogateoptplot ... 7-28

Compare Surrogate Optimization with Other Solvers 7-33

Surrogate Optimization with Nonlinear Constraint 7-44

Surrogate Optimization of Six-Element Yagi-Uda Antenna ... 7-52

Work with Checkpoint Files ... 7-64
 Checkpoint for Restarting .. 7-64
 Change Options to Extend or Monitor Optimization 7-68
 Code for Robust Surrogate Optimization 7-71
Using Simulated Annealing

What Is Simulated Annealing? .. 8-2
Minimize Function with Many Local Minima 8-3
 Description .. 8-3
 Minimize at the Command Line 8-5
 Minimize Using the Optimization App 8-5
Simulated Annealing Terminology 8-8
 Objective Function .. 8-8
 Temperature ... 8-8
 Annealing Parameter ... 8-9
 Reannealing ... 8-9
How Simulated Annealing Works 8-10
 Outline of the Algorithm .. 8-10
 Stopping Conditions for the Algorithm 8-12
 Bibliography ... 8-12
Reproduce Your Results .. 8-14
Minimization Using Simulated Annealing Algorithm 8-16
Simulated Annealing Options 8-20
Multiprocessor Scheduling using Simulated Annealing with a
 Custom Data Type .. 8-28

Multiobjective Optimization

gamultiobj Algorithm .. 9-5
 Introduction .. 9-5
 Multiobjective Terminology 9-5
 Initialization .. 9-7
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
<td>9-8</td>
</tr>
<tr>
<td>Stopping Conditions</td>
<td>9-8</td>
</tr>
<tr>
<td>Bibliography</td>
<td>9-9</td>
</tr>
<tr>
<td>paretosearch Algorithm</td>
<td>9-10</td>
</tr>
<tr>
<td>paretosearch Algorithm Overview</td>
<td>9-10</td>
</tr>
<tr>
<td>Definitions for paretosearch Algorithm</td>
<td>9-10</td>
</tr>
<tr>
<td>Sketch of paretosearch Algorithm</td>
<td>9-14</td>
</tr>
<tr>
<td>Initialize Search</td>
<td>9-15</td>
</tr>
<tr>
<td>Create Archive and Incumbents</td>
<td>9-15</td>
</tr>
<tr>
<td>Poll to Find Better Points</td>
<td>9-16</td>
</tr>
<tr>
<td>Update archive and iterates Structures</td>
<td>9-16</td>
</tr>
<tr>
<td>Stopping Conditions</td>
<td>9-17</td>
</tr>
<tr>
<td>Returned Values</td>
<td>9-18</td>
</tr>
<tr>
<td>Modifications for Parallel Computation and Vectorized Function Evaluation</td>
<td>9-18</td>
</tr>
<tr>
<td>Run paretosearch Quickly</td>
<td>9-18</td>
</tr>
<tr>
<td>gamultiobj Options and Syntax: Differences from ga</td>
<td>9-21</td>
</tr>
<tr>
<td>Pareto Front for Two Objectives</td>
<td>9-22</td>
</tr>
<tr>
<td>Multiobjective Optimization with Two Objectives</td>
<td>9-22</td>
</tr>
<tr>
<td>Performing the Optimization with Optimization App</td>
<td>9-22</td>
</tr>
<tr>
<td>Performing the Optimization at the Command Line</td>
<td>9-26</td>
</tr>
<tr>
<td>Alternate Views</td>
<td>9-26</td>
</tr>
<tr>
<td>Compare paretosearch and gamultiobj</td>
<td>9-29</td>
</tr>
<tr>
<td>Plot 3-D Pareto Front</td>
<td>9-45</td>
</tr>
<tr>
<td>Performing a Multiobjective Optimization Using the Genetic Algorithm</td>
<td>9-51</td>
</tr>
<tr>
<td>Multiobjective Genetic Algorithm Options</td>
<td>9-57</td>
</tr>
<tr>
<td>Design Optimization of a Welded Beam</td>
<td>9-70</td>
</tr>
</tbody>
</table>
Parallel Processing

How Solvers Compute in Parallel .. 10-2
 - Parallel Processing Types in Global Optimization Toolbox 10-2
 - How Toolbox Functions Distribute Processes 10-3

How to Use Parallel Processing in Global Optimization Toolbox 10-14
 - Multicore Processors .. 10-14
 - Processor Network .. 10-16
 - Parallel Search Functions or Hybrid Functions 10-18
 - Deploy Parallel Optimization .. 10-21
 - Testing Parallel Optimization 10-22

Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™ 10-23

Options Reference

GlobalSearch and MultiStart Properties (Options) 11-2
 - How to Set Properties .. 11-2
 - Properties of Both Objects ... 11-2
 - GlobalSearch Properties .. 11-6
 - MultiStart Properties .. 11-8

Pattern Search Options .. 11-9
 - Optimization App vs. Command Line 11-9
 - Plot Options ... 11-10
 - Poll Options ... 11-13
 - Multiobjective Options .. 11-15
 - Search Options .. 11-17
 - Mesh Options .. 11-21
 - Constraint Parameters .. 11-23
 - Cache Options ... 11-23
 - Stopping Criteria .. 11-24
 - Output Function Options .. 11-25
 - Display to Command Window Options 11-27
Vectorized and Parallel Options (User Function Evaluation) ... 11-28
Options Table for Pattern Search Algorithms ... 11-30

Genetic Algorithm Options .. 11-33
Optimization App vs. Command Line ... 11-33
Plot Options .. 11-34
Population Options .. 11-38
Fitness Scaling Options .. 11-41
Selection Options .. 11-43
Reproduction Options .. 11-45
Mutation Options .. 11-45
Crossover Options .. 11-48
Migration Options .. 11-51
Constraint Parameters .. 11-53
Multiobjective Options .. 11-54
Hybrid Function Options .. 11-55
Stopping Criteria Options .. 11-56
Output Function Options .. 11-58
Display to Command Window Options .. 11-60
Vectorize and Parallel Options (User Function Evaluation) 11-61

Particle Swarm Options .. 11-63
Specifying Options for particleswarm .. 11-63
Swarm Creation .. 11-63
Display Settings .. 11-64
Algorithm Settings .. 11-65
Hybrid Function .. 11-66
Output Function and Plot Function .. 11-67
Parallel or Vectorized Function Evaluation .. 11-69
Stopping Criteria .. 11-69

Surrogate Optimization Options .. 11-71
Algorithm Control .. 11-71
Stopping Criteria .. 11-72
Command-Line Display .. 11-72
Output Function .. 11-73
Plot Function .. 11-75
Parallel Computing .. 11-76
Checkpoint File .. 11-76

Simulated Annealing Options ... 11-78
Set Simulated Annealing Options at the Command Line 11-78
Plot Options .. 11-78
Getting Started
Introducing Global Optimization Toolbox Functions

- “Global Optimization Toolbox Product Description” on page 1-2
- “Comparison of Six Solvers” on page 1-3
- “Solver Behavior with a Nonsmooth Problem” on page 1-13
- “What Is Global Optimization?” on page 1-22
- “Optimization Workflow” on page 1-28
- “Table for Choosing a Solver” on page 1-29
- “Global Optimization Toolbox Solver Characteristics” on page 1-31
Global Optimization Toolbox Product Description

Solve multiple maxima, multiple minima, and nonsmooth optimization problems

Global Optimization Toolbox provides functions that search for global solutions to problems that contain multiple maxima or minima. Toolbox solvers include surrogate, pattern search, genetic algorithm, particle swarm, simulated annealing, multistart, and global search. You can use these solvers for optimization problems where the objective or constraint function is continuous, discontinuous, stochastic, does not possess derivatives, or includes simulations or black-box functions. For problems with multiple objectives, you can identify a Pareto front using genetic algorithm or pattern search solvers.

You can improve solver effectiveness by adjusting options and, for applicable solvers, customizing creation, update, and search functions. You can use custom data types with the genetic algorithm and simulated annealing solvers to represent problems not easily expressed with standard data types. The hybrid function option lets you improve a solution by applying a second solver after the first.

Key Features

- Surrogate solver for problems with lengthy objective function execution times and bound constraints
- Pattern search solvers for single and multiple objective problems with linear, nonlinear, and bound constraints
- Genetic algorithm for problems with linear, nonlinear, bound, and integer constraints
- Multiobjective genetic algorithm for problems with linear, nonlinear, and bound constraints
- Particle swarm solver for bound constraints
- Simulated annealing solver for bound constraints
- Multistart and global search solvers for smooth problems with linear, nonlinear, and bound constraints
Comparison of Six Solvers

In this section...

“Function to Optimize” on page 1-3
“Six Solution Methods” on page 1-4
“Compare Syntax and Solutions” on page 1-11

Function to Optimize

This example shows how to minimize Rastrigin’s function with six solvers. Each solver has its own characteristics. The characteristics lead to different solutions and run times. The results, examined in “Compare Syntax and Solutions” on page 1-11, can help you choose an appropriate solver for your own problems.

Rastrigin’s function has many local minima, with a global minimum at (0,0):

\[\text{Ras}(x) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2). \]

Usually you don't know the location of the global minimum of your objective function. To show how the solvers look for a global solution, this example starts all the solvers around the point \([20,30]\), which is far from the global minimum.

The rastriginsfcn.m file implements Rastrigin’s function. This file comes with Global Optimization Toolbox software. This example employs a scaled version of Rastrigin’s function with larger basins of attraction. For information, see “Basins of Attraction” on page 1-23.

\[\text{rf2} = @(x)\text{rastriginsfcn}(x/10); \]
This example minimizes rf2 using the default settings of fminunc (an Optimization Toolbox™ solver), patternsearch, and GlobalSearch. The example also uses ga and particleswarm with nondefault options to start with an initial population around the point [20,30]. Because surrogateopt requires finite bounds, the example uses surrogateopt with lower bounds of -70 and upper bounds of 130 in each variable.

Six Solution Methods

- “fminunc” on page 1-5
- “patternsearch” on page 1-6
- “ga” on page 1-6
To solve the optimization problem using the `fminunc` Optimization Toolbox solver, enter:

```matlab
rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
[xf,ff,flf,of] = fminunc(rf2,x0)
```

`fminunc` returns

Local minimum found.

Optimization completed because the size of the gradient is less than the default value of the function tolerance.

```matlab
xf =
    19.8991   29.8486
ff =
    12.9344
flf =
    1
of =
    struct with fields:
        iterations: 3
        funcCount: 15
        stepsize: 1.7776e-06
        lssteplength: 1
        firstorderopt: 5.9907e-09
        algorithm: 'quasi-newton'
        message: 'Local minimum found....'
```

- `xf` is the minimizing point.
- `ff` is the value of the objective, `rf2`, at `xf`.
- `flf` is the exit flag. An exit flag of 1 indicates `xf` is a local minimum.
- `of` is the output structure, which describes the `fminunc` calculations leading to the solution.
patternsearch

To solve the optimization problem using the `patternsearch` Global Optimization Toolbox solver, enter:

```matlab
rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
[xp,fp,flp,op] = patternsearch(rf2,x0)
```

`patternsearch` returns

```
Optimization terminated: mesh size less than options.MeshTolerance.
xp =
    19.8991   -9.9496
fp =
    4.9748
flp =
    1
op =

    struct with fields:
        function: @(x)rastriginsfcn(x/10)
        problemtype: 'unconstrained'
        pollmethod: 'gpspositivebasis2n'
        maxconstraint: []
        searchmethod: []
        iterations: 48
        funccount: 174
        meshsize: 9.5367e-07
        rngstate: [1x1 struct]
        message: 'Optimization terminated: mesh size less than options.MeshTolerance.'
```

- `xp` is the minimizing point.
- `fp` is the value of the objective, `rf2`, at `xp`.
- `flp` is the exit flag. An exit flag of 1 indicates `xp` is a local minimum.
- `op` is the output structure, which describes the `patternsearch` calculations leading to the solution.

ga

To solve the optimization problem using the `ga` Global Optimization Toolbox solver, enter:
rng default % for reproducibility
rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
initpop = 10*randn(20,2) + repmat([10 30],20,1);
opts = optimoptions('ga','InitialPopulationMatrix',initpop);
[xga,fga,flga,oga] = ga(rf2,2,[],[],[],[],[],[],opts)

initpop is a 20-by-2 matrix. Each row of initpop has mean [10,30], and each element is normally distributed with standard deviation 10. The rows of initpop form an initial population matrix for the ga solver.

opts is the options that set initpop as the initial population.

The final line calls ga, using the options.

ga uses random numbers, and produces a random result. In this case ga returns:

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

xga =
 0.0236 -0.0180
fga =
 0.0017
flga =
 1
oga =

struct with fields:

 problemtype: 'unconstrained'
 rngstate: [1x1 struct]
 generations: 107
 funccount: 5400
 message: 'Optimization terminated: average change in the fitness value less...
 maxconstraint: []

• xga is the minimizing point.
• fga is the value of the objective, rf2, at xga.
• flga is the exit flag. An exit flag of 1 indicates xga is a local minimum.
• oga is the output structure, which describes the ga calculations leading to the solution.
particleswarm

Like ga, particleswarm is a population-based algorithm. So for a fair comparison of solvers, initialize the particle swarm to the same population as ga.

rng default % for reproducibility
rf2 = @(x)rastriginsfcn(x/10); % objective
opts = optimoptions('particleswarm','InitialSwarmMatrix',initpop);
[xpso,fpso,flgpso,opso] = particleswarm(rf2,2,[],[],opts)

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

xpso =

 1.0e-06 *
 -0.8839 0.3073

fpso =

 1.7373e-12

flgpso =

 1

opso =

struct with fields:

 rngstate: [1x1 struct]
 iterations: 114
 funccount: 2300
 message: 'Optimization ended: relative change in the objective value ...'

• xpso is the minimizing point.
• fpso is the value of the objective, rf2, at xpso.
• flgpso is the exit flag. An exit flag of 1 indicates xpso is a local minimum.
• opso is the output structure, which describes the particleswarm calculations leading to the solution.
surrogateopt

surrogateopt does not require a start point, but does require finite bounds. Set bounds of -70 to 130 in each component. To have the same sort of output as the other solvers, disable the default plot function.

```matlab
rng default % for reproducibility
lb = [-70,-70];
ub = [130,130];
rf2 = @(x)rastriginsfcn(x/10); % objective
opts = optimoptions('surrogateopt','PlotFcn',[]);
[xsur,fsur,flgsur,osur] = surrogateopt(rf2,lb,ub,opts)
```

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

```plaintext
xsur =
    -9.9516  -9.9486

fsur =
    1.9899

flgsur =
    0

osur =
    struct with fields:
      rngstate: [1×1 struct]
      funccount: 200
      elapsedtime: 3.0454
      message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by...
```

- *xsur* is the minimizing point.
- *fsur* is the value of the objective, *rf2*, at *xsur*.
- *flgsur* is the exit flag. An exit flag of 0 indicates that *surrogateopt* halted because it ran out of function evaluations or time.
• `osur` is the output structure, which describes the `surrogateopt` calculations leading to the solution.

GlobalSearch

To solve the optimization problem using the `GlobalSearch` solver, enter:

```matlab
rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
problem = createOptimProblem('fmincon','objective',rf2,...
    'x0',x0);
gs = GlobalSearch;
[xg,fg,flg,og] = run(gs,problem)
```

`problem` is an optimization problem structure. `problem` specifies the `fmincon` solver, the `rf2` objective function, and `x0=[20, 30]`. For more information on using `createOptimProblem`, see “Create Problem Structure” on page 3-5.

Note You must specify `fmincon` as the solver for `GlobalSearch`, even for unconstrained problems.

`gs` is a default `GlobalSearch` object. The object contains options for solving the problem. Calling `run(gs,problem)` runs `problem` from multiple start points. The start points are random, so the following result is also random.

In this case, the run returns:

GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

```matlab
xg =
  1.0e-07 *
  -0.1405   -0.1405

fg =
  0

flg =
  1

og =
```
struct with fields:

- funcCount: 2128
- localSolverTotal: 4
- localSolverSuccess: 4
- localSolverIncomplete: 0
- localSolverNoSolution: 0
- message: 'GlobalSearch stopped because it analyzed all the trial points. All 4 local solver runs converged with a positive local solver exit flag.'

- xg is the minimizing point.
- fg is the value of the objective, rf2, at xg.
- flg is the exit flag. An exit flag of 1 indicates all fmincon runs converged properly.
- og is the output structure, which describes the GlobalSearch calculations leading to the solution.

Compare Syntax and Solutions

One solution is better than another if its objective function value is smaller than the other. The following table summarizes the results, accurate to one decimal.

<table>
<thead>
<tr>
<th>Results</th>
<th>fminunc</th>
<th>patternsearch</th>
<th>ga</th>
<th>particleswarm</th>
<th>surrogateopt</th>
<th>GlobalSearch</th>
</tr>
</thead>
<tbody>
<tr>
<td>solution</td>
<td>[19.9, 29.9]</td>
<td>[19.9, -9.9]</td>
<td>[0 0]</td>
<td>[0 0]</td>
<td>[-9.9, -9.9]</td>
<td>[0 0]</td>
</tr>
<tr>
<td>objective</td>
<td>12.9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td># Fevals</td>
<td>15</td>
<td>174</td>
<td>5400</td>
<td>2300</td>
<td>200</td>
<td>2178</td>
</tr>
</tbody>
</table>

These results are typical:

- **fminunc** quickly reaches the local solution within its starting basin, but does not explore outside this basin at all. fminunc has a simple calling syntax.
- **patternsearch** takes more function evaluations than fminunc, and searches through several basins, arriving at a better solution than fminunc. The patternsearch calling syntax is the same as that of fminunc.
- **ga** takes many more function evaluations than patternsearch. By chance it arrived at a better solution. In this case, ga found a point near the global optimum. ga is stochastic, so its results change with every run. ga has a simple calling syntax, but there are extra steps to have an initial population near [20, 30].
- **particleswarm** takes fewer function evaluations than ga, but more than patternsearch. In this case, particleswarm found the global optimum.
particleswarm is stochastic, so its results change with every run. particleswarm has a simple calling syntax, but there are extra steps to have an initial population near $[20,30]$.

- surrogateopt stops when it reaches a function evaluation limit, which by default is 200 for a two-variable problem. surrogateopt has a simple calling syntax, but requires finite bounds. Although surrogateopt attempts to find a global solution, in this case the returned solution is not the global solution. Each function evaluation in surrogateopt takes a longer time than in most other solvers, because surrogateopt performs many auxiliary computations as part of its algorithm.

- GlobalSearch run takes the same order of magnitude of function evaluations as ga and particleswarm, searches many basins, and arrives at a good solution. In this case, GlobalSearch found the global optimum. Setting up GlobalSearch is more involved than setting up the other solvers. As the example shows, before calling GlobalSearch, you must create both a GlobalSearch object (gs in the example), and a problem structure (problem). Then, you call the run method with gs and problem. For more details on how to run GlobalSearch, see “Workflow for GlobalSearch and MultiStart” on page 3-3.

See Also

More About

- “Optimization Problem Setup”
- “Solver Behavior with a Nonsmooth Problem” on page 1-13
Solver Behavior with a Nonsmooth Problem

This example shows the importance of choosing an appropriate solver for optimization problems. It also shows that a single point of non-smoothness can cause problems for Optimization Toolbox™ solvers.

In general, the solver decision tables provide guidance on which solver is likely to work best for your problem. For smooth problems, see “Optimization Decision Table” (Optimization Toolbox). For nonsmooth problems, see “Table for Choosing a Solver” on page 1-29 first, and for more information consult “Global Optimization Toolbox Solver Characteristics” on page 1-31.

A Function with a Single Nonsmooth Point

The function \(f(x) = \sqrt{||x||} \) is nonsmooth at the point 0, which is the minimizing point. Here is a 2-D plot using the matrix norm for the 4-D point \(\begin{bmatrix} x(1) & x(2) \\ 0 & 0 \end{bmatrix} \).

```matlab
defigure
x = linspace(-5,5,51);
[xx,yy] = meshgrid(x);
zz = zeros(size(xx));
for ii = 1:length(x)
    for jj = 1:length(x)
        zz(ii,jj) = sqrt(norm([xx(ii,jj),yy(ii,jj);0,0]));
    end
end
surf(xx,yy,zz)
xlabel('x(1)')
ylabel('x(2)')
title('Norm([x(1),x(2);0,0])^{1/2}')
```
This example uses matrix norm for a 2-by-6 matrix x. The matrix norm relates to the singular value decomposition, which is not as smooth as the Euclidean norm. See “2-Norm of Matrix” (MATLAB).

Minimize Using `patternsearch`

`patternsearch` is the recommended first solver to try for nonsmooth problems. See “Table for Choosing a Solver” on page 1-29. Start `patternsearch` from a nonzero 2-by-6 matrix x_0, and attempt to locate the minimum of f. For this attempt, and all others, use the default solver options.

Return the solution, which should be near zero, the objective function value, which should likewise be near zero, and the number of function evaluations taken.
fun = @(x)norm([x(1:6);x(7:12)])^(1/2);
x0 = [1:6;7:12];
rng default
x0 = x0 + rand(size(x0))

x0 = 2x6

1.8147 2.1270 3.6324 4.2785 5.9575 6.1576

[xps,fvalps,eflagps,outputps] = patternsearch(fun,x0);

Optimization terminated: mesh size less than options.MeshTolerance.

xps,fvalps,eflagps,outputps.funccount

xps = 2x6
10^-4 x

0.1116 -0.1209 0.3503 -0.0520 -0.1270 0.2031
-0.3082 -0.1526 0.0623 0.0652 0.4479 0.1173

fvalps = 0.0073
eflagps = 1
ans = 10780

patternsearch reaches a good solution, as evinced by exit flag 1. However, it takes over 10,000 function evaluations to converge.

Minimize Using fminsearch

The documentation states that fminsearch sometimes can handle discontinuities, so this is a reasonable option.

[xfms,fvalfms,eflagfms,outputfms] = fminsearch(fun,x0);

Exiting: Maximum number of function evaluations has been exceeded
- increase MaxFunEvals option.
 Current function value: 3.197063

xfms,fvalfms,eflagfms,outputfms.funcCount
xfms = 2×6

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.2640</td>
<td>1.1747</td>
<td>9.0693</td>
<td>8.1652</td>
<td>1.7367</td>
</tr>
<tr>
<td>3.7456</td>
<td>1.2694</td>
<td>0.2714</td>
<td>-3.7942</td>
<td>3.8714</td>
<td>1.9290</td>
</tr>
</tbody>
</table>

fvalfms = 3.1971
eflagfms = 0
ans = 2401

Using default options, fminsearch runs out of function evaluations before it converges to a solution. Exit flag 0 indicates this lack of convergence. The reported solution is poor.

Use particleswarm

particleswarm is recommended as the next solver to try. See “Choosing Between Solvers for Nonsmooth Problems” on page 1-35.

[xpsw,fvalpsw,eflagpsw,outputpsw] = particleswarm(fun,12);

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

xpsw,fvalpsw,eflagpsw,outputpsw.funccount

xpsw = 1×12
10^-12 *

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0386</td>
<td>-0.1282</td>
<td>-0.0560</td>
<td>0.0904</td>
<td>0.0771</td>
<td>-0.0541</td>
<td>-0.1189</td>
<td>0.1290</td>
<td>-0.0026</td>
<td>0.0165</td>
<td>0.0728</td>
</tr>
</tbody>
</table>

fvalpsw = 4.5222e-07
eflagpsw = 1
ans = 37200

particleswarm finds an even more accurate solution than patternsearch, but takes over 35,000 function evaluations. Exit flag 1 indicates that the solution is good.

Use ga

ga is a popular solver, but is not recommended as the first solver to try. See how well it works on this problem.
[xga,fvalga,eflagga,outputga] = ga(fun,12);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

xga,fvalga,eflagga,outputga.funccount
xga = 1x12
 -0.0061 -0.0904 0.0816 -0.0484 0.0799 -0.1925 0.0048 0.3581 0.0848 0.0232 0.0237 -0.1294
fvalga = 0.6257
eflagga = 1
ans = 68600

ga does not find as good a solution as **patternsearch** or **particleswarm**, and takes about twice as many function evaluations as **particleswarm**. Exit flag 1 is misleading in this case.

Use **fminunc from Optimization Toolbox**

fminunc is not recommended for nonsmooth functions. See how it performs on this one.

[xfmu,fvalfmu,eflagfmu,outputfmu] = fminunc(fun,x0);

Local minimum possible.

fminunc stopped because the size of the current step is less than the value of the step size tolerance.

xfmu,fvalfmu,eflagfmu,outputfmu.funcCount
xfmu = 2x6
 -0.5844 -0.9726 -0.4356 0.1467 0.3263 -0.1002
 -0.0769 -0.1092 -0.3429 -0.6856 -0.7609 -0.6524
fvalfmu = 1.1269
eflagfmu = 2
ans = 442
The `fminunc` solution is not as good as the `ga` solution. However, `fminunc` reaches the rather poor solution in relatively few function evaluations. Exit flag 2 means you should take care, the first-order optimality conditions are not met at the reported solution.

Use `fmincon` from Optimization Toolbox

`fmincon` can sometimes minimize nonsmooth functions. See how it performs on this one.

```matlab
[xfmc,fvalfmc,eflagfmc,outputfmc] = fmincon(fun,x0);
```

Local minimum possible. Constraints satisfied.

`fmincon` stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.

`xfmc,fvalfmc,eflagfmc,outputfmc.funcCount`

```matlab
xfmc = 2×6
10^-10 *
     0.4059    0.6240    0.0848   -0.3089   -0.4925   -0.6761
-0.9511    0.2366    0.2463   -0.5527   -0.5960    0.1393
```

`fvalfmc = 1.1278e-05`

`eflagfmc = 2`

`ans = 860`

`fmincon` with default options produces an accurate solution after fewer than 1000 function evaluations. Exit flag 2 does not mean that the solution is inaccurate, but that the first-order optimality conditions are not met. This is because the gradient of the objective function is not zero at the solution.

Summary of Results

Choosing the appropriate solver leads to better, faster results. This summary shows how disparate the results can be. The solution quality is 'Poor' if the objective function value is greater than 0.1, 'Good' if the value is smaller than 0.01, and 'Mediocre' otherwise.

```matlab
Solver = {'patternsearch';'fminsearch';'particleswarm';'ga';'fminunc';'fmincon'};
SolutionQuality = {'Good';'Poor';'Good';'Poor';'Poor';'Good'};
FVal = [fvalps,fvalfms,fvalpsw,fvalga,fvalfmu,fvalfmc]';
```
NumEval = [outputps.funccount, outputfms.funcCount, outputpsw.funccount,...
 outputga.funccount, outputfmu.funcCount, outputfmc.funcCount];
results = table(Solver, SolutionQuality, FVal, NumEval)

data = results;
data

Another view of the results.

figure
hold on
for ii = 1:length(FVal)
 clr = rand(1,3);
 plot(NumEval(ii), FVal(ii), 'o', 'MarkerSize', 10, 'MarkerEdgeColor', clr, 'MarkerFaceColor', clr);
 text(NumEval(ii), FVal(ii) + 0.2, Solver{ii}, 'Color', clr);
end
ylabel('FVal')
xlabel('NumEval')
title('Reported Minimum and Evaluations By Solver')
hold off
While particleswarm achieves the lowest objective function value, it does so by taking over three times as many function evaluations as patternsearch, and over 30 times as many as fmincon.
fmincon is not generally recommended for nonsmooth problems. It is effective in this case, but this case has just one nonsmooth point.

See Also

More About

- “Comparison of Six Solvers” on page 1-3
- “Table for Choosing a Solver” on page 1-29
- “Global Optimization Toolbox Solver Characteristics” on page 1-31
What Is Global Optimization?

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Local vs. Global Optima” on page 1-22</td>
</tr>
<tr>
<td>“Basins of Attraction” on page 1-23</td>
</tr>
</tbody>
</table>

Local vs. Global Optima

Optimization is the process of finding the point that minimizes a function. More specifically:

- A local minimum of a function is a point where the function value is smaller than or equal to the value at nearby points, but possibly greater than at a distant point.
- A global minimum is a point where the function value is smaller than or equal to the value at all other feasible points.

Generally, Optimization Toolbox solvers find a local optimum. (This local optimum can be a global optimum.) They find the optimum in the basin of attraction of the starting point. For more information, see “Basins of Attraction” on page 1-23.

In contrast, Global Optimization Toolbox solvers are designed to search through more than one basin of attraction. They search in various ways:

- `GlobalSearch` and `MultiStart` generate a number of starting points. They then use a local solver to find the optima in the basins of attraction of the starting points.
- `ga` uses a set of starting points (called the population) and iteratively generates better points from the population. As long as the initial population covers several basins, `ga` can examine several basins.
- `particleswarm`, like `ga`, uses a set of starting points. `particleswarm` can examine several basins at once because of its diverse population.
• `simulannealbnd` performs a random search. Generally, `simulannealbnd` accepts a point if it is better than the previous point. `simulannealbnd` occasionally accepts a worse point, in order to reach a different basin.
• `patternsearch` looks at a number of neighboring points before accepting one of them. If some neighboring points belong to different basins, `patternsearch` in essence looks in a number of basins at once.
• `surrogateopt` begins by quasirandom sampling within bounds, looking for a small objective function value. `surrogateopt` uses a merit function that, in part, gives preference to points that are far from evaluated points, which is an attempt to reach a global solution. After it cannot improve the current point, `surrogateopt` resets, causing it to sample widely within bounds again. Resetting is another way `surrogateopt` searches for a global solution.

Basins of Attraction

If an objective function $f(x)$ is smooth, the vector $-\nabla f(x)$ points in the direction where $f(x)$ decreases most quickly. The equation of steepest descent, namely

$$\frac{dx(t)}{dt} = - \nabla f(x(t)),$$

yields a path $x(t)$ that goes to a local minimum as t gets large. Generally, initial values $x(0)$ that are close to each other give steepest descent paths that tend to the same minimum point. The basin of attraction for steepest descent is the set of initial values leading to the same local minimum.

The following figure shows two one-dimensional minima. The figure shows different basins of attraction with different line styles, and it shows directions of steepest descent with arrows. For this and subsequent figures, black dots represent local minima. Every steepest descent path, starting at a point $x(0)$, goes to the black dot in the basin containing $x(0)$.

1-23
The following figure shows how steepest descent paths can be more complicated in more dimensions.

The following figure shows even more complicated paths and basins of attraction.
Constraints can break up one basin of attraction into several pieces. For example, consider minimizing y subject to:

- $y \geq |x|$
- $y \geq 5 - 4(x-2)^2$.

The figure shows the two basins of attraction with the final points.
The steepest descent paths are straight lines down to the constraint boundaries. From the constraint boundaries, the steepest descent paths travel down along the boundaries. The final point is either (0,0) or (11/4,11/4), depending on whether the initial x-value is above or below 2.

See Also

More About

- “Visualize the Basins of Attraction” on page 3-37
• “Comparison of Six Solvers” on page 1-3
Optimization Workflow

To solve an optimization problem:

1. Decide what type of problem you have, and whether you want a local or global solution (see “Local vs. Global Optima” on page 1-22). Choose a solver per the recommendations in “Table for Choosing a Solver” on page 1-29.

2. Write your objective function and, if applicable, constraint functions per the syntax in “Compute Objective Functions” on page 2-2 and “Write Constraints” on page 2-8.

3. Set appropriate options using optimoptions, or prepare a GlobalSearch or MultiStart problem as described in “Workflow for GlobalSearch and MultiStart” on page 3-3. For details, see “Pattern Search Options” on page 11-9, “Particle Swarm Options” on page 11-63, “Genetic Algorithm Options” on page 11-33, “Simulated Annealing Options” on page 11-78, or “Surrogate Optimization Options” on page 11-71.

4. Run the solver.

5. Examine the result. For information on the result, see “Solver Outputs and Iterative Display” (Optimization Toolbox) or Examine Results for GlobalSearch or MultiStart.

6. If the result is unsatisfactory, change options or start points or otherwise update your optimization and rerun it. For information, see “Global Optimization Toolbox Solver Characteristics” on page 1-31 or Improve Results. For information on improving solutions that applies mainly to smooth problems, see “When the Solver Fails” (Optimization Toolbox), “When the Solver Might Have Succeeded” (Optimization Toolbox), or “When the Solver Succeeds” (Optimization Toolbox).

See Also

More About

- “Optimization Problem Setup”
- “What Is Global Optimization?” on page 1-22
Table for Choosing a Solver

Choose a solver based on problem characteristics and on the type of solution you want. “Solver Characteristics” on page 1-36 contains more information to help you decide which solver is likely to be most suitable. This table gives recommendations that are suitable for most problems.

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Recommended Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth (objective twice differentiable), and you want a local solution</td>
<td>An appropriate Optimization Toolbox solver; see “Optimization Decision Table” (Optimization Toolbox)</td>
</tr>
<tr>
<td>Smooth (objective twice differentiable), and you want a global solution or multiple local solutions</td>
<td>GlobalSearch or MultiStart</td>
</tr>
<tr>
<td>Nonsmooth, and you want a local solution</td>
<td>patternsearch</td>
</tr>
<tr>
<td>Nonsmooth, and you want a global solution or multiple local solutions</td>
<td>surrogateopt or patternsearch with several initial points (x_0)</td>
</tr>
</tbody>
</table>

To start `patternsearch` at multiple points when you have finite bounds \(lb\) and \(ub\) on every component, try:

\[
x_0 = lb + \text{rand(size}(lb)) \times (ub - lb);
\]

Many other solvers provide different solution algorithms, including the genetic algorithm solver `ga` and the `particleswarm` solver. Try some of them if the recommended solvers do not perform well on your problem. For details, see “Global Optimization Toolbox Solver Characteristics” on page 1-31.

See Also

Related Examples

- “Solver Behavior with a Nonsmooth Problem”

More About

- “Optimization Workflow” on page 1-28
• “Global Optimization Toolbox Solver Characteristics” on page 1-31
Global Optimization Toolbox Solver Characteristics

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Solver Choices” on page 1-31</td>
</tr>
<tr>
<td>“Explanation of “Desired Solution”” on page 1-32</td>
</tr>
<tr>
<td>“Choosing Between Solvers for Smooth Problems” on page 1-34</td>
</tr>
<tr>
<td>“Choosing Between Solvers for Nonsmooth Problems” on page 1-35</td>
</tr>
<tr>
<td>“Solver Characteristics” on page 1-36</td>
</tr>
<tr>
<td>“Why Are Some Solvers Objects?” on page 1-39</td>
</tr>
</tbody>
</table>

Solver Choices

This section describes Global Optimization Toolbox solver characteristics. The section includes recommendations for obtaining results more effectively.

To achieve better or faster solutions, first try tuning the recommended solvers on page 1-29 by setting appropriate options or bounds. If the results are unsatisfactory, try other solvers.

<table>
<thead>
<tr>
<th>Desired Solution</th>
<th>Smooth Objective and Constraints</th>
<th>Nonsmooth Objective or Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single local solution</td>
<td>Optimization Toolbox functions; see “Optimization Decision Table” (Optimization Toolbox)</td>
<td>fminbnd, patternsearch, fminsearch, ga, particleswarm, simulannealbnd, surrogateopt</td>
</tr>
<tr>
<td>Multiple local solutions</td>
<td>GlobalSearch, MultiStart</td>
<td>patternsearch, ga, particleswarm, simulannealbnd, or surrogateopt started from multiple initial points x0 or from multiple initial populations</td>
</tr>
</tbody>
</table>
Desired Solution

<table>
<thead>
<tr>
<th>Desired Solution</th>
<th>Smooth Objective and Constraints</th>
<th>Nonsmooth Objective or Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single global solution</td>
<td>GlobalSearch, MultiStart, patternsearch, particleswarm, ga, simulannealbnd, surrogateopt</td>
<td>patternsearch, ga, particleswarm, simulannealbnd, surrogateopt</td>
</tr>
<tr>
<td>Single local solution using parallel processing</td>
<td>MultiStart, Optimization Toolbox functions</td>
<td>patternsearch, ga, particleswarm, surrogateopt</td>
</tr>
<tr>
<td>Multiple local solutions using parallel processing</td>
<td>MultiStart</td>
<td>patternsearch, ga, or particleswarm started from multiple initial points x₀ or from multiple initial populations</td>
</tr>
<tr>
<td>Single global solution using parallel processing</td>
<td>MultiStart</td>
<td>patternsearch, ga, particleswarm, surrogateopt</td>
</tr>
</tbody>
</table>

Explanation of “Desired Solution”

To understand the meaning of the terms in “Desired Solution,” consider the example

\[f(x) = 100x^2(1-x)^2 - x, \]

which has local minima \(x_1 \) near 0 and \(x_2 \) near 1:
The minima are located at:

```matlab
fun = @(x)(100*x^2*(x - 1)^2 - x);
x1 = fminbnd(fun,-0.1,0.1)
x1 =
0.0051

x2 = fminbnd(fun,0.9,1.1)
x2 =
1.0049
```
Description of the Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single local solution</td>
<td>Find one local solution, a point x where the objective function $f(x)$ is a local minimum. For more details, see “Local vs. Global Optima” on page 1-22. In the example, both x_1 and x_2 are local solutions.</td>
</tr>
<tr>
<td>Multiple local solutions</td>
<td>Find a set of local solutions. In the example, the complete set of local solutions is ${x_1, x_2}$.</td>
</tr>
<tr>
<td>Single global solution</td>
<td>Find the point x where the objective function $f(x)$ is a global minimum. In the example, the global solution is x_2.</td>
</tr>
</tbody>
</table>

Choosing Between Solvers for Smooth Problems

- “Single Global Solution” on page 1-34
- “Multiple Local Solutions” on page 1-35

Single Global Solution

1. Try GlobalSearch first. It is most focused on finding a global solution, and has an efficient local solver, fmincon.
2. Try MultiStart next. It has efficient local solvers, and can search a wide variety of start points.
3. Try patternsearch next. It is less efficient, since it does not use gradients. However, patternsearch is robust and is more efficient than the remaining local solvers. To search for a global solution, start patternsearch from a variety of start points.
4. Try surrogateopt next for bound-constrained problems. surrogateopt attempts to find a global solution using the fewest objective function evaluations. surrogateopt has more overhead per function evaluation than most other solvers. You can also try surrogateopt with other types of constraints; see “Surrogate Optimization with Nonlinear Constraint” on page 7-44.
5. Try particleswarm next, if your problem is unconstrained or has only bound constraints. Usually, particleswarm is more efficient than the remaining solvers, and can be more efficient than patternsearch.
6. Try ga next. It can handle all types of constraints, and is usually more efficient than simulannealbnd.
Try simulannealbnd last. It can handle problems with no constraints or bound constraints. simulannealbnd is usually the least efficient solver. However, given a slow enough cooling schedule, it can find a global solution.

Multiple Local Solutions

GlobalSearch and MultiStart both provide multiple local solutions. For the syntax to obtain multiple solutions, see “Multiple Solutions” on page 3-27. GlobalSearch and MultiStart differ in the following characteristics:

- **MultiStart** can find more local minima. This is because GlobalSearch rejects many generated start points (initial points for local solution). Essentially, GlobalSearch accepts a start point only when it determines that the point has a good chance of obtaining a global minimum. In contrast, MultiStart passes all generated start points to a local solver. For more information, see “GlobalSearch Algorithm” on page 3-51.

- **MultiStart** offers a choice of local solver: fmincon, fminunc, lsqcurvefit, or lsqnonlin. The GlobalSearch solver uses only fmincon as its local solver.

- **GlobalSearch** uses a scatter-search algorithm for generating start points. In contrast, MultiStart generates points uniformly at random within bounds, or allows you to provide your own points.

- **MultiStart** can run in parallel. See “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

Choosing Between Solvers for Nonsmooth Problems

Choose the applicable solver with the lowest number. For problems with integer constraints, use ga.

1. Use fminbnd first on one-dimensional bounded problems only. fminbnd provably converges quickly in one dimension.

2. Use patternsearch on any other type of problem. patternsearch provably converges, and handles all types of constraints.

3. Try surrogateopt for bound-constrained problems that have time-consuming objective functions. surrogateopt searches for a global solution. You can also try surrogateopt with other types of constraints; see “Surrogate Optimization with Nonlinear Constraint” on page 7-44.
4 Try `fminsearch` next for low-dimensional unbounded problems. `fminsearch` is not as general as `patternsearch` and can fail to converge. For low-dimensional problems, `fminsearch` is simple to use, since it has few tuning options.

5 Try `particleswarm` next on unbounded or bound-constrained problems. `particleswarm` has little supporting theory, but is often an efficient algorithm.

6 Try `ga` next. `ga` has little supporting theory and is often less efficient than `patternsearch` or `particleswarm`. It handles all types of constraints. `ga` is the only solver that handles integer constraints.

7 Try `simulannealbnd` last for unbounded problems, or for problems with bounds. `simulannealbnd` provably converges only for a logarithmic cooling schedule, which is extremely slow. `simulannealbnd` takes only bound constraints, and is often less efficient than `ga`.

Solver Characteristics

<table>
<thead>
<tr>
<th>Solver</th>
<th>Convergence</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlobalSearch</td>
<td>Fast convergence to local optima for smooth problems</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic stochastic start points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removes many start points heuristically</td>
</tr>
<tr>
<td>MultiStart</td>
<td>Fast convergence to local optima for smooth problems</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stochastic or deterministic start points, or combination of both</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic stochastic start points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Runs all start points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Choice of local solver: <code>fmincon</code>, <code>fminunc</code>, <code>lsqcurvefit</code>, or <code>lsqnonlin</code></td>
</tr>
<tr>
<td>Solver</td>
<td>Convergence</td>
<td>Characteristics</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| **patternsearch** | Proven convergence to local optimum; slower than gradient-based solvers | Deterministic iterates
Can run in parallel; see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
No gradients
User-supplied start point |
| **surrogateopt** | Proven convergence to global optimum for bounded problems; slower than gradient-based solvers | Stochastic iterates
Can run in parallel; see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
Only bound constraints
No gradients
Automatic start points or user-supplied points, or a combination of both |
| **particleswarm** | No convergence proof | Stochastic iterates
Can run in parallel; see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
Population-based
No gradients
Automatic start population or user-supplied population, or a combination of both
Only bound constraints |
| **ga** | No convergence proof | Stochastic iterates
Can run in parallel; see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
Population-based
No gradients |
<table>
<thead>
<tr>
<th>Solver</th>
<th>Convergence</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allows integer constraints; see “Mixed Integer Optimization” on page 5-50</td>
<td>Automatic start population or user-supplied population, or a combination of both</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simulannealbnd</td>
<td>Proven to converge to global optimum for bounded problems with very slow cooling schedule</td>
<td>Stochastic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied start point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only bound constraints</td>
</tr>
</tbody>
</table>

Explanation of some characteristics:

- Convergence — Solvers can fail to converge to any solution when started far from a local minimum. When started near a local minimum, gradient-based solvers converge to a local minimum quickly for smooth problems. patternsearch provably converges for a wide range of problems, but the convergence is slower than gradient-based solvers. Both ga and simulannealbnd can fail to converge in a reasonable amount of time for some problems, although they are often effective.

- Iterates — Solvers iterate to find solutions. The steps in the iteration are iterates. Some solvers have deterministic iterates. Others use random numbers and have stochastic iterates.

- Gradients — Some solvers use estimated or user-supplied derivatives in calculating the iterates. Other solvers do not use or estimate derivatives, but use only objective and constraint function values.

- Start points — Most solvers require you to provide a starting point for the optimization in order to obtain the dimension of the decision variables. ga and surrogateopt do not require any starting points, because they take the dimension of the decision variables as an input. These solvers generate a start point or population automatically, or they accept a point or points that you supply.

Compare the characteristics of Global Optimization Toolbox solvers to Optimization Toolbox solvers.
Global Optimization Toolbox Solver Characteristics

<table>
<thead>
<tr>
<th>Solver</th>
<th>Convergence</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmincon, fminunc, fseminf, lsqcurvefit, lsqnonlin</td>
<td>Proven quadratic convergence to local optima for smooth problems</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied starting point</td>
</tr>
<tr>
<td>fminsearch</td>
<td>No convergence proof — counterexamples exist.</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied start point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No constraints</td>
</tr>
<tr>
<td>fminbnd</td>
<td>Proven convergence to local optima for smooth problems, slower than quadratic.</td>
<td>Deterministic iterates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User-supplied start point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one-dimensional problems</td>
</tr>
</tbody>
</table>

All these Optimization Toolbox solvers:

- Have deterministic iterates
- Start from one user-supplied point
- Search just one basin of attraction

Why Are Some Solvers Objects?

GlobalSearch and MultiStart are objects. What does this mean for you?

- You create a GlobalSearch or MultiStart object before running your problem.
- You can reuse the object for running multiple problems.
- GlobalSearch and MultiStart objects are containers for algorithms and global options. You use these objects to run a local solver multiple times. The local solver has its own options.

For more information, see the “Classes” (MATLAB) documentation.
See Also

Related Examples
• “Solver Behavior with a Nonsmooth Problem”

More About
• “Optimization Workflow” on page 1-28
• “Table for Choosing a Solver” on page 1-29
Write Files for Optimization
Functions

• “Compute Objective Functions” on page 2-2
• “Maximizing vs. Minimizing” on page 2-6
• “Write Constraints” on page 2-8
• “Set and Change Options” on page 2-12
• “View Options” on page 2-14
Compute Objective Functions

<table>
<thead>
<tr>
<th>In this section…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Objective (Fitness) Functions” on page 2-2</td>
</tr>
<tr>
<td>“Write a Function File” on page 2-2</td>
</tr>
<tr>
<td>“Write a Vectorized Function” on page 2-3</td>
</tr>
<tr>
<td>“Gradients and Hessians” on page 2-4</td>
</tr>
</tbody>
</table>

Objective (Fitness) Functions

To use Global Optimization Toolbox functions, first write a file (or an anonymous function) that computes the function you want to optimize. This is called an objective function for most solvers, or fitness function for ga. The function should accept a vector, whose length is the number of independent variables, and return a scalar. For gamultiobj, the function should return a row vector of objective function values. For vectorized solvers, the function should accept a matrix, where each row represents one input vector, and return a vector of objective function values. This section shows how to write the file.

Write a Function File

This example shows how to write a file for the function you want to optimize. Suppose that you want to minimize the function

\[f(x) = \exp\left(- (x_1^2 + x_2^2) \right) \left(x_1^2 - 2x_1x_2 + 6x_1 + 4x_2^2 - 3x_2 \right). \]

The file that computes this function must accept a vector \(x \) of length 2, corresponding to the variables \(x_1 \) and \(x_2 \), and return a scalar equal to the value of the function at \(x \).

2. Enter the following two lines of code:

   ```matlab
   function z = my_fun(x)
   z = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2);
   ```
3. Save the file in a folder on the MATLAB path.

Check that the file returns the correct value.
my_fun([2 3])

ans =
 31

For gamultiobj, suppose you have three objectives. Your objective function returns a three-element vector consisting of the three objective function values:

function z = my_fun(x)
 z = zeros(1,3); % allocate output
 z(1) = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2);
 z(2) = x(1)*x(2) + cos(3*x(2)/(2+x(1)));
 z(3) = tanh(x(1) + x(2));

Write a Vectorized Function

The ga, gamultiobj, paretosearch, particleswarm, and patternsearch solvers optionally compute the objective functions of a collection of vectors in one function call. This method can take less time than computing the objective functions of the vectors serially. This method is called a vectorized function call.

To compute in vectorized fashion:

- Write your objective function to:
 - Accept a matrix with an arbitrary number of rows.
 - Return the vector of function values of each row.
 - For gamultiobj or paretosearch, return a matrix, where each row contains the objective function values of the corresponding input matrix row.
 - If you have a nonlinear constraint, be sure to write the constraint in a vectorized fashion. For details, see “Vectorized Constraints” on page 2-9.
 - Set the UseVectorized option to true using optimoptions, or set **User function evaluation > Evaluate objective/fitness and constraint functions** to vectorized in the Optimization app. For patternsearch or paretosearch, also set UseCompletePoll to true. Be sure to pass the options to the solver.

For example, to write the objective function of “Write a Function File” on page 2-2 in a vectorized fashion,

function z = my_fun(x)
 z = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ... 4*x(:,2).^2 - 3*x(:,2);
To use my_fun as a vectorized objective function for patternsearch:

```matlab
options = optimoptions('patternsearch','UseCompletePoll',true,'UseVectorized',true);
[x fval] = patternsearch(@my_fun,[1 1],[[],[],[],[],[],[],[],[],[],options);
```

To use my_fun as a vectorized objective function for ga:

```matlab
options = optimoptions('ga','UseVectorized',true);
[x fval] = ga(@my_fun,2,[],[],[],[],[],[],[],[],options);
```

For gamultiobj or paretosearch,

```matlab
function z = my_fun(x)
    z = zeros(size(x,1),3); % allocate output
    z(:,1) = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ... 
            4*x(:,2).^2 - 3*x(:,2);
    z(:,2) = x(:,1).*x(:,2) + cos(3*x(:,2)./(2+x(:,1)));
    z(:,3) = tanh(x(:,1) + x(:,2));
```

To use my_fun as a vectorized objective function for gamultiobj:

```matlab
options = optimoptions('ga','UseVectorized',true);
[x fval] = gamultiobj(@my_fun,2,[],[],[],[],[],[],[],[],options);
```

For more information on writing vectorized functions for patternsearch, see “Vectorize the Objective and Constraint Functions” on page 4-111. For more information on writing vectorized functions for ga, see “Vectorize the Fitness Function” on page 5-139.

Gradients and Hessians

If you use GlobalSearch or MultiStart, your objective function can return derivatives (gradient, Jacobian, or Hessian). For details on how to include this syntax in your objective function, see “Including Gradients and Hessians” (Optimization Toolbox). Use `optimoptions` to set options so that your solver uses the derivative information:
Local Solver = fmincon, fminunc

<table>
<thead>
<tr>
<th>Condition</th>
<th>Option Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective function contains gradient</td>
<td>'SpecifyObjectiveGradient' = true; see “How to Include Gradients” (Optimization Toolbox)</td>
</tr>
<tr>
<td>Objective function contains Hessian</td>
<td>'HessianFcn' = 'objective' or a function handle; see “Including Hessians” (Optimization Toolbox)</td>
</tr>
<tr>
<td>Constraint function contains gradient</td>
<td>'SpecifyConstraintGradient' = true; see “Including Gradients in Constraint Functions” (Optimization Toolbox)</td>
</tr>
</tbody>
</table>

Local Solver = lsqcurvefit, lsqnonlin

<table>
<thead>
<tr>
<th>Condition</th>
<th>Option Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective function contains Jacobian</td>
<td>'SpecifyObjectiveGradient' = true</td>
</tr>
</tbody>
</table>

See Also

Related Examples
- “Vectorize the Objective and Constraint Functions” on page 4-111
- “Vectorize the Fitness Function” on page 5-139
- “Maximizing vs. Minimizing” on page 2-6
Maximizing vs. Minimizing

Global Optimization Toolbox optimization functions minimize the objective (or fitness) function. That is, they solve problems of the form

\[
\min_x f(x).
\]

If you want to maximize \(f(x) \), minimize \(-f(x)\), because the point at which the minimum of \(-f(x)\) occurs is the same as the point at which the maximum of \(f(x) \) occurs.

For example, suppose you want to maximize the function

\[
f(x) = \exp\left(-\left(x_1^2 + x_2^2\right)\right)(x_1^2 - 2x_1x_2 + 6x_1 + 4x_2^2 - 3x_2).
\]

Write a function to compute

\[
g(x) = -f(x) = -\exp\left(-\left(x_1^2 + x_2^2\right)\right)(x_1^2 - 2x_1x_2 + 6x_1 + 4x_2^2 - 3x_2),
\]

and then minimize \(g(x) \). Start from the point \(x_0 = [0 \ 0] \).

\[
f = @(x)\exp(-(x(1)^2 + x(2)^2))*(x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2));
g = @(x)-f(x);
x0 = [0 0];
[xmin,gmin] = fminsearch(g,x0)
\]

\[
xmin =
\begin{bmatrix}
0.5550 \\
-0.5919
\end{bmatrix}
\]

\[
gmin =
-3.8683
\]

The maximum of \(f \) is the value of \(f(x_{\text{min}}) \), which is \(-g_{\text{min}}\).

\[
f(x_{\text{min}})
\]

\[
\text{ans} =
3.8683
\]
See Also

Related Examples
• “Compute Objective Functions” on page 2-2
Write Constraints

<table>
<thead>
<tr>
<th>In this section…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Consult Optimization Toolbox Documentation” on page 2-8</td>
</tr>
<tr>
<td>“Set Bounds” on page 2-8</td>
</tr>
<tr>
<td>“Ensure ga Options Maintain Feasibility” on page 2-9</td>
</tr>
<tr>
<td>“Gradients and Hessians” on page 2-9</td>
</tr>
<tr>
<td>“Vectorized Constraints” on page 2-9</td>
</tr>
</tbody>
</table>

Consult Optimization Toolbox Documentation

Many Global Optimization Toolbox functions accept bounds, linear constraints, or nonlinear constraints. To see how to include these constraints in your problem, see “Write Constraints” (Optimization Toolbox). Try consulting these pertinent links to sections:

- “Bound Constraints” (Optimization Toolbox)
- “Linear Constraints” (Optimization Toolbox)
- “Nonlinear Constraints” (Optimization Toolbox)

Set Bounds

It is more important to set bounds for global solvers than for local solvers. Global solvers use bounds in a variety of ways:

- `GlobalSearch` requires bounds for its scatter-search point generation. If you do not provide bounds, `GlobalSearch` bounds each component below by -9999 and above by 10001. However, these bounds can easily be inappropriate.

- If you do not provide bounds and do not provide custom start points, `MultiStart` bounds each component below by -1000 and above by 1000. However, these bounds can easily be inappropriate.

- `ga` uses bounds and linear constraints for its initial population generation. For unbounded problems, `ga` uses a default of 0 as the lower bound and 1 as the upper bound for each dimension for initial point generation. For bounded problems, and problems with linear constraints, `ga` uses the bounds and constraints to make the initial population.
- `simulannealbnd` and `patternsearch` do not require bounds, although they can use bounds.

Ensure ga Options Maintain Feasibility

The `ga` solver generally maintains strict feasibility with respect to bounds and linear constraints. This means that, at every iteration, all members of a population satisfy the bounds and linear constraints.

However, you can set options that cause this feasibility to fail. For example if you set `MutationFcn` to `@mutationgaussian` or `@mutationuniform`, the mutation function does not respect constraints, and your population can become infeasible. Similarly, some crossover functions can cause infeasible populations, although the default `gacreationlinearfeasible` does respect bounds and linear constraints. Also, `ga` can have infeasible points when using custom mutation or crossover functions.

To ensure feasibility, use the default crossover and mutation functions for `ga`. Be especially careful that any custom functions maintain feasibility with respect to bounds and linear constraints.

g`a` does not enforce linear constraints when there are integer constraints. Instead, `ga` incorporates linear constraint violations into the penalty function. See “Integer ga Algorithm” on page 5-59.

Gradients and Hessians

If you use `GlobalSearch` or `MultiStart` with `fmincon`, your nonlinear constraint functions can return derivatives (gradient or Hessian). For details, see “Gradients and Hessians” on page 2-4.

Vectorized Constraints

The `ga` and `patternsearch` solvers optionally compute the nonlinear constraint functions of a collection of vectors in one function call. This method can take less time than computing the objective functions of the vectors serially. This method is called a vectorized function call.

For the solver to compute in a vectorized manner, you must vectorize both your objective (fitness) function and nonlinear constraint function. For details, see “Vectorize the Objective and Constraint Functions” on page 4-111.
As an example, suppose your nonlinear constraints for a three-dimensional problem are
\[
\frac{x_1^2}{4} + \frac{x_2^2}{9} + \frac{x_3^2}{25} \leq 6 \\
x_3 \geq \cosh(x_1 + x_2) \\
x_1x_2x_3 = 2.
\]

The following code gives these nonlinear constraints in a vectorized fashion, assuming that the rows of your input matrix \(x\) are your population or input vectors:

```matlab
function [c ceq] = nlinconst(x)
c(:,1) = x(:,1).^2/4 + x(:,2).^2/9 + x(:,3).^2/25 - 6;
c(:,2) = cosh(x(:,1) + x(:,2)) - x(:,3);
ceq = x(:,1).*x(:,2).*x(:,3) - 2;
```

For example, minimize the vectorized quadratic function

```matlab
function y = vfun(x)
y = -x(:,1).^2 - x(:,2).^2 - x(:,3).^2;
```

over the region with constraints \(\text{nlinconst}\) using \textit{patternsearch}:

```matlab
options = optimoptions('patternsearch','UseCompletePoll',true,'UseVectorized',true);
[x fval] = patternsearch(@vfun,[1,1,2],[],[],[],[],[],[],... @nlinconst,options)
```

Optimization terminated: mesh size less than \texttt{options.MeshTolerance} and constraint violation is less than \texttt{options.ConstraintTolerance}.

\[
x = \\
\begin{bmatrix}
0.2191 \\
0.7500 \\
12.1712
\end{bmatrix}
\]

\[
fval = \\
\begin{bmatrix}
-148.7480
\end{bmatrix}
\]

Using \textit{ga}:

```matlab
options = optimoptions('ga','UseVectorized',true);
[x fval] = ga(@vfun,3,[],[],[],[],[],[],... @nlinconst,options)
```

Optimization terminated: maximum number of generations exceeded.

\[
x = \\
\begin{bmatrix}
-1.4098 \\
-0.1216 \\
11.6664
\end{bmatrix}
\]
fval =
-138.1066

For this problem `patternsearch` computes the solution far more quickly and accurately.

See Also

More About

- “Write Constraints” (Optimization Toolbox)
- “Vectorize the Objective and Constraint Functions” on page 4-111
Set and Change Options

For all Global Optimization Toolbox solvers except GlobalSearch and MultiStart, the recommended way to set options is to use the optimoptions function. Set GlobalSearch and MultiStart options using their name-value pairs; see “Changing Global Options” on page 3-73.

For example, to set the ga maximum time to 300 seconds and set iterative display:

```matlab
options = optimoptions('ga','MaxTime',300,'Display','iter');
```

Change options as follows:

- Dot notation. For example,
  ```matlab
  options.MaxTime = 5e3;
  ```
- optimoptions. For example,
  ```matlab
  options = optimoptions(options,'MaxTime',5e3);
  ```

Ensure that you pass options in your solver call. For example,

```matlab
[x,fval] = ga(@objfun,2,[],[],[],[],lb,ub,@nonlcon,options);
```

To see the options you can change, consult the solver function reference pages. For option details, see the options reference sections.

You can also set and change options using the “Optimization App” (Optimization Toolbox), although the Optimization app warns that it will be removed in a future release.

See Also
ga | gamultiobj | paretosearch | particleswarm | patternsearch | simulannealbnd | surrogateopt

More About

- “Genetic Algorithm Options” on page 11-33
- “Particle Swarm Options” on page 11-63
- “Pattern Search Options” on page 11-9
• “Simulated Annealing Options” on page 11-78
• “Surrogate Optimization Options” on page 11-71
View Options

optimoptions “hides” some options, meaning it does not display their values. For example, it hides the patternsearch MaxMeshSize option.

options = optimoptions('patternsearch','MaxMeshSize',1e2)
options =

patternsearch options:

Set properties:
 No options set.

Default properties:
 AccelerateMesh: 0
 ConstraintTolerance: 1.0000e-06
 Display: 'final'
 FunctionTolerance: 1.0000e-06
 InitialMeshSize: 1
 MaxFunctionEvaluations: '2000*numberOfVariables'
 MaxIterations: '100*numberOfVariables'
 MaxTime: Inf
 MeshContractionFactor: 0.5000
 MeshExpansionFactor: 2
 MeshTolerance: 1.0000e-06
 OutputFcn: []
 PlotFcn: []
 PollMethod: 'GPSPositiveBasis2N'
 PollOrderAlgorithm: 'consecutive'
 ScaleMesh: 1
 SearchFcn: []
 StepTolerance: 1.0000e-06
 UseCompletePoll: 0
 UseCompleteSearch: 0
 UseParallel: 0
 UseVectorized: 0

You can view the value of any option, including “hidden” options, by using dot notation. For example,

options.MaxMeshSize
Solver reference pages list “hidden” options in italics.

There are two reasons that some options are “hidden”:

- They are not useful. For example, the ga StallTest option allows you to choose a stall test that does not work well. Therefore, this option is “hidden”.
- They are rarely used, or it is hard to know when to use them. For example, the patternsearch MaxMeshSize option is hard to choose, and so is “hidden”.

For details, see “Options that optimoptions Hides” on page 11-87.

See Also

More About
- “Set and Change Options” on page 2-12
Using GlobalSearch and MultiStart

- “Problems That GlobalSearch and MultiStart Can Solve” on page 3-2
- “Workflow for GlobalSearch and MultiStart” on page 3-3
- “Create Problem Structure” on page 3-5
- “Create Solver Object” on page 3-13
- “Set Start Points for MultiStart” on page 3-17
- “Run the Solver” on page 3-21
- “Single Solution” on page 3-25
- “Multiple Solutions” on page 3-27
- “Iterative Display” on page 3-33
- “Global Output Structures” on page 3-36
- “Visualize the Basins of Attraction” on page 3-37
- “Output Functions for GlobalSearch and MultiStart” on page 3-40
- “Plot Functions for GlobalSearch and MultiStart” on page 3-44
- “How GlobalSearch and MultiStart Work” on page 3-49
- “Can You Certify That a Solution Is Global?” on page 3-59
- “Refine Start Points” on page 3-62
- “Change Options” on page 3-71
- “Reproduce Results” on page 3-75
- “Find Global or Multiple Local Minima” on page 3-78
- “Maximizing Monochromatic Polarized Light Interference Patterns Using GlobalSearch and MultiStart” on page 3-86
- “Optimize Using Only Feasible Start Points” on page 3-103
- “MultiStart Using lsqcurvefit or lsqnonlin” on page 3-108
- “Parallel MultiStart” on page 3-114
- “Isolated Global Minimum” on page 3-117
Problems That GlobalSearch and MultiStart Can Solve

The GlobalSearch and MultiStart solvers apply to problems with smooth objective and constraint functions. The solvers search for a global minimum, or for a set of local minima. For more information on which solver to use, see “Table for Choosing a Solver” on page 1-29.

GlobalSearch and MultiStart work by starting a local solver, such as fmincon, from a variety of start points. Generally the start points are random. However, for MultiStart you can provide a set of start points. For more information, see “How GlobalSearch and MultiStart Work” on page 3-49.

To find out how to use these solvers, see “Workflow for GlobalSearch and MultiStart” on page 3-3.
Workflow for GlobalSearch and MultiStart

To find a global or multiple local solutions for a smooth problem:

1. “Create Problem Structure” on page 3-5
2. “Create Solver Object” on page 3-13
3. (Optional, MultiStart only) “Set Start Points for MultiStart” on page 3-17
4. “Run the Solver” on page 3-21

The following figure illustrates these steps.
See Also

Related Examples
- “Global or Multiple Starting Point Search”
Create Problem Structure

In this section...

| “About Problem Structures” on page 3-5 |
| “Using the createOptimProblem Function” on page 3-5 |
| “Exporting from the Optimization app” on page 3-8 |

About Problem Structures

To use the GlobalSearch or MultiStart solvers, you must first create a problem structure. There are two recommended ways to create a problem structure: using the createOptimProblem function on page 3-5 and exporting from the Optimization app on page 3-8.

Using the createOptimProblem Function

Follow these steps to create a problem structure using the createOptimProblem function.

1. Define your objective function as a file or anonymous function. For details, see “Compute Objective Functions” on page 2-2. If your solver is lsqcurvefit or lsqnonlin, ensure the objective function returns a vector, not scalar.

2. If relevant, create your constraints, such as bounds and nonlinear constraint functions. For details, see “Write Constraints” on page 2-8.

3. Create a start point. For example, to create a three-dimensional random start point xstart:

   ```
   xstart = randn(3,1);
   ```

4. (Optional) Create options using optimoptions. For example,

   ```
   options = optimoptions(@fmincon,'Algorithm','interior-point');
   ```

5. Enter

   ```
   problem = createOptimProblem(solver,

   where solver is the name of your local solver:
• For GlobalSearch: 'fmincon'
• For MultiStart the choices are:
  • 'fmincon'
  • 'fminunc'
  • 'lsqcurvefit'
  • 'lsqnonlin'

For help choosing, see “Optimization Decision Table” (Optimization Toolbox).

6 Set an initial point using the 'x0' parameter. If your initial point is xstart, and your solver is fmincon, your entry is now

```
problem = createOptimProblem('fmincon','x0',xstart,
```

7 Include the function handle for your objective function in objective:

```
problem = createOptimProblem('fmincon','x0',xstart, ...
 'objective','@objfun,
```

8 Set bounds and other constraints as applicable.

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower bounds</td>
<td>'lb'</td>
</tr>
<tr>
<td>upper bounds</td>
<td>'ub'</td>
</tr>
<tr>
<td>matrix Aineq for linear inequalities Aineq x ≤ bineq</td>
<td>'Aineq'</td>
</tr>
<tr>
<td>vector bineq for linear inequalities Aineq x ≤ bineq</td>
<td>'bineq'</td>
</tr>
<tr>
<td>matrix Aeq for linear equalities Aeq x = beq</td>
<td>'Aeq'</td>
</tr>
<tr>
<td>vector beq for linear equalities Aeq x = beq</td>
<td>'beq'</td>
</tr>
<tr>
<td>nonlinear constraint function</td>
<td>'nonlcon'</td>
</tr>
</tbody>
</table>

9 If using the lsqcurvefit local solver, include vectors of input data and response data, named 'xdata' and 'ydata' respectively.

10 **Best practice:** validate the problem structure by running your solver on the structure. For example, if your local solver is fmincon:

```
[x,fval,eflag,output] = fmincon(problem);
```
Example: Creating a Problem Structure with createOptimProblem

This example minimizes the function from “Run the Solver” on page 3-21, subject to the constraint \( x_1 + 2x_2 \geq 4 \). The objective is

\[
\text{sixmin} = 4x^2 - 2.1x^4 + x^6/3 + xy - 4y^2 + 4y^4.
\]

Use the interior-point algorithm of \texttt{fmincon}, and set the start point to \([2;3]\).

1. Write a function handle for the objective function.

\[
\text{sixmin} = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... \]
\[
+ x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
\]

2. Write the linear constraint matrices. Change the constraint to “less than” form:

\[
A = [-1,-2];
\]
\[
b = -4;
\]

3. Create the local options to use the interior-point algorithm:

\[
\text{opts} = \text{optimoptions(}@\text{fmincon},'\text{Algorithm'},'\text{interior-point'});
\]

4. Create the problem structure with \texttt{createOptimProblem}:

\[
\text{problem} = \text{createOptimProblem('fmincon', ...}
\]
\[
\text{'x0',}[2;3],'	ext{objective}',\text{sixmin}, ... \]
\[
\text{'Aineq',A,'bineq',b,'options',opts})
\]

5. The resulting structure:

\[
\text{problem} =
\]

\[
\text{struct with fields:}
\]

\[
\text{objective: @x}(4\text{x(1)}^2 - 2.1\text{x(1)}^4 + \text{x(1)}^6/3 + \text{x(1)}*\text{x(2)} - 4\text{x(2)}^2 + 4\text{x(2)}^4)
\]
\[
\text{x0: [2x1 double]}
\]
\[
\text{Aineq: [-1 -2]}
\]
\[
\text{bineq: -4}
\]
\[
\text{Aeq: [\]}
\]
\[
\text{beq: [\]}
\]
\[
\text{lb: [\]}
\]
\[
\text{ub: [\]}
\]
\[
\text{nonlcon: [\]}
\]
\[
\text{solver: 'fmincon'}
\]
\[
\text{options: [1x1 optim.options.Fmincon]}
\]

6. Best practice: Validate the problem structure by running your solver on the structure:

\[
[x,fval,eflag,output] = \text{fmincon(problem)};
\]
Exporting from the Optimization app

Follow these steps to create a problem structure using the Optimization app.

1. Define your objective function as a file or anonymous function. For details, see “Compute Objective Functions” on page 2-2. If your solver is `lsqcurvefit` or `lsqnonlin`, ensure the objective function returns a vector, not scalar.

2. If relevant, create nonlinear constraint functions. For details, see “Nonlinear Constraints” (Optimization Toolbox).

3. Create a start point. For example, to create a three-dimensional random start point `xstart`:

   ```matlab
 xstart = randn(3,1);
   ```

4. Open the Optimization app by entering `optimtool` at the command line, or by choosing the Optimization app from the Apps tab.

5. Choose the local **Solver**.

   - For `GlobalSearch`: `fmincon` (default).
   - For `MultiStart`:
     - `fmincon` (default)
     - `fminunc`
     - `lsqcurvefit`
     - `lsqnonlin`

   For help choosing, see “Optimization Decision Table” (Optimization Toolbox).
6 Choose an appropriate **Algorithm**. For help choosing, see “Choosing the Algorithm” (Optimization Toolbox).

![Solver and Algorithm Settings](image1)

7 Set an initial point (**Start point**).

8 Include the function handle for your objective function in **Objective function**, and, if applicable, include your **Nonlinear constraint function**. For example,

![Objective and Constraint Settings](image2)

9 Set bounds, linear constraints, or local **Options**. For details on constraints, see “Write Constraints” (Optimization Toolbox).

10 **Best practice: run the problem to verify the setup.**

11 Choose **File > Export to Workspace** and select **Export problem and options to a MATLAB structure named**
Example: Creating a Problem Structure with the Optimization App

This example minimizes the function from “Run the Solver” on page 3-21, subject to the constraint $x_1 + 2x_2 \geq 4$. The objective is

$$\text{sixmin} = 4x^2 - 2.1x^4 + \frac{x^6}{3} + xy - 4y^2 + 4y^4.$$  

Use the interior-point algorithm of fmincon, and set the start point to $[2; 3]$.

1. Write a function handle for the objective function.

$$\text{sixmin} = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);$$

2. Write the linear constraint matrices. Change the constraint to “less than” form:

   $A = [-1, -2];$
   $b = -4;$

3. Launch the Optimization app by entering optimtool at the MATLAB command line.

4. Set the solver, algorithm, objective, start point, and constraints.
5 **Best practice: run the problem to verify the setup.**

The problem runs successfully.
Choose **File > Export to Workspace** and select **Export problem and options to a MATLAB structure named**

**See Also**

**Related Examples**
- “Workflow for GlobalSearch and MultiStart” on page 3-3
Create Solver Object

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“What Is a Solver Object?” on page 3-13</td>
</tr>
<tr>
<td>“Properties (Global Options) of Solver Objects” on page 3-13</td>
</tr>
<tr>
<td>“Creating a Nondefault GlobalSearch Object” on page 3-15</td>
</tr>
<tr>
<td>“Creating a Nondefault MultiStart Object” on page 3-15</td>
</tr>
</tbody>
</table>

What Is a Solver Object?

A solver object contains your preferences for the global portion of the optimization.

You do not need to set any preferences. Create a GlobalSearch object named gs with default settings as follows:

```
gs = GlobalSearch;
```

Similarly, create a MultiStart object named ms with default settings as follows:

```
ms = MultiStart;
```

Properties (Global Options) of Solver Objects

Global options are properties of a GlobalSearch or MultiStart object.
### Properties for both GlobalSearch and MultiStart

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Detail level of iterative display. Set to 'off' for no display, 'final' (default) for a report at the end of the run, or 'iter' for reports as the solver progresses. For more information and examples, see “Iterative Display” on page 3-33.</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>Solvers consider objective function values within FunctionTolerance of each other to be identical (not distinct). Default: 1e-6. Solvers group solutions when the solutions satisfy both FunctionTolerance and XTolerance tolerances.</td>
</tr>
<tr>
<td>XTolerance</td>
<td>Solvers consider solutions within XTolerance distance of each other to be identical (not distinct). Default: 1e-6. Solvers group solutions when the solutions satisfy both FunctionTolerance and XTolerance tolerances.</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Solvers halt if the run exceeds MaxTime seconds, as measured by a clock (not processor seconds). Default: Inf</td>
</tr>
<tr>
<td>StartPointsToRun</td>
<td>Choose whether to run 'all' (default) start points, only those points that satisfy 'bounds', or only those points that are feasible with respect to bounds and inequality constraints with 'bounds-ineqs'. For an example, see “Optimize Using Only Feasible Start Points” on page 3-103.</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Functions to run after each local solver run. See “Output Functions for GlobalSearch and MultiStart” on page 3-40. Default: []</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Plot functions to run after each local solver run. See “Plot Functions for GlobalSearch and MultiStart” on page 3-44. Default: []</td>
</tr>
</tbody>
</table>
## Properties for GlobalSearch

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumTrialPoints</td>
<td>Number of trial points to examine. Default: 1000</td>
</tr>
<tr>
<td>BasinRadiusFactor</td>
<td>See GlobalSearch Properties for detailed descriptions of these properties.</td>
</tr>
<tr>
<td>DistanceThresholdFactor</td>
<td></td>
</tr>
<tr>
<td>MaxWaitCycle</td>
<td></td>
</tr>
<tr>
<td>NumStageOnePoints</td>
<td></td>
</tr>
<tr>
<td>PenaltyThresholdFactor</td>
<td></td>
</tr>
</tbody>
</table>

## Properties for MultiStart

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel</td>
<td>When true, MultiStart attempts to distribute start points to multiple processors for the local solver. Disable by setting to false (default). For details, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14. For an example, see “Parallel MultiStart” on page 3-114.</td>
</tr>
</tbody>
</table>

## Creating a Nondefault GlobalSearch Object

Suppose you want to solve a problem and:

- Consider local solutions identical if they are within 0.01 of each other and the function values are within the default FunctionTolerance tolerance.
- Spend no more than 2000 seconds on the computation.

To solve the problem, create a GlobalSearch object `gs` as follows:

```matlab
gs = GlobalSearch('XTolerance',0.01,'MaxTime',2000);
```

## Creating a Nondefault MultiStart Object

Suppose you want to solve a problem such that:

- You consider local solutions identical if they are within 0.01 of each other and the function values are within the default FunctionTolerance tolerance.
• You spend no more than 2000 seconds on the computation.

To solve the problem, create a MultiStart object `ms` as follows:

```matlab
ms = MultiStart('XTolerance',0.01,'MaxTime',2000);
```

**See Also**

**Related Examples**

• “Workflow for GlobalSearch and MultiStart” on page 3-3
Set Start Points for MultiStart

In this section...

| “Four Ways to Set Start Points” on page 3-17 | “Positive Integer for Start Points” on page 3-17 |
| “RandomStartPointSet Object for Start Points” on page 3-18 | “CustomStartPointSet Object for Start Points” on page 3-18 |
| “Cell Array of Objects for Start Points” on page 3-19 |

Four Ways to Set Start Points

There are four ways you tell MultiStart which start points to use for the local solver:

- Pass a positive integer on page 3-17 k. MultiStart generates k - 1 start points as if using a RandomStartPointSet object and the problem structure. MultiStart also uses the x0 start point from the problem structure, for a total of k start points.
- Pass a RandomStartPointSet object on page 3-18.
- Pass a CustomStartPointSet object on page 3-18.
- Pass a cell array on page 3-19 of RandomStartPointSet and CustomStartPointSet objects. Pass a cell array if you have some specific points you want to run, but also want MultiStart to use other random start points.

Note: You can control whether MultiStart uses all start points, or only those points that satisfy bounds or other inequality constraints. For more information, see “Filter Start Points (Optional)” on page 3-56.

Positive Integer for Start Points

The syntax for running MultiStart for k start points is

\[ \text{[xmin,fmin,flag,outpt,allmins]} = \text{run}(\text{ms,problem,k}); \]

The positive integer k specifies the number of start points MultiStart uses. MultiStart generates random start points using the dimension of the problem and bounds from the problem structure. MultiStart generates k - 1 random start points, and also uses the x0 start point from the problem structure.
RandomStartPointSet Object for Start Points

Create a RandomStartPointSet object as follows:

\[
stpoints = \text{RandomStartPointSet};
\]

By default a RandomStartPointSet object generates 10 start points. Control the number of start points with the NumStartPoints property. For example, to generate 40 start points:

\[
stpoints = \text{RandomStartPointSet}('\text{NumStartPoints}',40);
\]

You can set an ArtificialBound for a RandomStartPointSet. This ArtificialBound works in conjunction with the bounds from the problem structure:

- If a component has no bounds, RandomStartPointSet uses a lower bound of \(-\text{ArtificialBound}\), and an upper bound of \text{ArtificialBound}.
- If a component has a lower bound lb but no upper bound, RandomStartPointSet uses an upper bound of \(\text{lb} + 2\text{ArtificialBound}\).
- Similarly, if a component has an upper bound ub but no lower bound, RandomStartPointSet uses a lower bound of \(\text{ub} - 2\text{ArtificialBound}\).

For example, to generate 100 start points with an ArtificialBound of 50:

\[
stpoints = \text{RandomStartPointSet}('\text{NumStartPoints}',100, ... \\
'\text{ArtificialBound}',50);
\]

A RandomStartPointSet object generates start points with the same dimension as the \(x0\) point in the problem structure; see list.

CustomStartPointSet Object for Start Points

To use a specific set of starting points, package them in a CustomStartPointSet as follows:

1. Place the starting points in a matrix. Each row of the matrix represents one starting point. MultiStart runs all the rows of the matrix, subject to filtering with the StartPointsToRun property. For more information, see “MultiStart Algorithm” on page 3-55.
2. Create a CustomStartPointSet object from the matrix:

\[
tpoints = \text{CustomStartPointSet}(\text{ptmatrix});
\]
For example, create a set of 40 five-dimensional points, with each component of a point equal to 10 plus an exponentially distributed variable with mean 25:

```matlab
pts = -25*log(rand(40,5)) + 10;
tpoints = CustomStartPointSet(pts);
```

To get the original matrix of points from a `CustomStartPointSet` object, use `list`:

```matlab
pts = list(tpoints); % Assumes tpoints is a CustomStartPointSet
```

A `CustomStartPointSet` has two properties: `StartPointsDimension` and `NumStartPoints`. You can use these properties to query a `CustomStartPointSet` object. For example, the `tpoints` object in the example has the following properties:

```matlab
tpoints.StartPointsDimension
ans =
 5

tpoints.NumStartPoints
ans =
 40
```

**Cell Array of Objects for Start Points**

To use a specific set of starting points along with some randomly generated points, pass a cell array of `RandomStartPointSet` or `CustomStartPointSet` objects.

For example, to use both the 40 specific five-dimensional points of “CustomStartPointSet Object for Start Points” on page 3-18 and 40 additional five-dimensional points from `RandomStartPointSet`:

```matlab
pts = -25*log(rand(40,5)) + 10;
tpoints = CustomStartPointSet(pts);
rpts = RandomStartPointSet('NumStartPoints',40);
allpts = {tpoints,rpts};
```

Run `MultiStart` with the `allpts` cell array:

```matlab
% Assume ms and problem exist
[xmin,fmin,flag,outpt,allmins] = run(ms,problem,allpts);
```
See Also

Related Examples

- “Workflow for GlobalSearch and MultiStart” on page 3-3
Run the Solver

**In this section...**

“Optimize by Calling run” on page 3-21
“Example of Run with GlobalSearch” on page 3-22
“Example of Run with MultiStart” on page 3-23

**Optimize by Calling run**

Running a solver is nearly identical for `GlobalSearch` and `MultiStart`. The only difference in syntax is `MultiStart` takes an additional input describing the start points.

For example, suppose you want to find several local minima of the `sixmin` function

\[
sixmin = 4x^2 - 2.1x^4 + \frac{x^6}{3} + xy - 4y^2 + 4y^4.
\]

This function is also called the six-hump camel back function [3]. All the local minima lie in the region \(-3 \leq x, y \leq 3\).
Example of Run with GlobalSearch

To find several local minima of the sixmin function using GlobalSearch, enter:

```matlab
% % Set the random stream to get exactly the same output
% rng(14,'twister')
gs = GlobalSearch;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
 'options',opts);
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);
```

The output of the run (which varies, based on the random seed):

```matlab
xming,fming,flagg,outptg,manyminsg
xming =
 0.0898 -0.7127

fming =
 -1.0316

flagg =
 1

outptg =
 struct with fields:
 funcCount: 2131
 localSolverTotal: 3
 localSolverSuccess: 3
 localSolverIncomplete: 0
 localSolverNoSolution: 0
 message: 'GlobalSearch stopped because it analyzed all the trial po.'

manyminsg =
 1x2 GlobalOptimSolution array with properties:
 X
 Fval
 Exitflag
```
Example of Run with MultiStart

To find several local minima of the sixmin function using 50 runs of fmincon with MultiStart, enter:

```matlab
% Set the random stream to get exactly the same output
rng(14,'twister')
ms = MultiStart;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
'options',opts);
[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);
```

The output of the run (which varies based on the random seed):

```matlab
xminm,fminm,flagm,outptm,manyminsm

xminm =
0.0898 -0.7127

fminm =
-1.0316

flagm =
1

outptm =
struct with fields:
 funcCount: 2034
 localSolverTotal: 50
 localSolverSuccess: 50
 localSolverIncomplete: 0
 localSolverNoSolution: 0
 message: 'MultiStart completed the runs from all start points....'

manyminsm =
```

3-23
1x6 GlobalOptimSolution array with properties:

- X
- Fval
- Exitflag
- Output
- X0

In this case, MultiStart located all six local minima, while GlobalSearch located two. For pictures of the MultiStart solutions, see “Visualize the Basins of Attraction” on page 3-37.

See Also

Related Examples
- “Global or Multiple Starting Point Search”
Single Solution

You obtain the single best solution found during the run by calling `run` with the syntax

```matlab
[x,fval,eflag,output] = run(...);
```

- **x** is the location of the local minimum with smallest objective function value.
- **fval** is the objective function value evaluated at `x`.
- **eflag** is an exit flag for the global solver. Values:

  **Global Solver Exit Flags**

  2  
  At least one local minimum found. Some runs of the local solver converged (had positive exit flag).

  1  
  At least one local minimum found. All runs of the local solver converged (had positive exit flag).

  0  
  No local minimum found. Local solver called at least once, and at least one local solver exceeded the `MaxIterations` or `MaxFunctionEvaluations` tolerances.

  -1  
  Solver stopped by output function or plot function.

  -2  
  No feasible local minimum found.

  -5  
  `MaxTime` limit exceeded.

  -8  
  No solution found. All runs had local solver exit flag -1 or smaller.

  -10  
  Failures encountered in user-provided functions.

- **output** is a structure with details about the multiple runs of the local solver. For more information, see “Global Output Structures” on page 3-36.

The list of outputs is for the case `eflag > 0`. If `eflag <= 0`, then `x` is the following:

- If some local solutions are feasible, `x` represents the location of the lowest objective function value. “Feasible” means the constraint violations are smaller than `problem.options.ConstraintTolerance`.
- If no solutions are feasible, `x` is the solution with lowest infeasibility.
- If no solutions exist, `x`, `fval`, and `output` are empty entries (`[]`).
See Also

Related Examples

•  “Run the Solver” on page 3-21
Multiple Solutions

About Multiple Solutions

You obtain multiple solutions in an object by calling `run` with the syntax

```matlab
[x,fval,eflag,output,manymins] = run(...);
```

`manymins` is a vector of solution objects; see `GlobalOptimSolution`. The `manymins` vector is in order of objective function value, from lowest (best) to highest (worst). Each solution object contains the following properties (fields):

- **X** — a local minimum
- **Fval** — the value of the objective function at X
- **Exitflag** — the exit flag for the local solver (described in the local solver function reference page: `fmincon` exitflag, `fminunc` exitflag, `lsqcurvefit` exitflag, or `lsqnonlin` exitflag)
- **Output** — an output structure for the local solver (described in the local solver function reference page: `fmincon` output, `fminunc` output, `lsqcurvefit` output, or `lsqnonlin` output)
- **X0** — a cell array of start points that led to the solution point X

There are several ways to examine the vector of solution objects:

- In the MATLAB Workspace Browser. Double-click the solution object, and then double-click the resulting display in the Variables editor.
• Using dot notation. `GlobalOptimSolution` properties are capitalized. Use proper capitalization to access the properties.

For example, to find the vector of function values, enter:
fcnvals = [manymins.Fval]

fcnvals =
   -1.0316   -0.2155         0

To get a cell array of all the start points that led to the lowest function value (the first element of manymins), enter:

smallX0 = manymins(1).X0

• Plot some field values. For example, to see the range of resulting Fval, enter:

histogram([manymins.Fval],10)

This results in a histogram of the computed function values. (The figure shows a histogram from a different example than the previous few figures.)
Change the Definition of Distinct Solutions

You might find out, after obtaining multiple local solutions, that your tolerances were not appropriate. You can have many more local solutions than you want, spaced too closely together. Or you can have fewer solutions than you want, with GlobalSearch or MultiStart clumping together too many solutions.

To deal with this situation, run the solver again with different tolerances. The XTTolerance and FunctionTolerance tolerances determine how the solvers group their outputs into the GlobalOptimSolution vector. These tolerances are properties of the GlobalSearch or MultiStart object.
For example, suppose you want to use the active-set algorithm in fmincon to solve the problem in “Example of Run with MultiStart” on page 3-23. Further suppose that you want to have tolerances of 0.01 for both XTolerance and FunctionTolerance. The run method groups local solutions whose objective function values are within FunctionTolerance of each other, and which are also less than XTolerance apart from each other. To obtain the solution:

```matlab
rng(14,'twister')
ms = MultiStart('FunctionTolerance',0.01,'XTolerance',0.01);
opts = optimoptions(@fmincon,'Algorithm','active-set');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
 'options',opts);
[xminm,fminm,flagm,outptm,someminsm] = run(ms,problem,50);
```

MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

```matlab
someminsm
someminsm =

1x5 GlobalOptimSolution

Properties:
 X
 Fval
 Exitflag
 Output
 X0
```

In this case, MultiStart generated five distinct solutions. Here “distinct” means that the solutions are more than 0.01 apart in either objective function value or location.
See Also

Related Examples

- “Run the Solver” on page 3-21
- “Visualize the Basins of Attraction” on page 3-37
Iterative Display

In this section...

“Types of Iterative Display” on page 3-33
“Examine Types of Iterative Display” on page 3-33

Types of Iterative Display

Iterative display gives you information about the progress of solvers during their runs.

There are two types of iterative display:

- Global solver display
- Local solver display

Both types appear at the command line, depending on global and local options.

Obtain local solver iterative display by setting the Display option in the
`problem.options` field to `'iter'` or `'iter-detailed'` with `optimoptions`. For more information, see “Iterative Display” (Optimization Toolbox).

Obtain global solver iterative display by setting the Display property in the
`GlobalSearch` or `MultiStart` object to `'iter'`.

Global solvers set the default Display option of the local solver to `'off'`, unless the problem structure has a value for this option. Global solvers do not override any setting you make for local options.

**Note** Setting the local solver Display option to anything other than `'off'` can produce a great deal of output. The default Display option created by `optimoptions(@solver)` is `'final'`.

Examine Types of Iterative Display

Run the example described in “Run the Solver” on page 3-21 using `GlobalSearch` with `GlobalSearch` iterative display:

```matlab
% Set the random stream to get exactly the same output
% rng(14,'twister')
```
gs = GlobalSearch('Display','iter');
Intrs = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],
'objective',sixmin,'lb',[-3,-3],'ub',[3,3],
'options',opts);
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

Num Pts     F-count     Best f(x)       Current f(x)       Threshold Penalty Penalty       Local f(x)      Local exitflag Procedure
0          34     -1.032             -1.032             -0.2155            1    Initial Point
200        1291     -1.032             248.7             0.3214            1    Stage 1 Local
300        1393     -1.032             278               1.3134            1    Stage 2 Search
400        1493     -1.032             278               1.3134            1    Stage 2 Search
446        1577     -1.032             278               1.3134            1    Stage 2 Local
500        1631     -1.032             9.055             0.3214            1    Stage 2 Search
600        1731     -1.032             9.055             0.3214            1    Stage 2 Search
700        1831     -1.032             0.3191             0.7431            1    Stage 2 Search
800        1931     -1.032             0.3191             0.7431            1    Stage 2 Search
900        2031     -1.032             0.3191             0.7431            1    Stage 2 Search
1000       2131     -1.032             0.3191             0.7431            1    Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

Run the same example without GlobalSearch iterative display, but with fmincon iterative display:

gs.Display = 'final';
problem.options.Display = 'iter';
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

Iter F-count     f(x)        Feasibility     First-order Norm of step
0    3 4.823333e+001 0.0000e+000 1.0880e00 1.0880e00
1    7 2.020476e+000 0.0000e+000 2.1760e00 2.1760e00
2   10 6.525252e-001 0.0000e+000 1.9370e00 1.9370e00
3   13 -8.776121e-001 0.0000e+000 9.0760e-001 9.0760e-001
4   16 -9.121907e-001 0.0000e+000 9.0760e-001 9.0760e-001
5   19 -1.009367e+000 0.0000e+000 7.3260e-001 7.3260e-001
6   22 -1.031628e+000 0.0000e+000 2.1720e-001 2.1720e-001
7   25 -1.031628e+000 0.0000e+000 4.2780e-002 4.2780e-002
8   28 -1.031628e+000 0.0000e+000 8.8450e-005 8.8450e-005
9   31 -1.031628e+000 0.0000e+000 2.7500e-004 2.7500e-004
10  34 -1.031628e+000 0.0000e+000 8.7440e-007 8.7440e-007

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in feasible directions, to within the selected value of the function tolerance, and constraints were satisfied to within the selected value of the constraint tolerance.

Optimization terminated because the objective function is non-decreasing in feasible directions, to within the selected value of the function tolerance, and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

Iter F-count     f(x)        Feasibility     First-order Norm of step
0    3 -1.980435e-02 0.0000e+00 1.9960e00

... MANY ITERATIONS DELETED ...

3-34
| 8 | 33 | -1.031628e+00 | 0.000e+00 | 8.742e-07 | 2.287e-07 |

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the selected value of the function tolerance, and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

Setting GlobalSearch iterative display, as well as fmincon iterative display, yields both displays intermingled.

For an example of iterative display in a parallel environment, see “Parallel MultiStart” on page 3-114.

**See Also**

**Related Examples**

- “Global or Multiple Starting Point Search”
Global Output Structures

run can produce two types of output structures:

- A global output structure. This structure contains information about the overall run from multiple starting points. Details follow.
- Local solver output structures. The vector of GlobalOptimSolution objects contains one such structure in each element of the vector. For a description of this structure, see “Output Structures” (Optimization Toolbox), or the function reference pages for the local solvers: fmincon output, fminunc output, lsqcurvefit output, or lsqnonlin output.

Global Output Structure

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>funcCount</td>
<td>Total number of calls to user-supplied functions (objective or nonlinear constraint)</td>
</tr>
<tr>
<td>localSolverTotal</td>
<td>Number of local solver runs started</td>
</tr>
<tr>
<td>localSolverSuccess</td>
<td>Number of local solver runs that finished with a positive exit flag</td>
</tr>
<tr>
<td>localSolverIncomplete</td>
<td>Number of local solver runs that finished with a 0 exit flag</td>
</tr>
<tr>
<td>localSolverNoSolution</td>
<td>Number of local solver runs that finished with a negative exit flag</td>
</tr>
<tr>
<td>message</td>
<td>GlobalSearch or MultiStart exit message</td>
</tr>
</tbody>
</table>

A positive exit flag from a local solver generally indicates a successful run. A negative exit flag indicates a failure. A 0 exit flag indicates that the solver stopped by exceeding the iteration or function evaluation limit. For more information, see “Exit Flags and Exit Messages” (Optimization Toolbox) or “Tolerances and Stopping Criteria” (Optimization Toolbox).

See Also

Related Examples

- “Global or Multiple Starting Point Search”
Visualize the Basins of Attraction

Which start points lead to which basin? For a steepest descent solver, nearby points generally lead to the same basin; see “Basins of Attraction” on page 1-23. However, for Optimization Toolbox solvers, basins are more complicated.

Plot the MultiStart start points from the example, “Example of Run with MultiStart” on page 3-23, color-coded with the basin where they end.

```matlab
% rng(14,'twister')
% Uncomment the previous line to get the same output
ms = MultiStart;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
'ojective',sixmin,'lb',[-3,-3],'ub',[3,3],...
'options',opts);
[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);

possColors = 'kbgcrm';
hold on
for i = 1:size(manyminsm,2)
 % Color of this line
 cIdx = rem(i-1, length(possColors)) + 1;
 color = possColors(cIdx);

 % Plot start points
 u = manyminsm(i).X0;
 x0ThisMin = reshape([u{:}], 2, length(u));
 plot(x0ThisMin(1, :), x0ThisMin(2, :), '.', ... 'Color',color,'MarkerSize',25);

 % Plot the basin with color i
 plot(manyminsm(i).X(1), manyminsm(i).X(2), '*', ... 'Color', color, 'MarkerSize',25);
end
hold off
```

Visualize the Basins of Attraction

3-37
The figure shows the centers of the basins by colored * symbols. Start points with the same color as the * symbol converge to the center of the * symbol.

Start points do not always converge to the closest basin. For example, the red points are closer to the cyan basin center than to the red basin center. Also, many black and blue start points are closer to the opposite basin centers.

The magenta and red basins are shallow, as you can see in the following contour plot.
See Also

Related Examples
- “Multiple Solutions” on page 3-27
Output Functions for GlobalSearch and MultiStart

What Are Output Functions?

Output functions allow you to examine intermediate results in an optimization. Additionally, they allow you to halt a solver programmatically.

There are two types of output functions, like the two types of output structures on page 3-36:

- Global output functions run after each local solver run. They also run when the global solver starts and ends.
- Local output functions run after each iteration of a local solver. See “Output Functions” (Optimization Toolbox).

To use global output functions:

- Write output functions using the syntax described in “OutputFcn” on page 11-4.
- Set the OutputFcn property of your GlobalSearch or MultiStart solver to the function handle of your output function. You can use multiple output functions by setting the OutputFcn property to a cell array of function handles.

GlobalSearch Output Function

This output function stops GlobalSearch after it finds five distinct local minima with positive exit flags, or after it finds a local minimum value less than 0.5. The output function uses a persistent local variable, foundLocal, to store the local results. foundLocal enables the output function to determine whether a local solution is distinct from others, to within a tolerance of 1e-4.

To store local results using nested functions instead of persistent variables, see “Example of a Nested Output Function” (MATLAB).
1. Write the output function using the syntax described in “OutputFcn” on page 11-4.

```matlab
function stop = StopAfterFive(optimValues, state)
persistent foundLocal
stop = false;
switch state
 case 'init'
 foundLocal = [];
 case 'iter'
 newf = optimValues.localsolution.Fval;
 eflag = optimValues.localsolution.Exitflag;
 if eflag > 0 && all(abs(newf - foundLocal) > 1e-4)
 foundLocal = [foundLocal; newf];
 end
 if foundLocal(end) < 0.5 || length(foundLocal) >= 5
 stop = true;
 end
end
end
```

2. Save `StopAfterFive.m` as a file in a folder on your MATLAB path.

3. Write the objective function and create an optimization problem structure as in “Find Global or Multiple Local Minima” on page 3-78.

```matlab
function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos(2*t - 1/2)/2 + cos(t) + 2;
 g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) .* r.^2./(r+1);
 f = g.*h;
end
```

4. Save `sawtoothxy.m` as a file in a folder on your MATLAB path.

5. At the command line, create the problem structure:

```matlab
problem = createOptimProblem('fmincon',
 'objective',@(x)sawtoothxy(x(1),x(2)),
 'x0',[100,-50],
 'options',
 optimoptions(@fmincon,'Algorithm','sqp'));
```
Create a `GlobalSearch` object with `@StopAfterFive` as the output function, and set the iterative display property to 'iter'.

\[
gs = 
\]

(Optional) To get the same answer as this example, set the default random number stream.

\[
\text{rng default}
\]

Run the problem.

\[
[x,fval] = 
\]

GlobalSearch stopped by the output or plot function.

1 out of 2 local solver runs converged with a positive local solver exit flag.

\[
x =
\]

\[
1.0e-07 *
\]

\[
0.0414 0.1298
\]

\[
fval =
\]

\[
1.5467e-15
\]

The run stopped early because `GlobalSearch` found a point with a function value less than 0.5.

**No Parallel Output Functions**

While `MultiStart` can run in parallel, it does not support global output functions and plot functions in parallel. Furthermore, while local output functions and plot functions run on workers when `MultiStart` runs in parallel, the effect differs from running serially. Local output and plot functions do not create a display when running on workers. You do not see any other effects of output and plot functions until the worker passes its results to the client (the originator of the `MultiStart` parallel jobs).

For information on running `MultiStart` in parallel, see “Parallel Computing”.
See Also

Related Examples

• “Global or Multiple Starting Point Search”
• “Plot Functions for GlobalSearch and MultiStart” on page 3-44
What Are Plot Functions?

The `PlotFcn` field of `options` specifies one or more functions that an optimization function calls at each iteration. Plot functions plot various measures of progress while the algorithm executes. Pass a function handle or cell array of function handles. The structure of a plot function is the same as the structure of an output function. For more information on this structure, see “OutputFcn” on page 11-4.

Plot functions are specialized output functions (see “Output Functions for GlobalSearch and MultiStart” on page 3-40). There are two predefined plot functions:

- `@gsplotbestf` plots the best objective function value.
- `@gsplotfunccount` plots the number of function evaluations.

Plot function windows have **Pause** and **Stop** buttons. By default, all plots appear in one window.

To use global plot functions:

- Write plot functions using the syntax described in “OutputFcn” on page 11-4.
- Set the `PlotFcn` property of your `GlobalSearch` or `MultiStart` object to the function handle of your plot function. You can use multiple plot functions by setting the `PlotFcn` property to a cell array of function handles.

Details of Built-In Plot Functions

The built-in plot functions have characteristics that can surprise you.

- `@gsplotbestf` can have plots that are not strictly decreasing. This is because early values can result from local solver runs with negative exit flags (such as infeasible solutions). A subsequent local solution with positive exit flag is better even if its
function value is higher. Once a local solver returns a value with a positive exit flag, the plot is monotone decreasing.

- `@gsplotfunccount` might not plot the total number of function evaluations. This is because `GlobalSearch` can continue to perform function evaluations after it calls the plot function for the last time. For more information, see “GlobalSearch Algorithm” on page 3-51.

**MultiStart Plot Function**

This example plots the number of local solver runs it takes to obtain a better local minimum for `MultiStart`. The example also uses a built-in plot function to show the current best function value.

The example problem is the same as in “Find Global or Multiple Local Minima” on page 3-78, with additional bounds.

The example uses persistent variables to store previous best values. The plot function examines the best function value after each local solver run, available in the `bestfval` field of the `optimValues` structure. If the value is not lower than the previous best, the plot function adds 1 to the number of consecutive calls with no improvement and draws a bar chart. If the value is lower than the previous best, the plot function starts a new bar in the chart with value 1. Before plotting, the plot function takes a logarithm of the number of consecutive calls. The logarithm helps keep the plot legible, since some values can be much larger than others.

To store local results using nested functions instead of persistent variables, see “Example of a Nested Output Function” (MATLAB).

1. Write the objective function:

   ```matlab
 function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos(2*t - 1/2)/2 + cos(t) + 2;
 g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
 .*r.^2./(r+1);
 f = g.*h;
   ```

2. Save `sawtoothxy.m` as a file in a folder on your MATLAB path.

3. Write the plot function:

   ```matlab
 function stop = NumberToNextBest(optimValues, state)
 persistent bestfv bestcounter
   ```
stop = false;
switch state
  case 'init'
    % Initialize variable to record best function value.
    bestfv = [];
    % Initialize counter to record number of
    % local solver runs to find next best minimum.
    bestcounter = 1;
    % Create the histogram.
    bar(log(bestcounter),'tag','NumberToNextBest');
    xlabel('Number of New Best Fval Found');
    ylabel('Log Number of Local Solver Runs');
    title('Number of Local Solver Runs to Find Lower Minimum')
  case 'iter'
    % Find the axes containing the histogram.
    NumToNext = ...
    findobj(get(gca,'Children'),'Tag','NumberToNextBest');
    % Update the counter that records number of local
    % solver runs to find next best minimum.
    if ~isequal(optimValues.bestfval, bestfv)
      bestfv = optimValues.bestfval;
      bestcounter = [bestcounter 1];
    else
      bestcounter(end) = bestcounter(end) + 1;
    end
    % Update the histogram.
    set(NumToNext,'Ydata',log(bestcounter))
end

Save NumberToNextBest.m as a file in a folder on your MATLAB path.

Create the problem structure and global solver. Set lower bounds of \([-3e3,-4e3]\), upper bounds of \([4e3,3e3]\) and set the global solver to use the plot functions:

```matlab
problem = createOptimProblem('fmincon',...
 'objective', @(x)sawtoothxy(x(1),x(2)),...
 'x0',[100,-50], 'lb',[-3e3 -4e3],...
 'ub',[4e3,3e3], 'options',...
 optimoptions(@fmincon,'Algorithm','sqp'));

ms = MultiStart('PlotFcns',{@NumberToNextBest,@gsplotbestf});
```
6  Run the global solver for 100 local solver runs:

    [x,fv] = run(ms,problem,100);

7  The plot functions produce the following figure (your results can differ, since the solution process is stochastic):

---

**No Parallel Plot Functions**

While MultiStart can run in parallel, it does not support global output functions and plot functions in parallel. Furthermore, while local output functions and plot functions run on workers when MultiStart runs in parallel, the effect differs from running serially. Local output and plot functions do not create a display when running on workers. You do
not see any other effects of output and plot functions until the worker passes its results to
the client (the originator of the MultiStart parallel jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.

See Also

Related Examples

• “Global or Multiple Starting Point Search”
• “Output Functions for GlobalSearch and MultiStart” on page 3-40
How GlobalSearch and MultiStart Work

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Multiple Runs of a Local Solver” on page 3-49</td>
</tr>
<tr>
<td>“Differences Between the Solver Objects” on page 3-49</td>
</tr>
<tr>
<td>“GlobalSearch Algorithm” on page 3-51</td>
</tr>
<tr>
<td>“MultiStart Algorithm” on page 3-55</td>
</tr>
<tr>
<td>“Bibliography” on page 3-57</td>
</tr>
</tbody>
</table>

**Multiple Runs of a Local Solver**

GlobalSearch and MultiStart have similar approaches to finding global or multiple minima. Both algorithms start a local solver (such as `fmincon`) from multiple start points. The algorithms use multiple start points to sample multiple basins of attraction. For more information, see “Basins of Attraction” on page 1-23.

**Differences Between the Solver Objects**

“GlobalSearch and MultiStart Algorithm Overview” on page 3-50 contains a sketch of the GlobalSearch and MultiStart algorithms.
GlobalSearch and MultiStart Algorithm Overview

The main differences between GlobalSearch and MultiStart are:

- **GlobalSearch** uses a scatter-search mechanism for generating start points. **MultiStart** uses uniformly distributed start points within bounds, or user-supplied start points.
- **GlobalSearch** analyzes start points and rejects those points that are unlikely to improve the best local minimum found so far. **MultiStart** runs all start points (or, optionally, all start points that are feasible with respect to bounds or inequality constraints).
- **MultiStart** gives a choice of local solver: `fmincon`, `fminunc`, `lsqcurvefit`, or `lsqnonlin`. The **GlobalSearch** algorithm uses `fmincon`.
- **MultiStart** can run in parallel, distributing start points to multiple processors for local solution. To run **MultiStart** in parallel, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

Deciding Which Solver to Use

The differences between these solver objects boil down to the following decision on which to use:
• Use **GlobalSearch** to find a single global minimum most efficiently on a single processor.
• Use **MultiStart** to:
  • Find multiple local minima.
  • Run in parallel.
  • Use a solver other than **fmincon**.
  • Search thoroughly for a global minimum.
  • Explore your own start points.

**GlobalSearch Algorithm**

For a description of the algorithm, see Ugray et al. [1].

When you run a **GlobalSearch** object, the algorithm performs the following steps:

1. “Run **fmincon** from **x0**” on page 3-51
2. “Generate Trial Points” on page 3-52
3. “Obtain Stage 1 Start Point, Run” on page 3-52
4. “Initialize Basins, Counters, Threshold” on page 3-52
5. “Begin Main Loop” on page 3-53
6. “Examine Stage 2 Trial Point to See if **fmincon** Runs” on page 3-53
7. “When **fmincon** Runs” on page 3-53
8. “When **fmincon** Does Not Run” on page 3-54
9. “Create **GlobalOptimSolution**” on page 3-55

**Run **fmincon** from **x0**

**GlobalSearch** runs **fmincon** from the start point you give in the **problem** structure. If this run converges, **GlobalSearch** records the start point and end point for an initial estimate on the radius of a basin of attraction. Furthermore, **GlobalSearch** records the final objective function value for use in the score function (see “Obtain Stage 1 Start Point, Run” on page 3-52).

The score function is the sum of the objective function value at a point and a multiple of the sum of the constraint violations. So a feasible point has score equal to its objective
function value. The multiple for constraint violations is initially 1000. `GlobalSearch` updates the multiple during the run.

**Generate Trial Points**

`GlobalSearch` uses the scatter search algorithm to generate a set of `NumTrialPoints` trial points. Trial points are potential start points. For a description of the scatter search algorithm, see Glover [2]. `GlobalSearch` generates trial points within any finite bounds you set (lb and ub). Unbounded components have artificial bounds imposed: \(lb = -1e4 + 1\), \(ub = 1e4 + 1\). This range is not symmetric about the origin so that the origin is not in the scatter search. Components with one-sided bounds have artificial bounds imposed on the unbounded side, shifted by the finite bounds to keep \(lb < ub\).

**Obtain Stage 1 Start Point, Run**

`GlobalSearch` evaluates the score function of a set of `NumStageOnePoints` trial points. It then takes the point with the best score and runs `fmincon` from that point. `GlobalSearch` removes the set of `NumStageOnePoints` trial points from its list of points to examine.

**Initialize Basins, Counters, Threshold**

The `localSolverThreshold` is initially the smaller of the two objective function values at the solution points. The solution points are the `fmincon` solutions starting from \(x0\) and from the Stage 1 start point. If both of these solution points do not exist or are infeasible, `localSolverThreshold` is initially the penalty function value of the Stage 1 start point.

The `GlobalSearch` heuristic assumption is that basins of attraction are spherical. The initial estimate of basins of attraction for the solution point from \(x0\) and the solution point from Stage 1 are spheres centered at the solution points. The radius of each sphere is the distance from the initial point to the solution point. These estimated basins can overlap.

There are two sets of counters associated with the algorithm. Each counter is the number of consecutive trial points that:

- Lie within a basin of attraction. There is one counter for each basin.
- Have score function greater than `localSolverThreshold`. For a definition of the score, see “Run `fmincon` from \(x0\)” on page 3-51.

All counters are initially 0.
Begin Main Loop

GlobalSearch repeatedly examines a remaining trial point from the list, and performs the following steps. It continually monitors the time, and stops the search if elapsed time exceeds MaxTime seconds.

Examine Stage 2 Trial Point to See if fmincon Runs

Call the trial point \( p \). Run fmincon from \( p \) if the following conditions hold:

- \( p \) is not in any existing basin. The criterion for every basin \( i \) is:
  \[ |p - \text{center}(i)| > \text{DistanceThresholdFactor} \times \text{radius}(i). \]
  
  \text{DistanceThresholdFactor} is an option (default value 0.75).

- \( \text{score}(p) < \text{localSolverThreshold} \).
- (optional) \( p \) satisfies bound and/or inequality constraints. This test occurs if you set the StartPointsToRun property of the GlobalSearch object to 'bounds' or 'bounds-ineqs'.

When fmincon Runs

1. **Reset Counters**

   Set the counters for basins and threshold to 0.

2. **Update Solution Set**

   If fmincon runs starting from \( p \), it can yield a positive exit flag, which indicates convergence. In that case, GlobalSearch updates the vector of GlobalOptimSolution objects. Call the solution point \( x_p \) and the objective function value \( f_p \). There are two cases:

   - For every other solution point \( x_q \) with objective function value \( f_q \),
     \[ |x_q - x_p| > \text{XTolerance} \times \max(1,|x_p|) \]
     
     or
     \[ |f_q - f_p| > \text{FunctionTolerance} \times \max(1,|f_p|). \]
In this case, **GlobalSearch** creates a new element in the vector of **GlobalOptimSolution** objects. For details of the information contained in each object, see **GlobalOptimSolution**.

- For some other solution point \( x_q \) with objective function value \( f_q \),

\[
|x_q - x_p| \leq XTolerance \times \max(1,|x_p|)
\]

and

\[
|f_q - f_p| \leq FunctionTolerance \times \max(1,|f_p|).
\]

In this case, **GlobalSearch** regards \( x_p \) as equivalent to \( x_q \). The **GlobalSearch** algorithm modifies the **GlobalOptimSolution** of \( x_q \) by adding \( p \) to the cell array of \( X0 \) points.

There is one minor tweak that can happen to this update. If the exit flag for \( x_q \) is greater than 1, and the exit flag for \( x_p \) is 1, then \( x_p \) replaces \( x_q \). This replacement can lead to some points in the same basin being more than a distance of \( XTolerance \) from \( x_p \).

### 3 Update Basin Radius and Threshold

If the exit flag of the current **fmincon** run is positive:

- **a** Set threshold to the score value at start point \( p \).
- **b** Set basin radius for \( x_p \) equal to the maximum of the existing radius (if any) and the distance between \( p \) and \( x_p \).

### 4 Report to Iterative Display

When the **GlobalSearch** Display property is 'iter', every point that **fmincon** runs creates one line in the **GlobalSearch** iterative display.

### When **fmincon** Does Not Run

### 1 Update Counters

Increment the counter for every basin containing \( p \). Reset the counter of every other basin to 0.

Increment the threshold counter if \( \text{score}(p) \geq \text{localSolverThreshold} \). Otherwise, reset the counter to 0.
2 React to Large Counter Values

For each basin with counter equal to MaxWaitCycle, multiply the basin radius by $1 - \text{BasinRadiusFactor}$. Reset the counter to 0. (Both MaxWaitCycle and BasinRadiusFactor are settable properties of the GlobalSearch object.)

If the threshold counter equals MaxWaitCycle, increase the threshold:

\[
\text{new threshold} = \text{threshold} + \text{PenaltyThresholdFactor} \times (1 + \text{abs(threshold)}).
\]

Reset the counter to 0.

3 Report to Iterative Display

Every 200th trial point creates one line in the GlobalSearch iterative display.

Create GlobalOptimSolution

After reaching MaxTime seconds or running out of trial points, GlobalSearch creates a vector of GlobalOptimSolution objects. GlobalSearch orders the vector by objective function value, from lowest (best) to highest (worst). This concludes the algorithm.

MultiStart Algorithm

When you run a MultiStart object, the algorithm performs the following steps:

- “Validate Inputs” on page 3-55
- “Generate Start Points” on page 3-55
- “Filter Start Points (Optional)” on page 3-56
- “Run Local Solver” on page 3-56
- “Check Stopping Conditions” on page 3-57
- “Create GlobalOptimSolution Object” on page 3-57

Validate Inputs

MultiStart checks input arguments for validity. Checks include running the local solver once on problem inputs. Even when run in parallel, MultiStart performs these checks serially.

Generate Start Points

If you call MultiStart with the syntax
[x,fval] = run(ms,problem,k)

for an integer k, MultiStart generates k - 1 start points exactly as if you used a RandomStartPointSet object. The algorithm also uses the x0 start point from the problem structure, for a total of k start points.

A RandomStartPointSet object does not have any points stored inside the object. Instead, MultiStart calls list, which generates random points within the bounds given by the problem structure. If an unbounded component exists, list uses an artificial bound given by the ArtificialBound property of the RandomStartPointSet object.

If you provide a CustomStartPointSet object, MultiStart does not generate start points, but uses the points in the object.

Filter Start Points (Optional)

If you set the StartPointsToRun property of the MultiStart object to 'bounds' or 'bounds-ineqs', MultiStart does not run the local solver from infeasible start points. In this context, “infeasible” means start points that do not satisfy bounds, or start points that do not satisfy both bounds and inequality constraints.

The default setting of StartPointsToRun is 'all'. In this case, MultiStart does not discard infeasible start points.

Run Local Solver

MultiStart runs the local solver specified in problem.solver, starting at the points that pass the StartPointsToRun filter. If MultiStart is running in parallel, it sends start points to worker processors one at a time, and the worker processors run the local solver.

The local solver checks whether MaxTime seconds have elapsed at each of its iterations. If so, it exits that iteration without reporting a solution.

When the local solver stops, MultiStart stores the results and continues to the next step.

Report to Iterative Display

When the MultiStart Display property is 'iter', every point that the local solver runs creates one line in the MultiStart iterative display.
Check Stopping Conditions

MultiStart stops when it runs out of start points. It also stops when it exceeds a total run time of MaxTime seconds.

Create GlobalOptimSolution Object

After MultiStart reaches a stopping condition, the algorithm creates a vector of GlobalOptimSolution objects as follows:

1. Sort the local solutions by objective function value (Fval) from lowest to highest. For the lsqnonlin and lsqcurvefit local solvers, the objective function is the norm of the residual.
2. Loop over the local solutions \( j \) beginning with the lowest (best) \( Fval \).
3. Find all the solutions \( k \) satisfying both:
   
   \[
   |Fval(k) - Fval(j)| \leq \text{FunctionTolerance} \times \max(1,|Fval(j)|)
   \]
   
   \[
   |x(k) - x(j)| \leq \text{XTolerance} \times \max(1,|x(j)|)
   \]
4. Record \( j, Fval(j) \), the local solver output structure for \( j \) and a cell array of the start points for \( j \) and all the \( k \). Remove those points \( k \) from the list of local solutions. This point is one entry in the vector of GlobalOptimSolution objects.

The resulting vector of GlobalOptimSolution objects is in order by \( Fval \), from lowest (best) to highest (worst).

Report to Iterative Display

After examining all the local solutions, MultiStart gives a summary to the iterative display. This summary includes the number of local solver runs that converged, the number that failed to converge, and the number that had errors.

Bibliography


See Also

Related Examples
•  “Global or Multiple Starting Point Search”
Can You Certify That a Solution Is Global?

In this section...

“No Guarantees” on page 3-59
“Check if a Solution Is a Local Solution with patternsearch” on page 3-59
“Identify a Bounded Region That Contains a Global Solution” on page 3-60
“Use MultiStart with More Start Points” on page 3-61

No Guarantees

How can you tell if you have located the global minimum of your objective function? The short answer is that you cannot; you have no guarantee that the result of a Global Optimization Toolbox solver is a global optimum. While all Global Optimization Toolbox solvers repeatedly attempt to locate a global solution, no solver employs an algorithm that can certify a solution as global.

However, you can use the strategies in this section for investigating solutions.

Check if a Solution Is a Local Solution with patternsearch

Before you can determine if a purported solution is a global minimum, first check that it is a local minimum. To do so, run patternsearch on the problem.

To convert the problem to use patternsearch instead of fmincon or fminunc, enter

```
problem.solver = 'patternsearch';
```

Also, change the start point to the solution you just found, and clear the options:

```
problem.x0 = x;
problem.options = [];
```

For example, Check Nearby Points (Optimization Toolbox) shows the following:

```
options = optimoptions(@fmincon,'Algorithm','active-set');
ffun = @(x)(x(1)-(x(1)-x(2))^2);
problem = createOptimProblem('fmincon', ...
 'objective',ffun,'x0',[1/2 1/3], ...
 'lb',[0 -1],'ub',[1 1],'options',options);
```
[x,fval,exitflag] = fmincon(problem)

x =
    1.0e-007 *
         0    0.1614

fval =
    -2.6059e-016

exitflag =
    1

However, checking this purported solution with patternsearch shows that there is a better solution. Start patternsearch from the reported solution x:

% set the candidate solution x as the start point
problem.x0 = x;
problem.solver = 'patternsearch';
problem.options = [];
[xp,fvalp,exitflagp] = patternsearch(problem)

Optimization terminated: mesh size less than options.MeshTolerance.

xp =
    1.0000   -1.0000

fvalp =
    -3.0000

exitflagp =
    1

**Identify a Bounded Region That Contains a Global Solution**

Suppose you have a smooth objective function in a bounded region. Given enough time and start points, MultiStart eventually locates a global solution.

Therefore, if you can bound the region where a global solution can exist, you can obtain some degree of assurance that MultiStart locates the global solution.
For example, consider the function

\[ f = x^6 + y^6 + \sin(x + y)(x^2 + y^2) - \cos\left(\frac{x^2}{1 + y^2}\right)(2 + x^4 + x^2y^2 + y^4). \]

The initial summands \(x^6 + y^6\) force the function to become large and positive for large values of \(|x|\) or \(|y|\). The components of the global minimum of the function must be within the bounds

\[-10 \leq x, y \leq 10,\]

since \(10^6\) is much larger than all the multiples of \(10^4\) that occur in the other summands of the function.

You can identify smaller bounds for this problem; for example, the global minimum is between -2 and 2. It is more important to identify reasonable bounds than it is to identify the best bounds.

**Use MultiStart with More Start Points**

To check whether there is a better solution to your problem, run MultiStart with additional start points. Use MultiStart instead of GlobalSearch for this task because GlobalSearch does not run the local solver from all start points.

For example, see “Example: Searching for a Better Solution” on page 3-65.

**See Also**

**Related Examples**

- “Refine Start Points” on page 3-62
- “What Is Global Optimization?” on page 1-22
Refine Start Points

In this section...

“About Refining Start Points” on page 3-62
“Methods of Generating Start Points” on page 3-63
“Example: Searching for a Better Solution” on page 3-65

About Refining Start Points

If some components of your problem are unconstrained, GlobalSearch and MultiStart use artificial bounds to generate random start points uniformly in each component. However, if your problem has far-flung minima, you need widely dispersed start points to find these minima.

Use these methods to obtain widely dispersed start points:

• Give widely separated bounds in your problem structure.
• Use a RandomStartPointSet object with the MultiStart algorithm. Set a large value of the ArtificialBound property in the RandomStartPointSet object.
• Use a CustomStartPointSet object with the MultiStart algorithm. Use widely dispersed start points.

There are advantages and disadvantages of each method.

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give bounds in problem</td>
<td>Automatic point generation</td>
<td>Makes a more complex Hessian</td>
</tr>
<tr>
<td></td>
<td>Can use with GlobalSearch</td>
<td>Unclear how large to set the bounds</td>
</tr>
<tr>
<td></td>
<td>Easy to do</td>
<td>Changes problem</td>
</tr>
<tr>
<td></td>
<td>Bounds can be asymmetric</td>
<td>Only uniform points</td>
</tr>
<tr>
<td>Large ArtificialBound in</td>
<td>Automatic point generation</td>
<td>MultiStart only</td>
</tr>
<tr>
<td>RandomStartPointSet</td>
<td>Does not change problem</td>
<td>Only symmetric, uniform points</td>
</tr>
<tr>
<td></td>
<td>Easy to do</td>
<td>Unclear how large to set ArtificialBound</td>
</tr>
<tr>
<td>Method</td>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------------</td>
</tr>
<tr>
<td>CustomStartPointSet</td>
<td>Customizable</td>
<td>MultiStart only</td>
</tr>
<tr>
<td></td>
<td>Does not change problem</td>
<td>Requires programming for generating points</td>
</tr>
</tbody>
</table>

**Methods of Generating Start Points**

- “Uniform Grid” on page 3-63
- “Perturbed Grid” on page 3-64
- “Widely Dispersed Points for Unconstrained Components” on page 3-64

**Uniform Grid**

To generate a uniform grid of start points:

1. Generate multidimensional arrays with `ndgrid`. Give the lower bound, spacing, and upper bound for each component.
   
   For example, to generate a set of three-dimensional arrays with
   
   - First component from -2 through 0, spacing 0.5
   - Second component from 0 through 2, spacing 0.25
   - Third component from -10 through 5, spacing 1
   
   ```matlab
 [X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);
   ```

2. Place the arrays into a single matrix, with each row representing one start point. For example:

   ```matlab
 W = [X(:),Y(:),Z(:)];
   ```

   In this example, `W` is a 720-by-3 matrix.

3. Put the matrix into a `CustomStartPointSet` object. For example:

   ```matlab
 custpts = CustomStartPointSet(W);
   ```

   Call `run` with the `CustomStartPointSet` object as the third input. For example,

   ```matlab
 % Assume problem structure and ms MultiStart object exist
 [x,fval,flag,outpt,manymins] = run(ms,problem,custpts);
   ```
**Perturbed Grid**

Integer start points can yield less robust solutions than slightly perturbed start points.

To obtain a perturbed set of start points:

1. Generate a matrix of start points as in steps 1–2 of “Uniform Grid” on page 3-63.
2. Perturb the start points by adding a random normal matrix with 0 mean and relatively small variance.

   For the example in “Uniform Grid” on page 3-63, after making the $W$ matrix, add a perturbation:

   ```matlab
 [X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);
 W = [X(:),Y(:),Z(:)];
 W = W + 0.01*randn(size(W));
   ```

3. Put the matrix into a `CustomStartPointSet` object. For example:

   ```matlab
 custpts = CustomStartPointSet(W);
   ```

   Call `run` with the `CustomStartPointSet` object as the third input. For example,

   ```matlab
 % Assume problem structure and ms MultiStart object exist
 [x,fval,flag,outpt,manymins] = run(ms,problem,custpts);
   ```

** Widely Dispersed Points for Unconstrained Components**

Some components of your problem can lack upper or lower bounds. For example:

- Although no explicit bounds exist, there are levels that the components cannot attain. For example, if one component represents the weight of a single diamond, there is an implicit upper bound of 1 kg (the Hope Diamond is under 10 g). In such a case, give the implicit bound as an upper bound.

- There truly is no upper bound. For example, the size of a computer file in bytes has no effective upper bound. The largest size can be in gigabytes or terabytes today, but in 10 years, who knows?

For truly unbounded components, you can use the following methods of sampling. To generate approximately $1/n$ points in each region $(\exp(n), \exp(n+1))$, use the following formula. If $u$ is random and uniformly distributed from 0 through 1, then $r = 2u - 1$ is uniformly distributed between -1 and 1. Take

$$ y = \text{sgn}(r)(\exp(1/|r|) - e). $$
y is symmetric and random. For a variable bounded below by $lb$, take
\[ y = lb + (\exp(1/u) - e). \]
Similarly, for a variable bounded above by $ub$, take
\[ y = ub - (\exp(1/u) - e). \]
For example, suppose you have a three-dimensional problem with
- $x(1) > 0$
- $x(2) < 100$
- $x(3)$ unconstrained

To make 150 start points satisfying these constraints:
\[
u = \text{rand}(150,3);
\]
\[
r1 = 1./u(:,1);
\]
\[
r1 = \exp(r1) - \exp(1);
\]
\[
r2 = 1./u(:,2);
\]
\[
r2 = -\exp(r2) + \exp(1) + 100;
\]
\[
r3 = 1./(2*u(:,3)-1);
\]
\[
r3 = \text{sign}(r3).*(\exp(\text{abs}(r3)) - \exp(1));
\]
\[
custpts = \text{CustomStartPointSet}([r1,r2,r3]);
\]

The following is a variant of this algorithm. Generate a number between 0 and infinity by the method for lower bounds. Use this number as the radius of a point. Generate the other components of the point by taking random numbers for each component and multiply by the radius. You can normalize the random numbers, before multiplying by the radius, so their norm is 1. For a worked example of this method, see “MultiStart Without Bounds, Widely Dispersed Start Points” on page 3-120.

**Example: Searching for a Better Solution**

`MultiStart` fails to find the global minimum in “Multiple Local Minima Via MultiStart” on page 3-82. There are two simple ways to search for a better solution:
- Use more start points
- Give tighter bounds on the search space

Set up the problem structure and `MultiStart` object:
problem = createOptimProblem('fminunc',...  
    'objective', @(x)sawtoothxy(x(1),x(2)),...  
    'x0',[100,-50], 'options',...  
    optimoptions(@fminunc,'Algorithm','quasi-newton'));  
ms = MultiStart;  

Use More Start Points  

Run MultiStart on the problem for 200 start points instead of 50:  

rng(14,'twister')  % for reproducibility  
[x,fval,eflag,output,manymins] = run(ms,problem,200)  

MultiStart completed some of the runs from the start points.  
53 out of 200 local solver runs converged with a positive local solver exit flag.  

x =  
    1.0e-06 *  
    -0.2284   -0.5567  

fval =  
    2.1382e-12  

eflag =  
    2  

output =  
    struct with fields:  
        funcCount: 32670  
        localSolverTotal: 200  
        localSolverSuccess: 53  
        localSolverIncomplete: 147  
        localSolverNoSolution: 0  
        message: 'MultiStart completed some of the runs from the start points.'
manymins =
1x53 GlobalOptimSolution

Properties:
  X
  Fval
  Exitflag
  Output
  X0

This time MultiStart found the global minimum, and found 51 local minima.

To see the range of local solutions, enter histogram([manymins.Fval],10).
**Tighter Bound on the Start Points**

Suppose you believe that the interesting local solutions have absolute values of all components less than 100. The default value of the bound on start points is 1000. To use a different value of the bound, generate a RandomStartPointSet with the ArtificialBound property set to 100:

```matlab
startpts = RandomStartPointSet('ArtificialBound',100,...
 'NumStartPoints',50);
[x,fval,eflag,output,manymins] = run(ms,problem,startpts)
```

MultiStart completed some of the runs from the start points.

29 out of 50 local solver runs converged with a positive local solver exit flag.

\[
x =
1.0e-08 *
\]

\[
0.9725 \quad -0.6198
\]

\[
fval =
1.4955e-15
\]

\[
eflag =
2
\]

\[
output =
struct with fields:
    funcCount: 7431
    localSolverTotal: 50
    localSolverSuccess: 29
    localSolverIncomplete: 21
    localSolverNoSolution: 0
    message: 'MultiStart completed some of the runs from the start points
\]

\[
manymins =
\]
1x25 GlobalOptimSolution

Properties:
  X
  Fval
  Exitflag
  Output
  X0

MultiStart found the global minimum, and found 22 distinct local solutions. To see the range of local solutions, enter histogram([manymins.Fval],10).

Compared to the minima found in “Use More Start Points” on page 3-66, this run found better (smaller) minima, and had a higher percentage of successful runs.
See Also

Related Examples
- “Global or Multiple Starting Point Search”
- “Isolated Global Minimum” on page 3-117
Change Options

In this section...

“How to Determine Which Options to Change” on page 3-71
“Changing Local Solver Options” on page 3-72
“Changing Global Options” on page 3-73

How to Determine Which Options to Change

After you run a global solver, you might want to change some global or local options. To determine which options to change, the guiding principle is:

• To affect the local solver, set local solver options.
• To affect the start points or solution set, change the problem structure, or set the global solver object properties.

For example, to obtain:

• More local minima — Set global solver object properties.
• Faster local solver iterations — Set local solver options.
• Different tolerances for considering local solutions identical (to obtain more or fewer local solutions) — Set global solver object properties.
• Different information displayed at the command line — Decide if you want iterative display from the local solver (set local solver options) or global information (set global solver object properties).
• Different bounds, to examine different regions — Set the bounds in the problem structure.

Examples of Choosing Problem Options

• To start your local solver at points only satisfying inequality constraints, set the StartPointsToRun property in the global solver object to 'bounds-ineqs'. This setting can speed your solution, since local solvers do not have to attempt to find points satisfying these constraints. However, the setting can result in many fewer local solver runs, since the global solver can reject many start points. For an example, see “Optimize Using Only Feasible Start Points” on page 3-103.
To use the `fmincon` interior-point algorithm, set the local solver `Algorithm` option to 'interior-point'. For an example showing how to do this, see “Examples of Updating Problem Options” on page 3-72.

For your local solver to have different bounds, set the bounds in the problem structure. Examine different regions by setting bounds.

To see every solution that has positive local exit flag, set the `XTolerance` property in the global solver object to 0. For an example showing how to do this, see “Changing Global Options” on page 3-73.

### Changing Local Solver Options

There are several ways to change values in local options:

- Update the values using dot notation and `optimoptions`. The syntax is
  
  ```
 problem.options = optimoptions(problem.options,'Parameter',value,...);
  ```
  
  You can also replace the local options entirely:
  
  ```
 problem.options = optimoptions(@solvername,'Parameter',value,...);
  ```

- Use dot notation on one local option. The syntax is
  
  ```
 problem.options.Parameter = newvalue;
  ```

- Recreate the entire problem structure. For details, see “Create Problem Structure” on page 3-5.

### Examples of Updating Problem Options

1. Create a problem structure:
   ```
 problem = createOptimProblem('fmincon','x0',[-1 2], ...
 'objective',@rosenboth);
   ```

2. Set the problem to use the sqp algorithm in `fmincon`:
   ```
 problem.options.Algorithm = 'sqp';
   ```

3. Update the problem to use the gradient in the objective function, have a `FunctionTolerance` value of `1e-8`, and a `XTolerance` value of `1e-7`:
   ```
 problem.options = optimoptions(problem.options,'GradObj','on', ...
 'FunctionTolerance',1e-8,'XTolerance',1e-7);
   ```
Changing Global Options

There are several ways to change characteristics of a GlobalSearch or MultiStart object:

- Use dot notation. For example, suppose you have a default MultiStart object:

```matlab
ms = MultiStart
ms =

MultiStart with properties:

 UseParallel: 0
 Display: 'final'
 FunctionTolerance: 1.0000e-06
 MaxTime: Inf
 OutputFcns: []
 PlotFcns: []
 StartPointsToRun: 'all'
 XTolerance: 1.0000e-06

To change `ms` to have its `XTolerance` value equal to 1e-3, update the `XTolerance` field:

```matlab
ms.XTolerance = 1e-3
ms =

MultiStart with properties:

    UseParallel: 0
    Display: 'final'
    FunctionTolerance: 1.0000e-06
    MaxTime: Inf
    OutputFcns: []
    PlotFcns: []
    StartPointsToRun: 'all'
    XTolerance: 1.0000e-03
```

- Reconstruct the object starting from the current settings. For example, to set the `FunctionTolerance` field in `ms` to 1e-3, retaining the nondefault value for `XTolerance`:

```matlab
ms = MultiStart(ms,'FunctionTolerance',1e-3)
ms =
```

Change Options
3-73
MultiStart with properties:

UseParallel: 0
 Display: 'final'
FunctionTolerance: 1.0000e-03
 MaxTime: Inf
OutputFcn: []
PlotFcn: []
StartPointsToRun: 'all'
XTolerance: 1.0000e-03

- Convert a GlobalSearch object to a MultiStart object, or vice-versa. For example, with the ms object from the previous example, create a GlobalSearch object with the same values of XTolerance and FunctionTolerance:

```matlab
gs = GlobalSearch(ms)
gs =
  GlobalSearch with properties:

   NumTrialPoints: 1000
   BasinRadiusFactor: 0.2000
   DistanceThresholdFactor: 0.7500
   MaxWaitCycle: 20
   NumStageOnePoints: 200
   PenaltyThresholdFactor: 0.2000
   Display: 'final'
   FunctionTolerance: 1.0000e-03
   MaxTime: Inf
   OutputFcn: []
   PlotFcn: []
   StartPointsToRun: 'all'
   XTolerance: 1.0000e-03
```

See Also

Related Examples

- “Global or Multiple Starting Point Search”
Reproduce Results

In this section...

| “Identical Answers with Pseudorandom Numbers” on page 3-75 |
| “Steps to Take in Reproducing Results” on page 3-75 |
| “Example: Reproducing a GlobalSearch or MultiStart Result” on page 3-75 |
| “Parallel Processing and Random Number Streams” on page 3-77 |

Identical Answers with Pseudorandom Numbers

GlobalSearch and MultiStart use pseudorandom numbers in choosing start points. Use the same pseudorandom number stream again to:

- Compare various algorithm settings.
- Have an example run repeatably.
- Extend a run, with known initial segment of a previous run.

Both GlobalSearch and MultiStart use the default random number stream.

Steps to Take in Reproducing Results

1. Before running your problem, store the current state of the default random number stream:

   ```
   stream = rng;
   ```

2. Run your GlobalSearch or MultiStart problem.

3. Restore the state of the random number stream:

   ```
   rng(stream)
   ```

4. If you run your problem again, you get the same result.

Example: Reproducing a GlobalSearch or MultiStart Result

This example shows how to obtain reproducible results for “Find Global or Multiple Local Minima” on page 3-78. The example follows the procedure in “Steps to Take in Reproducing Results” on page 3-75.
Store the current state of the default random number stream:

```matlab
stream = rng;
```

Create the `sawtoothxy` function file:

```matlab
function f = sawtoothxy(x,y)
    [t r] = cart2pol(x,y); % change to polar coordinates
    h = cos(2*t - 1/2)/2 + cos(t) + 2;
    g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) .*r.^2./(r+1);
    f = g .* h;
end
```

Create the problem structure and `GlobalSearch` object:

```matlab
problem = createOptimProblem('fmincon',
    'objective', @(x) sawtoothxy(x(1),x(2)),
    'x0', [100,-50], 'options',
    optimoptions(@fmincon,'Algorithm','sqp'));

gs = GlobalSearch('Display','iter');
```

Run the problem:

```matlab
[x,fval] = run(gs,problem)
```

<table>
<thead>
<tr>
<th>Num Pts</th>
<th>F-count</th>
<th>Best f(x)</th>
<th>Current f(x)</th>
<th>Threshold Penalty</th>
<th>Local f(x)</th>
<th>Local exitflag</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>465</td>
<td>422.9</td>
<td></td>
<td></td>
<td>422.9</td>
<td>2</td>
<td>Initial Point</td>
</tr>
<tr>
<td>200</td>
<td>1730</td>
<td>1.547e-015</td>
<td></td>
<td></td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 1 Local</td>
</tr>
<tr>
<td>300</td>
<td>1830</td>
<td>1.547e-015</td>
<td>6.01e+004</td>
<td>1.074</td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td>400</td>
<td>1930</td>
<td>1.547e-015</td>
<td>1.47e+005</td>
<td>4.16</td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td>500</td>
<td>2030</td>
<td>1.547e-015</td>
<td>2.63e+004</td>
<td>11.84</td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td>600</td>
<td>2130</td>
<td>1.547e-015</td>
<td>1.34e+004</td>
<td>38.95</td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td>700</td>
<td>2230</td>
<td>1.547e-015</td>
<td>2.562e+004</td>
<td>65.25</td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td>800</td>
<td>2330</td>
<td>1.547e-015</td>
<td>5.217e+004</td>
<td>163.8</td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td>900</td>
<td>2430</td>
<td>1.547e-015</td>
<td>7.704e+004</td>
<td>409.2</td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 2 Search</td>
</tr>
<tr>
<td>981</td>
<td>2587</td>
<td>1.547e-015</td>
<td>42.24</td>
<td>516.6</td>
<td>7.573</td>
<td>1</td>
<td>Stage 2 Local</td>
</tr>
<tr>
<td>1000</td>
<td>2606</td>
<td>1.547e-015</td>
<td>3.299e+004</td>
<td>42.24</td>
<td></td>
<td></td>
<td>Stage 2 Search</td>
</tr>
</tbody>
</table>

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

```matlab
x =
    1.0e-007 *
    0.0414   0.1298
fval =
    1.5467e-015
```

You might obtain a different result when running this problem, since the random stream was in an unknown state at the beginning of the run.

Restore the state of the random number stream:

```matlab
rng(stream)
```
Run the problem again. You get the same output.

```matlab
[x,fval] = run(gs,problem)
```

<table>
<thead>
<tr>
<th>Num Pts</th>
<th>Analyzed</th>
<th>F-count</th>
<th>Best</th>
<th>f(x)</th>
<th>Penalty</th>
<th>Penalty</th>
<th>Local f(x)</th>
<th>exitflag</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>465</td>
<td>422.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>422.9</td>
<td>2</td>
<td>Initial Point</td>
</tr>
<tr>
<td>200</td>
<td>1730</td>
<td>1.547e-015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.547e-015</td>
<td>1</td>
<td>Stage 1 Local</td>
</tr>
</tbody>
</table>

... Output deleted to save space ...

\[x = \\
\quad 1.0e-007 * \\
\quad 0.0414 \quad 0.1298 \]

\[fval = 1.5467e-015 \]

Parallel Processing and Random Number Streams

You obtain reproducible results from `MultiStart` when you run the algorithm in parallel the same way as you do for serial computation. Runs are reproducible because `MultiStart` generates pseudorandom start points locally, and then distributes the start points to parallel processors. Therefore, the parallel processors do not use random numbers.

To reproduce a parallel `MultiStart` run, use the procedure described in “Steps to Take in Reproducing Results” on page 3-75. For a description of how to run `MultiStart` in parallel, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also

Related Examples

- “Global or Multiple Starting Point Search”
Find Global or Multiple Local Minima

In this section...

“Function to Optimize” on page 3-78
“Single Global Minimum Via GlobalSearch” on page 3-80
“Multiple Local Minima Via MultiStart” on page 3-82

Function to Optimize

This example illustrates how `GlobalSearch` finds a global minimum efficiently, and how `MultiStart` finds many more local minima.

The objective function for this example has many local minima and a unique global minimum. In polar coordinates, the function is

\[f(r,t) = g(r)h(t), \]

where

\[g(r) = \left(\sin(r) - \frac{\sin(2r)}{2} + \frac{\sin(3r)}{3} - \frac{\sin(4r)}{4} + 4\right) \frac{r^2}{r + 1} \]

\[h(t) = 2 + \cos(t) + \frac{\cos(2t - \frac{1}{2})}{2}. \]
The global minimum is at $r = 0$, with objective function 0. The function $g(r)$ grows approximately linearly in r, with a repeating sawtooth shape. The function $h(t)$ has two local minima, one of which is global.
Single Global Minimum Via GlobalSearch

1. Write a function file to compute the objective:

```matlab
function f = sawtoothxy(x,y)
    [t r] = cart2pol(x,y); % change to polar coordinates
    h = cos(2*t - 1/2)/2 + cos(t) + 2;
    g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4).*r.^2./(r+1);
    f = g.*h;
end
```

2. Create the problem structure. Use the 'sqp' algorithm for fmincon:
problem = createOptimProblem('fmincon',... 'objective', @(x)sawtoothxy(x(1),x(2)),... 'x0', [100, -50], 'options',... optimoptions(@fmincon,'Algorithm','sqp','Display','off'));

The start point is [100, -50] instead of [0,0], so GlobalSearch does not start at the global solution.

3 Validate the problem structure by running fmincon:

[x,fval] = fmincon(problem)

x =

45.7332 -107.6469

fval =

555.5422

4 Create the GlobalSearch object, and set iterative display:

gs = GlobalSearch('Display','iter');

5 Run the solver:

rng(14,'twister') % for reproducibility
[x,fval] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

3 out of 4 local solver runs converged with a positive local solver exit flag.

x =

1.0e-07 *

0.0414 0.1298
You can get different results, since GlobalSearch is stochastic.

The solver found three local minima, and it found the global minimum near [0,0].

Multiple Local Minima Via MultiStart

1. Write a function file to compute the objective:

   ```matlab
   function f = sawtoothxy(x,y)
   [t r] = cart2pol(x,y); % change to polar coordinates
   h = cos(2*t - 1/2)/2 + cos(t) + 2;
   g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ... 
       .*r.^2./(r+1);
   f = g.*h;
   end
   ```

2. Create the problem structure. Use the `fminunc` solver with the `Algorithm` option set to `'quasi-newton'`. The reasons for these choices are:

 - The problem is unconstrained. Therefore, `fminunc` is the appropriate solver; see “Optimization Decision Table” (Optimization Toolbox).
 - The default `fminunc` algorithm requires a gradient; see “Choosing the Algorithm” (Optimization Toolbox). Therefore, set `Algorithm` to `'quasi-newton'`.

   ```matlab
   problem = createOptimProblem('fminunc',...
   'objective',@(x)sawtoothxy(x(1),x(2)),...
   'x0',[100,-50],
   'options',...
   optimoptions(@fminunc,'Algorithm','quasi-newton','Display','off'));
   ```

3. Validate the problem structure by running it:

   ```matlab
   [x,fval] = fminunc(problem)
   ```

   ```matlab
   x =
   1.7533    -111.9488
   ```

   ```matlab
   fval =
   577.6960
   ```

4. Create a default `MultiStart` object:
ms = MultiStart;

5 Run the solver for 50 iterations, recording the local minima:

% rng(1) % uncomment to obtain the same result
[x,fval,eflag,output,manymins] = run(ms,problem,50)

MultiStart completed some of the runs from the start points.
9 out of 50 local solver runs converged with a positive local solver exit flag.

x =
 -142.4608 406.8030

fval =
 1.2516e+03

eflag =
 2

output =

struct with fields:
 funcCount: 8586
 localSolverTotal: 50
 localSolverSuccess: 9
 localSolverIncomplete: 41
 localSolverNoSolution: 0
 message: 'MultiStart completed some of the runs from the start points.
 9 out of 50 local solver runs converged with a positive local solver exit flag.'

manymins =

1×9 GlobalOptimSolution array with properties:
 X
 Fval
 Exitflag
Output
X0

You can get different results, since MultiStart is stochastic.

The solver did not find the global minimum near [0, 0]. It found 10 distinct local minima.

6 Plot the function values at the local minima:

```matlab
histogram([manymins.Fval],10)
```

Plot the function values at the three best points:

```matlab
bestf = [manymins.Fval];
histogram(bestf(1:3),10)
```
MultiStart started `fminunc` from start points with components uniformly distributed between -1000 and 1000. `fminunc` often got stuck in one of the many local minima. `fminunc` exceeded its iteration limit or function evaluation limit 40 times.

See Also

More About

- “Workflow for GlobalSearch and MultiStart” on page 3-3
- “Visualize the Basins of Attraction” on page 3-37
Maximizing Monochromatic Polarized Light Interference Patterns Using GlobalSearch and MultiStart

This example shows how to use the functions GlobalSearch and MultiStart.

Introduction

This example shows how Global Optimization Toolbox functions, particularly GlobalSearch and MultiStart, can help locate the maximum of an electromagnetic interference pattern. For simplicity of modeling, the pattern arises from monochromatic polarized light spreading out from point sources.

The electric field due to source i measured in the direction of polarization at point x and time t is

$$E_i = \frac{A_i}{d_i(x)} \sin(\phi_i + \omega(t - d_i(x)/c)),$$

where ϕ_i is the phase at time zero for source i, c is the speed of light, ω is the frequency of the light, A_i is the amplitude of source i, and $d_i(x)$ is the distance from source i to x.

For a fixed point x the intensity of the light is the time average of the square of the net electric field. The net electric field is sum of the electric fields due to all sources. The time average depends only on the sizes and relative phases of the electric fields at x. To calculate the net electric field, add up the individual contributions using the phasor method. For phasors, each source contributes a vector. The length of the vector is the amplitude divided by distance from the source, and the angle of the vector, $\phi_i - \omega d_i(x)/c$ is the phase at the point.

For this example, we define three point sources with the same frequency (ω) and amplitude (A), but varied initial phase (ϕ_i). We arrange these sources on a fixed plane.

```plaintext
% Frequency is proportional to the number of peaks
relFreqConst = 2*pi*2.5;
amp = 2.2;
phase = [-0; 0.54; 2.07];

numSources = 3;
height = 3;
```
% All point sources are aligned at \([x_i, y_i, z]\]
xcoords = [2.4112
 0.2064
 1.6787];
ycoords = [0.3957
 0.3927
 0.9877];
zcoords = height*ones(numSources,1);
origins = [xcoords ycoords zcoords];

Visualize the Interference Pattern

Now let's visualize a slice of the interference pattern on the plane \(z = 0\).

As you can see from the plot below, there are many peaks and valleys indicating constructive and destructive interference.

% Pass additional parameters via an anonymous function:
waveIntensity_x = @(x) waveIntensity(x,amp,phase, ...
 relFreqConst,numSources,origins);
% Generate the grid
[X,Y] = meshgrid(-4:0.035:4,-4:0.035:4);
% Compute the intensity over the grid
Z = arrayfun(@(x,y) waveIntensity_x([x y]),X,Y);
% Plot the surface and the contours
figure
surf(X,Y,Z,'EdgeColor','none')
xlabel('x')
ylabel('y')
zlabel('intensity')
Posing the Optimization Problem

We are interested in the location where this wave intensity reaches its highest peak.

The wave intensity \(I \) falls off as we move away from the source proportional to \(\frac{1}{d_i(x)} \). Therefore, let's restrict the space of viable solutions by adding constraints to the problem.

If we limit the exposure of the sources with an aperture, then we can expect the maximum to lie in the intersection of the projection of the apertures onto our observation plane. We model the effect of an aperture by restricting the search to a circular region centered at each source.
We also restrict the solution space by adding bounds to the problem. Although these bounds may be redundant (given the nonlinear constraints), they are useful since they restrict the range in which start points are generated (see the documentation for more information).

Now our problem has become:

$$\max_{x,y} I(x, y)$$

subject to

$$(x - x_{c1})^2 + (y - y_{c1})^2 \leq r_1^2$$

$$(x - x_{c2})^2 + (y - y_{c2})^2 \leq r_2^2$$

$$(x - x_{c3})^2 + (y - y_{c3})^2 \leq r_3^2$$

$$-0.5 \leq x \leq 3.5$$

$$-2 \leq y \leq 3$$

where \((x_{cn}, y_{cn})\) and \(r_n\) are the coordinates and aperture radius of the \(n^{th}\) point source, respectively. Each source is given an aperture with radius 3. The given bounds encompass the feasible region.

The objective \((I(x, y))\) and nonlinear constraint functions are defined in separate MATLAB® files, waveIntensity.m and apertureConstraint.m, respectively, which are listed at the end of this example.

Visualization with Constraints

Now let's visualize the contours of our interference pattern with the nonlinear constraint boundaries superimposed. The feasible region is the interior of the intersection of the three circles (yellow, green, and blue). The bounds on the variables are indicated by the dashed-line box.

```matlab
% Visualize the contours of our interference surface
domain = [-3 5.5 -4 5];
figure;
ezcontour(@(X,Y) arrayfun(@(x,y) waveIntensity_x([x y]),X,Y),domain,150);
```
hold on

% Plot constraints
g1 = @(x,y) (x-xcoords(1)).^2 + (y-ycoords(1)).^2 - 9;
g2 = @(x,y) (x-xcoords(2)).^2 + (y-ycoords(2)).^2 - 9;
g3 = @(x,y) (x-xcoords(3)).^2 + (y-ycoords(3)).^2 - 9;
h1 = ezplot(g1,domain);
h1.Color = [0.8 0.7 0.1]; % yellow
h1.LineWidth = 1.5;
h2 = ezplot(g2,domain);
h2.Color = [0.3 0.7 0.5]; % green
h2.LineWidth = 1.5;
h3 = ezplot(g3,domain);
h3.Color = [0.4 0.4 0.6]; % blue
h3.LineWidth = 1.5;

% Plot bounds
lb = [-0.5 -2];
ub = [3.5 3];
line([lb(1) lb(1)], [lb(2) ub(2)], 'LineStyle', '--')
line([ub(1) ub(1)], [lb(2) ub(2)], 'LineStyle', '--')
line([lb(1) ub(1)], [lb(2) lb(2)], 'LineStyle', '--')
line([lb(1) ub(1)], [ub(2) ub(2)], 'LineStyle', '--')
title('Pattern Contours with Constraint Boundaries')
Setting Up and Solving the Problem with a Local Solver

Given the nonlinear constraints, we need a constrained nonlinear solver, namely, fmincon.

Let's set up a problem structure describing our optimization problem. We want to maximize the intensity function, so we negate the values returned form waveIntensity. Let's choose an arbitrary start point that happens to be near the feasible region.

For this small problem, we'll use fmincon's SQP algorithm.

```matlab
% Pass additional parameters via an anonymous function:
apertureConstraint_x = @(x) apertureConstraint(x,xcoords,ycoords);
```
% Set up fmincon's options
x0 = [3 -1];
opts = optimoptions('fmincon','Algorithm','sqp');
problem = createOptimProblem('fmincon','objective', ...
 @(x) -waveIntensity_x(x),'x0',x0,'lb',lb,'ub',ub, ...
 'nonlcon',apertureConstraint_x,'options',opts);

% Call fmincon
[xlocal,fvallocal] = fmincon(problem)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the optimality tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

xlocal =
 -0.5000 0.4945

fvallocal =
 -1.4438

Now, let's see how we did by showing the result of fmincon in our contour plot. Notice that fmincon did not reach the global maximum, which is also annotated on the plot. Note that we'll only plot the bound that was active at the solution.

[-,maxIdx] = max(Z(:));
xmax = [X(maxIdx),Y(maxIdx)]
figure
contour(X,Y,Z)
hold on

% Show bounds
line([lb(1) lb(1)],[lb(2) ub(2)],'LineStyle','--')

% Create textarrow showing the location of xlocal
annotation('textarrow',[0.25 0.21],[0.86 0.60],'TextEdgeColor',[0 0 0],...
Maximizing Monochromatic Polarized Light Interference Patterns Using GlobalSearch and MultiStart

'TextColor',[1 1 1],'FontSize',11,'String',{'Single Run Result'});

% Create textarrow showing the location of xglobal
annotation('textarrow',[0.44 0.50],[0.63 0.58],'TextEdgeColor',[0 0 0],...
 'TextColor',[1 1 1],'FontSize',12,'String',{'Global Max'});

axis([-1 3.75 -3 3])

xmax =

 1.2500 0.4450

3-93
Using GlobalSearch and MultiStart

Given an arbitrary initial guess, fmincon gets stuck at a nearby local maximum. Global Optimization Toolbox solvers, particularly GlobalSearch and MultiStart, give us a better chance at finding the global maximum since they will try fmincon from multiple generated initial points (or our own custom points, if we choose).

Our problem has already been set up in the problem structure, so now we construct our solver objects and run them. The first output from run is the location of the best result found.

% Construct a GlobalSearch object
gs = GlobalSearch;
% Construct a MultiStart object based on our GlobalSearch attributes
ms = MultiStart;

rng(4,'twister') % for reproducibility

% Run GlobalSearch
tic;
[xgs,~,~,~,solsgs] = run(gs,problem);
toc
xgs

% Run MultiStart with 15 randomly generated points
tic;
[xms,~,~,~,solsms] = run(ms,problem,15);
toc
xms

GlobalSearch stopped because it analyzed all the trial points.
All 14 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.624779 seconds.
xgs =

 1.2592 0.4284

MultiStart completed the runs from all start points.
All 15 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.341500 seconds.

xms =

1.2592 0.4284

Examining Results

Let's examine the results that both solvers have returned. An important thing to note is that the results will vary based on the random start points created for each solver. Another run through this example may give different results. The coordinates of the best results xgs and xms printed to the command line. We'll show unique results returned by GlobalSearch and MultiStart and highlight the best results from each solver, in terms of proximity to the global solution.

The fifth output of each solver is a vector containing distinct minima (or maxima, in this case) found. We'll plot the (x,y) pairs of the results, solsgs and solsms, against our contour plot we used before.

```matlab
% Plot GlobalSearch results using the '*' marker
xGS = cell2mat({solsgs(:).X}');
scatter(xGS(:,1),xGS(:,2),'*','MarkerEdgeColor',[0 0 1],'LineWidth',1.25)

% Plot MultiStart results using a circle marker
xMS = cell2mat({solsms(:).X}');
scatter(xMS(:,1),xMS(:,2),'o','MarkerEdgeColor',[0 0 0],'LineWidth',1.25)
legend('Intensity','Bound','GlobalSearch','MultiStart','Location','best')

title('GlobalSearch and MultiStart Results')
```
Relaxing the Bounds

With the tight bounds on the problem, both GlobalSearch and MultiStart were able to locate the global maximum in this run.

Finding tight bounds can be difficult to do in practice, when not much is known about the objective function or constraints. In general though, we may be able to guess a reasonable region in which we would like to restrict the set of start points. For illustration purposes, let's relax our bounds to define a larger area in which to generate start points and re-try the solvers.

% Relax the bounds to spread out the start points
problem.lb = -5*ones(2,1);
problem.ub = 5*ones(2,1);
% Run GlobalSearch
tic;
[xgs,~,~,~,solsgs] = run(gs,problem);
toc
xgs

% Run MultiStart with 15 randomly generated points
tic;
[xms,~,~,~,solsms] = run(ms,problem,15);
toc
xms

GlobalSearch stopped because it analyzed all the trial points.
All 4 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.482697 seconds.

xgs =

0.6571 -0.2096

MultiStart completed the runs from all start points.
All 15 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.432552 seconds.

xms =

2.4947 -0.1439

% Show the contours
figure
contour(X,Y,Z)
hold on

% Create textarrow showing the location of xglobal
annotation('textarrow',[0.44 0.50],[0.63 0.58], 'TextEdgeColor',[0 0 0],...
 'TextBackgroundColor',[1 1 1], 'FontSize',12,'String','Global Max');
axis([-1 3.75 -3 3])

% Plot GlobalSearch results using the '*' marker
xGS = cell2mat({solsgs(:,X}'));
scatter(xGS(:,1),xGS(:,2),'*','MarkerEdgeColor',[0 0 1],'LineWidth',1.25)

% Plot MultiStart results using a circle marker
xMS = cell2mat({solsms(:,X}'));
scatter(xMS(:,1),xMS(:,2),'o','MarkerEdgeColor',[0 0 0],'LineWidth',1.25)

% Highlight the best results from each:
% GlobalSearch result in red, MultiStart result in blue
plot(xgs(1),xgs(2),'sb','MarkerSize',12,'MarkerFaceColor',[1 0 0])
plot(xms(1),xms(2),'sb','MarkerSize',12,'MarkerFaceColor',[0 0 1])
legend('Intensity','GlobalSearch','MultiStart','Best GS','Best MS','Location','best')
title('GlobalSearch and MultiStart Results with Relaxed Bounds')
The best result from GlobalSearch is shown by the red square and the best result from MultiStart is shown by the blue square.

Tuning GlobalSearch Parameters

Notice that in this run, given the larger area defined by the bounds, neither solver was able to identify the point of maximum intensity. We could try to overcome this in a couple of ways. First, we examine GlobalSearch.

Notice that GlobalSearch only ran fmincon a few times. To increase the chance of finding the global maximum, we would like to run more points. To restrict the start point set to the candidates most likely to find the global maximum, we'll instruct each solver to ignore start points that do not satisfy constraints by setting the `StartPointsToRun` property to `bounds-ineqs`. Additionally, we will set the `MaxWaitCycle` and `BasinRadiusFactor` properties so that GlobalSearch will be able to identify the narrow peaks quickly. Reducing `MaxWaitCycle` causes GlobalSearch to decrease the basin of attraction radius by the `BasinRadiusFactor` more often than with the default setting.

```matlab
% Increase the total candidate points, but filter out the infeasible ones
gs = GlobalSearch(gs,'StartPointsToRun','bounds-ineqs', ...  
    'MaxWaitCycle',3,'BasinRadiusFactor',0.3);
% Run GlobalSearch
tic;
xgs = run(gs,problem);
toc
xgs
```

GlobalSearch stopped because it analyzed all the trial points.

All 10 local solver runs converged with a positive local solver exit flag. Elapsed time is 0.622113 seconds.

```matlab
xgs =
    1.2592   0.4284
```

Utilizing MultiStart's Parallel Capabilities

A brute force way to improve our chances of finding the global maximum is to simply try more start points. Again, this may not be practical in all situations. In our case, we've only tried a small set so far and the run time was not terribly long. So, it's reasonable to try
more start points. To speed the computation we'll run MultiStart in parallel if Parallel Computing Toolbox™ is available.

% Set the UseParallel property of MultiStart
ms = MultiStart(ms,'UseParallel',true);

try
demoOpenedPool = false;
 % Create a parallel pool if one does not already exist
 % (requires Parallel Computing Toolbox)
 if max(size(gcp)) == 0 % if no pool
 parpool
 demoOpenedPool = true;
 end
catch ME
 warning(message('globaloptim:globaloptimdemos:opticalInterferenceDemo:noPCT'));
end

% Run the solver
tic;
xms = run(ms,problem,100);
toc
xms

if demoOpenedPool
 % Make sure to delete the pool if one was created in this example
 delete(gcp) % delete the pool
end

MultiStart completed the runs from all start points.

All 100 local solver runs converged with a positive local solver exit flag. Elapsed time is 2.641997 seconds.

xms =

 1.2592 0.4284

Objective and Nonlinear Constraints

Here we list the functions that define the optimization problem:
function p = waveIntensity(x,amp,phase,relFreqConst,numSources,origins)
% WaveIntensity Intensity function for opticalInterferenceDemo.
% Copyright 2009 The MathWorks, Inc.
d = distanceFromSource(x,numSources,origins);
ampVec = [sum(amp./d .* cos(phase - d*relFreqConst));
 sum(amp./d .* sin(phase - d*relFreqConst))];
% Intensity is ||AmpVec||^2
p = ampVec'*ampVec;

function [c,ceq] = apertureConstraint(x,xcoords,ycoords)
% apertureConstraint Aperture constraint function for opticalInterferenceDemo.
% Copyright 2009 The MathWorks, Inc.
ceq = [];
c = (x(1) - xcoords).^2 + (x(2) - ycoords).^2 - 9;

function d = distanceFromSource(v,numSources,origins)
% distanceFromSource Distance function for opticalInterferenceDemo.
% Copyright 2009 The MathWorks, Inc.
d = zeros(numSources,1);
for k = 1:numSources
d(k) = norm(origins(k,:) - [v 0]);
end

See Also
GlobalSearch|MultiStart
More About

- “Example: Searching for a Better Solution” on page 3-65
- “Isolated Global Minimum” on page 3-117
Optimize Using Only Feasible Start Points

You can set the StartPointsToRun option so that MultiStart and GlobalSearch use only start points that satisfy inequality constraints. This option can speed your optimization, since the local solver does not have to search for a feasible region. However, the option can cause the solvers to miss some basins of attraction.

There are three settings for the StartPointsToRun option:

- **all** — Accepts all start points
- **bounds** — Rejects start points that do not satisfy bounds
- **bounds-ineqs** — Rejects start points that do not satisfy bounds or inequality constraints

For example, suppose your objective function is

```matlab
function y = tiltcircle(x)
    vx = x(:)-[4;4]; % ensure vx is in column form
    y = vx'*[1;1] + sqrt(16 - vx'*vx); % complex if norm(x-[4;4])>4
end
```

tiltcircle returns complex values for \(\text{norm}(x - [4 4]) > 4 \).
Write a constraint function that is positive on the set where \(\text{norm}(x - [4 \ 4]) > 4 \)

```matlab
function \([c \ ceq] = \text{myconstraint}(x)\)

\(c\) = \(ceq = []\); % ensure \(x\) is a column vector
\(c = cx'*cx - 16;\) % negative where tiltcircle(x) is real

Set `GlobalSearch` to use only start points satisfying inequality constraints:

```matlab
\(gs = \text{GlobalSearch}('StartPointsToRun','bounds-ineqs');\)
```

To complete the example, create a problem structure and run the solver:

```matlab
\(\text{opts} = \text{optimoptions}(@\text{fmincon},'Algorithm','interior-point');\)
\(\text{problem} = \text{createOptimProblem}('\text{fmincon}',...\)
```
rng(7,'twister'); % for reproducibility
[x,fval,exitflag,output,solutionset] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

All 5 local solver runs converged with a positive local solver exit flag.
x =
    1.1716    1.1716

fval =
    -5.6530

exitflag =
    1

output =
    struct with fields:
        funcCount: 3254
        localSolverTotal: 5
        localSolverSuccess: 5
        localSolverIncomplete: 0
        localSolverNoSolution: 0
        message: 'GlobalSearch stopped because it analyzed all the trial po.'

solutionset =
    1x4 GlobalOptimSolution array with properties:
        X
        Fval
        Exitflag
The `tiltcircle` function has just one local minimum. Yet `GlobalSearch (fmincon)` stops at several points. Does this mean `fmincon` makes an error?

The reason that `fmincon` stops at several boundary points is subtle. The `tiltcircle` function has an infinite gradient on the boundary, as you can see from a one-dimensional calculation:

\[
\frac{d}{dx} \sqrt{16 - x^2} = \frac{-x}{\sqrt{16 - x^2}} = \pm \infty \text{ at } |x| = 4.
\]
So there is a huge gradient normal to the boundary. This gradient overwhelms the small additional tilt from the linear term. As far as \texttt{fmincon} can tell, boundary points are stationary points for the constrained problem.

This behavior can arise whenever you have a function that has a square root.

\textbf{See Also}

\textbf{More About}
- “Find Global or Multiple Local Minima” on page 3-78
- “Isolated Global Minimum” on page 3-117
MultiStart Using lsqlcurvefit or lsqlnonlin

This example shows how to fit a function to data using lsqlcurvefit together with MultiStart. The end of the example shows the same solution using lsqlnonlin.

Many fitting problems have multiple local solutions. MultiStart can help find the global solution, meaning the best fit. This example first uses lsqlcurvefit because of its convenient syntax.

The model is

\[ y = a + bx_1\sin(cx_2 + d), \]

where the input data is \( x = (x_1, x_2) \), and the parameters \( a, b, c, \) and \( d \) are the unknown model coefficients.

**Step 1. Create the objective function.**

Write an anonymous function that takes a data matrix \( xdata \) with \( N \) rows and two columns, and returns a response vector with \( N \) rows. The function also takes a coefficient matrix \( p \), corresponding to the coefficient vector \( (a, b, c, d) \).

\[
\text{fitfcn} = @(p,xdata)p(1) + p(2)*xdata(:,1).*\sin(p(3)*xdata(:,2)+p(4));
\]

**Step 2. Create the training data.**

Create 200 data points and responses. Use the values \( a = -3, b = 1/4, c = 1/2, d = 1 \). Include random noise in the response.

\[
\text{rng default} \quad \% \text{For reproducibility}
\]
\[
N = 200; \quad \% \text{Number of data points}
\]
\[
p\text{real} = [-3,1/4,1/2,1]; \quad \% \text{Real coefficients}
\]
\[
\text{xdata} = 5*\text{rand}(N,2); \quad \% \text{Data points}
\]
\[
\text{ydata} = \text{fitfcn}(p\text{real},\text{xdata}) + 0.1*\text{randn}(N,1); \quad \% \text{Response data with noise}
\]

**Step 3. Set bounds and initial point.**

Set bounds for lsqlcurvefit. There is no reason for \( d \) to exceed \( \pi \) in absolute value, because the sine function takes values in its full range over any interval of width \( 2\pi \). Assume that the coefficient \( c \) must be smaller than 20 in absolute value, because allowing a high frequency can cause unstable responses or inaccurate convergence.
lb = [-Inf,-Inf,-20,-pi];
ub = [Inf,Inf,20,pi];

Set the initial point arbitrarily to (5,5,5,0).

p0 = 5*ones(1,4); % Arbitrary initial point
p0(4) = 0; % Ensure the initial point satisfies the bounds

**Step 4. Find the best local fit.**

Fit the parameters to the data, starting at p0.

[xfitted,errorfitted] = lsqcurvefit(fitfcn,p0,xdata,ydata,lb,ub)

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.

xfitted = 1x4
        -2.6149   -0.0238    6.0191   -1.6998

errorfitted = 28.2524

lsqcurvefit finds a local solution that is not particularly close to the model parameter values (-3,1/4,1/2,1).

**Step 5. Set up the problem for MultiStart.**

Create a problem structure so MultiStart can solve the same problem.

problem = createOptimProblem('lsqcurvefit','x0',p0,'objective',fitfcn,...
    'lb',lb,'ub',ub,'xdata',xdata,'ydata',ydata);

**Step 6. Find a global solution.**

Solve the fitting problem using MultiStart with 50 iterations. Plot the smallest error as the number of MultiStart iterations.

ms = MultiStart('PlotFcns',@gsplotbestf);
[xmulti,errormulti] = run(ms,problem,50)
MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

\[ x_{\text{multi}} = 1 \times 4 \]

\[
\begin{align*}
-2.9852 & \quad -0.2472 & \quad -0.4968 & \quad -1.0438 \\
\end{align*}
\]

\[ \text{errormulti} = 1.6464 \]

MultiStart finds a global solution near the parameter values \((-3,-1/4,-1/2,-1)\). (This is equivalent to a solution near \(p_{\text{real}} = (-3,1/4,1/2,1)\), because changing the sign of all the coefficients except the first gives the same numerical values of \(\text{fitfcn}\).) The norm of the
residual error decreases from about 28 to about 1.6, a decrease of more than a factor of 10.

**Formulate Problem for lsqnonlin**

For an alternative approach, use `lsqnonlin` as the fitting function. In this case, use the difference between predicted values and actual data values as the objective function.

```matlab
fitfcn2 = @(p)fitfcn(p,xdata)-ydata;
[xlsqnonlin,errorlsqnonlin] = lsqnonlin(fitfcn2,p0,lb,ub)
```

Local minimum possible.

`lsqnonlin` stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.

```matlab
xlsqnonlin = 1x4
 -2.6149 -0.0238 6.0191 -1.6998
```

`errorlsqnonlin = 28.2524`

Starting from the same initial point `p0`, `lsqnonlin` finds the same relatively poor solution as `lsqcurvefit`.

Run `MultiStart` using `lsqnonlin` as the local solver.

```matlab
problem2 = createOptimProblem('lsqnonlin','x0',p0,'objective',fitfcn2,....
 'lb',lb,'ub',ub);
[xmultinonlin,errormultinonlin] = run(ms,problem2,50)
```
MultiStart completed the runs from all start points. All 50 local solver runs converged with a positive local solver exit flag. 

\[ \text{xmultinonlin} = 1 \times 4 \]

\[-2.9852 \quad -0.2472 \quad -0.4968 \quad -1.0438 \]

\[ \text{errormultinonlin} = 1.6464 \]
Again, `MultiStart` finds a much better solution than the local solver alone.

**See Also**

**More About**
- “Visualize the Basins of Attraction” on page 3-37
- “Find Global or Multiple Local Minima” on page 3-78
Parallel MultiStart

In this section...

“Steps for Parallel MultiStart” on page 3-114
“Speedup with Parallel Computing” on page 3-116

Steps for Parallel MultiStart

If you have a multicore processor or access to a processor network, you can use Parallel Computing Toolbox™ functions with MultiStart. This example shows how to find multiple minima in parallel for a problem, using a processor with two cores. The problem is the same as in “Multiple Local Minima Via MultiStart” on page 3-82.

1 Write a function file to compute the objective:

```matlab
function f = sawtoothxy(x,y)
 [t r] = cart2pol(x,y); % change to polar coordinates
 h = cos(2*t - 1/2)/2 + cos(t) + 2;
 g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) .* r.^2./(r+1);
 f = g.*h;
end
```

2 Create the problem structure:

```matlab
problem = createOptimProblem('fminunc',
 'objective', @(x)sawtoothxy(x(1),x(2)),
 'x0', [100,-50],
 'options', optimoptions(@fminunc,'Algorithm','quasi-newton'));
```

3 Validate the problem structure by running it:

```matlab
[x,fval] = fminunc(problem)
```

```matlab
x =
 8.4420 -110.2602

fval =
 435.2573
```

4 Create a MultiStart object, and set the object to use parallel processing and iterative display:

```matlab
ms = MultiStart('UseParallel',true,'Display','iter');
```
5 Set up parallel processing:

parpool

Starting parpool using the 'local' profile ... connected to 4 workers.

ans =

Pool with properties:

    Connected: true
    NumWorkers: 4
    Cluster: local
    AttachedFiles: {}
    IdleTimeout: 30 minute(s) (30 minutes remaining)
    SpmdEnabled: true

6 Run the problem on 50 start points:

[x,fval,eflag,output,manymins] = run(ms,problem,50);
Running the local solvers in parallel.

<table>
<thead>
<tr>
<th>Run Index</th>
<th>Local exitflag</th>
<th>Local f(x)</th>
<th># iter</th>
<th>Local F-count</th>
<th>First-order optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>2</td>
<td>3953</td>
<td>4</td>
<td>21</td>
<td>0.1626</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1331</td>
<td>45</td>
<td>201</td>
<td>65.02</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>7271</td>
<td>54</td>
<td>201</td>
<td>520.9</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>8249</td>
<td>4</td>
<td>18</td>
<td>2.968</td>
</tr>
<tr>
<td>... Many iterations omitted ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>2740</td>
<td>5</td>
<td>21</td>
<td>0.0422</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>8501</td>
<td>48</td>
<td>201</td>
<td>424.8</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>1225</td>
<td>40</td>
<td>201</td>
<td>21.89</td>
</tr>
</tbody>
</table>

MultiStart completed some of the runs from the start points.

17 out of 50 local solver runs converged with a positive local solver exit flag.

Notice that the run indexes look random. Parallel MultiStart runs its start points in an unpredictable order.

Notice that MultiStart confirms parallel processing in the first line of output, which states: “Running the local solvers in parallel.”

7 When finished, shut down the parallel environment:
For an example of how to obtain better solutions to this problem, see “Example: Searching for a Better Solution” on page 3-65. You can use parallel processing along with the techniques described in that example.

**Speedup with Parallel Computing**

The results of *MultiStart* runs are stochastic. The timing of runs is stochastic, too. Nevertheless, some clear trends are apparent in the following table. The data for the table came from one run at each number of start points, on a machine with two cores.

<table>
<thead>
<tr>
<th>Start Points</th>
<th>Parallel Seconds</th>
<th>Serial Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>100</td>
<td>4.9</td>
<td>5.7</td>
</tr>
<tr>
<td>200</td>
<td>8.3</td>
<td>10</td>
</tr>
<tr>
<td>500</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>1000</td>
<td>31</td>
<td>46</td>
</tr>
</tbody>
</table>

Parallel computing can be slower than serial when you use only a few start points. As the number of start points increases, parallel computing becomes increasingly more efficient than serial.

There are many factors that affect speedup (or slowdown) with parallel processing. For more information, see “Improving Performance with Parallel Computing” (Optimization Toolbox).

**See Also**

**More About**

- “Multiple Local Minima Via MultiStart” on page 3-82
- “Isolated Global Minimum” on page 3-117
Difficult-To-Locate Global Minimum

Finding a start point in the basin of attraction of the global minimum can be difficult when the basin is small or when you are unsure of the location of the minimum. To solve this type of problem you can:

- Add sensible bounds
- Take a huge number of random start points
- Make a methodical grid of start points
- For an unconstrained problem, take widely dispersed random start points

This example shows these methods and some variants.

The function \(-\text{sech}(x)\) is nearly 0 for all \(|x| > 5\), and \(-\text{sech}(0) = -1\). The example is a two-dimensional version of the sech function, with one minimum at \([1, 1]\), the other at \([1e5, -1e5]\):

\[
f(x,y) = -10\text{sech}(|x - (1,1)|) - 20\text{sech}(0.0003(|x - (1e5,-1e5)|)) - 1.\]

\(f\) has a global minimum of \(-21\) at \((1e5,-1e5)\), and a local minimum of \(-11\) at \((1,1)\).
The minimum at (1e5, -1e5) shows as a narrow spike. The minimum at (1,1) does not show since it is too narrow.

The following sections show various methods of searching for the global minimum. Some of the methods are not successful on this problem. Nevertheless, you might find each method useful for different problems.
Default Settings Cannot Find the Global Minimum — Add Bounds

GlobalSearch and MultiStart cannot find the global minimum using default global options, since the default start point components are in the range (-9999,10001) for GlobalSearch and (-1000,1000) for MultiStart.

With additional bounds of -1e6 and 1e6 in problem, GlobalSearch usually does not find the global minimum:

```matlab
x1 = [1;1];x2 = [1e5;-1e5];
f = @(x)-10*sech(norm(x(:)-x1)) -20*sech((norm(x(:)-x2))*3e-4) -1;
opts = optimoptions(@fmincon,'Algorithm','active-set');
problem = createOptimProblem('fmincon','x0',[0,0],'objective',f,... 'lb',[-1e6;-1e6],'ub',[1e6;1e6],'options',opts);
gs = GlobalSearch;
rng(14,'twister') % for reproducibility
[xfinal,fval] = run(gs,problem)
```

GlobalSearch stopped because it analyzed all the trial points.

All 32 local solver runs converged with a positive local solver exit flag.

```matlab
xfinal =
 1.0000 1.0000
fval =
 -11.0000
```

**GlobalSearch with Bounds and More Start Points**

To find the global minimum, you can search more points. This example uses 1e5 start points, and a MaxTime of 300 s:

```matlab
gs.NumTrialPoints = 1e5;
gs.MaxTime = 300;
[xg,fvalg] = run(gs,problem)
```

GlobalSearch stopped because maximum time is exceeded.

GlobalSearch called the local solver 2186 times before exceeding the clock time limit (MaxTime = 300 seconds).
1943 local solver runs converged with a positive local solver exit flag.

\[
xg = \\
\begin{array}{l}
1.0e+04 * \\
10.0000 \quad -10.0000 \\
\end{array}
\]

fvalg = 
-21.0000

In this case, GlobalSearch found the global minimum.

**MultiStart with Bounds and Many Start Points**

Alternatively, you can search using MultiStart with many start points. This example uses 1e5 start points, and a MaxTime of 300 s:

\[
ms = MultiStart(gs);
[xm,fvalm] = run(ms,problem,1e5)
\]

MultiStart stopped because maximum time was exceeded.

MultiStart called the local solver 17266 times before exceeding the clock time limit (MaxTime = 300 seconds). 17266 local solver runs converged with a positive local solver exit flag.

\[
xm = \\
\begin{array}{l}
1.0000 \quad 1.0000 \\
\end{array}
\]

fvalm = 
-11.0000

In this case, MultiStart failed to find the global minimum.

**MultiStart Without Bounds, Widely Dispersed Start Points**

You can also use MultiStart to search an unbounded region to find the global minimum. Again, you need many start points to have a good chance of finding the global minimum.

The first five lines of code generate 10,000 widely dispersed random start points using the method described in “Widely Dispersed Points for Unconstrained Components” on
newprob is a problem structure using the fminunc local solver and no bounds:

rng(0,'twister') % for reproducibility
u = rand(1e4,1);
u = 1./u;
u = exp(u) - exp(1);
s = rand(1e4,1)*2*pi;
stpts = [u.*cos(s),u.*sin(s)];
startpts = CustomStartPointSet(stpts);

opts = optimoptions(@fminunc,'Algorithm','quasi-newton');
newprob = createOptimProblem('fminunc','x0',[0;0],'objective',f,...
    'options',opts);
[xcust,fcust] = run(ms,newprob,startpts)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive local solver exit flag.

xcust =
     1.0000e+05 *
        1.0000
        -1.0000

fcust =
        -21.0000

In this case, MultiStart found the global minimum.

MultiStart with a Regular Grid of Start Points

You can also use a grid of start points instead of random start points. To learn how to construct a regular grid for more dimensions, or one that has small perturbations, see “Uniform Grid” on page 3-63 or “Perturbed Grid” on page 3-64.

xx = -1e6:1e4:1e6;
[xxx,yyy] = meshgrid(xx,xx);
z = [xxx(:),yyy(:)];
bigstart = CustomStartPointSet(z);
[xgrid,fgrid] = run(ms,newprob,bigstart)
MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive local solver exit flag.

\[
xgrid = \begin{bmatrix}
1.0e+004 \\
10.0000 \\
-10.0000 
\end{bmatrix}
\]

\[
fgrid = -21.0000
\]

In this case, MultiStart found the global minimum.

**MultiStart with Regular Grid and Promising Start Points**

Making a regular grid of start points, especially in high dimensions, can use an inordinate amount of memory or time. You can filter the start points to run only those with small objective function value.

To perform this filtering most efficiently, write your objective function in a vectorized fashion. For information, see “Write a Vectorized Function” on page 2-3 or “Vectorize the Objective and Constraint Functions” on page 4-111. The following function handle computes a vector of objectives based on an input matrix whose rows represent start points:

\[
x1 = [1;1]; x2 = [1e5;-1e5];
g = @(x) -10*sech(sqrt((x(:,1)-x1(1)).^2 + (x(:,2)-x1(2)).^2)) ... \\
-20*sech(sqrt((x(:,1)-x2(1)).^2 + (x(:,2)-x2(2)).^2)))-1;
\]

Suppose you want to run the local solver only for points where the value is less than -2. Start with a denser grid than in “MultiStart with a Regular Grid of Start Points” on page 3-121, then filter out all the points with high function value:

\[
xx = -1e6:1e3:1e6;
[xxx,yyy] = meshgrid(xx,xx);
z = [xxx(:,),yyy(,)];
idx = g(z) < -2; % index of promising start points
zz = z(idx,:);
smallstartset = CustomStartPointSet(zz);
opts = optimoptions(@fminunc,'Algorithm','quasi-newton','Display','off');
newprobg = createOptimProblem('fminunc','x0',[0,0],...
    'objective',g,'options',opts);
    % row vector x0 since g expects rows
[xfew,ffew] = run(ms,newprobg,smallstartset)

MultiStart completed the runs from all start points.

All 2 local solver runs converged with a positive
local solver exit flag.

xfew =
    100000   -100000

ffew =
    -21

In this case, MultiStart found the global minimum. There are only two start points in
smallstartset, one of which is the global minimum.

See Also

More About

• “Parallel MultiStart” on page 3-114
• “Visualize the Basins of Attraction” on page 3-37
• “Refine Start Points” on page 3-62
Using Direct Search

- “What Is Direct Search?” on page 4-2
- “Optimize Using the GPS Algorithm” on page 4-3
- “Coding and Minimizing an Objective Function Using Pattern Search” on page 4-9
- “Constrained Minimization Using Pattern Search” on page 4-14
- “Effects of Some Pattern Search Options” on page 4-19
- “Pattern Search Terminology” on page 4-27
- “How Pattern Search Polling Works” on page 4-30
- “Searching and Polling” on page 4-43
- “Setting Solver Tolerances” on page 4-48
- “Search and Poll” on page 4-49
- “Nonlinear Constraint Solver Algorithm” on page 4-55
- “Custom Plot Function” on page 4-58
- “Pattern Search Climbs Mount Washington” on page 4-64
- “Set Options” on page 4-70
- “Polling Types” on page 4-73
- “Set Mesh Options” on page 4-86
- “Linear and Nonlinear Constrained Minimization Using patternsearch” on page 4-97
- “Use Cache” on page 4-105
- “Vectorize the Objective and Constraint Functions” on page 4-111
- “Optimize an ODE in Parallel” on page 4-116
- “Optimization of Stochastic Objective Function” on page 4-128
What Is Direct Search?

Direct search is a method for solving optimization problems that does not require any information about the gradient of the objective function. Unlike more traditional optimization methods that use information about the gradient or higher derivatives to search for an optimal point, a direct search algorithm searches a set of points around the current point, looking for one where the value of the objective function is lower than the value at the current point. You can use direct search to solve problems for which the objective function is not differentiable, or is not even continuous.

Global Optimization Toolbox functions include three direct search algorithms called the generalized pattern search (GPS) algorithm, the generating set search (GSS) algorithm, and the mesh adaptive search (MADS) algorithm. All are pattern search algorithms that compute a sequence of points that approach an optimal point. At each step, the algorithm searches a set of points, called a mesh, around the current point—the point computed at the previous step of the algorithm. The mesh is formed by adding the current point to a scalar multiple of a set of vectors called a pattern. If the pattern search algorithm finds a point in the mesh that improves the objective function at the current point, the new point becomes the current point at the next step of the algorithm.

The GPS algorithm uses fixed direction vectors. The GSS algorithm is identical to the GPS algorithm, except when there are linear constraints, and when the current point is near a linear constraint boundary. The MADS algorithm uses a random selection of vectors to define the mesh. For details, see “Patterns” on page 4-27.

See Also

More About
• “Optimize Using the GPS Algorithm” on page 4-3
• “Pattern Search Terminology” on page 4-27
• “How Pattern Search Polling Works” on page 4-30
Optimize Using the GPS Algorithm

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Objective Function” on page 4-3</td>
</tr>
<tr>
<td>“Finding the Minimum of the Function” on page 4-4</td>
</tr>
<tr>
<td>“Plotting the Objective Function Values and Mesh Sizes” on page 4-6</td>
</tr>
</tbody>
</table>

**Objective Function**

This example uses the objective function, `ps_example`, which is included with Global Optimization Toolbox software. View the code for the function by entering

type ps_example

The following figure shows a plot of the function.
Code for creating the figure

```matlab
fsurf(@(x,y)reshape(ps_example([x(:),y(:)]),size(x)),...
 [-6 2 -4 4], 'LineStyle', 'none', 'MeshDensity', 300)
colormap 'jet'
view(-26,43)
xlabel('x(1)')
ylabel('x(2)')
title('ps_example(x)')
```

Finding the Minimum of the Function

To find the minimum of `ps_example`, perform the following steps:
1 Enter

optimtool

and then choose the patternsearch solver.

2 In the **Objective function** field of the Optimization app, enter @ps_example.

3 In the **Start point** field, type [2.1 1.7].

Leave the fields in the **Constraints** pane blank because the problem is unconstrained.

4 Click **Start** to run the pattern search.

The **Run solver and view results** pane displays the results of the pattern search.

The reason the optimization terminated is that the mesh size became smaller than the acceptable tolerance value for the mesh size, defined by the **Mesh tolerance** parameter in the **Stopping criteria** pane. The minimum function value is approximately –2. The **Final point** pane displays the point at which the minimum occurs.
To run this problem using command-line functions:

```matlab
[x,fval] = patternsearch(@ps_example,[2.1 1.7])
```

Optimization terminated: mesh size less than options.MeshTolerance.

```matlab
x =
 -4.7124 -0.0000

fval =
 -2.0000
```

**Plotting the Objective Function Values and Mesh Sizes**

To see the performance of the pattern search, display plots of the best function value and mesh size at each iteration. First, select the following check boxes in the **Plot functions** pane:

- **Best function value**
- **Mesh size**

![Plot functions pane](image)

Then click **Start** to run the pattern search. This displays the following plots.
The upper plot shows the objective function value of the best point at each iteration. Typically, the objective function values improve rapidly at the early iterations and then level off as they approach the optimal value.

The lower plot shows the mesh size at each iteration. The mesh size increases after each successful iteration and decreases after each unsuccessful one, explained in “How Pattern Search Polling Works” on page 4-30.

To run this problem using command-line functions:

```matlab
options = optimoptions('patternsearch',...
'PlotFcn',{@psplotbestf,@psplotmeshsize});
[x,fval] = patternsearch(@ps_example,[2.1 1.7],....
[],[],[],[],[],[],[],options);
```
See Also

More About

• “Linear and Nonlinear Constrained Minimization Using patternsearch” on page 4-97
• “How Pattern Search Polling Works” on page 4-30
Coding and Minimizing an Objective Function Using Pattern Search

This example shows how to create and minimize an objective function using pattern search.

Objective Function

For this problem, the objective function to minimize is a simple function of a 2-D variable \( x \).

\[
\text{simple_objective}(x) = (4 - 2.1x_{(1)}^2 + x_{(1)}^4/3)x_{(1)}^2 + x_{(1)}x_{(2)} + (-4 + 4x_{(2)}^2)x_{(2)}^2;
\]

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

Code the Objective Function

Create a MATLAB file named `simple_objective.m` containing the following code:

```matlab
type simple_objective
function y = simple_objective(x)
%SIMPLE_OBJECTIVE Objective function for PATTERNSEARCH solver

% Copyright 2004 The MathWorks, Inc.

x1 = x(1);
x2 = x(2);
y = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2;
```

Solvers such as `patternsearch` accept a single input \( x \), where \( x \) has as many elements as the number of variables in the problem. The objective function computes the scalar value of the objective function and returns it in its single output argument \( y \).

Minimize Using `patternsearch`

Specify the objective function as a function handle.

```matlab
ObjectiveFunction = @simple_objective;
```

Specify an initial point for the solver.

```matlab
x0 = [0.5 0.5]; % Starting point
```
Call the solver, requesting the optimal point \( x \) and the function value at the optimal point \( fval \).

\[
[x,fval] = \text{patternsearch}(\text{ObjectiveFunction},x0)
\]

Optimization terminated: mesh size less than options.MeshTolerance.

\[
x = 1\times2
\]

\[
\begin{array}{cc}
-0.0898 & 0.7127 \\
\end{array}
\]

\[
fval = -1.0316
\]

**Minimize Using Additional Arguments**

Sometimes your objective function has extra arguments that act as constants during the optimization. For example, in `simple_objective`, you might want to specify the constants 4, 2.1, and 4 as variable parameters to create a family of objective functions.

Rewrite `simple_objective` to take three additional parameters (\( p1 \), \( p2 \), and \( p3 \)) that act as constants during the optimization (they are not varied as part of the minimization). To implement the objective function calculation, the MATLAB file `parameterized_objective.m` contains the following code:

```matlab
type parameterized_objective

function y = parameterized_objective(x,p1,p2,p3)
 %PARAMETERIZED_OBJECTIVE Objective function for PATTERNSEARCH solver

 % Copyright 2004 The MathWorks, Inc.

 x1 = x(1);
 x2 = x(2);
 y = (p1-p2.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-p3+p3.*x2.^2).*x2.^2;

end
```

`patternsearch` calls the objective function with just one argument \( x \), but the parameterized objective function has four arguments: \( x \), \( p1 \), \( p2 \), and \( p3 \). Use an anonymous function to capture the values of the additional arguments \( p1 \), \( p2 \), and \( p3 \). Create a function handle `ObjectiveFunction` to an anonymous function that takes one input \( x \), but calls `parameterized_objective` with \( x \), \( p1 \), \( p2 \), and \( p3 \). When you create the function handle `ObjectiveFunction`, the variables \( p1 \), \( p2 \), and \( p3 \) have values that are stored in the anonymous function. For details, see “Passing Extra Parameters” (Optimization Toolbox).
p1 = 4; p2 = 2.1; p3 = 4;  \% Define constant values
ObjectiveFunction = @(x) parameterized_objective(x,p1,p2,p3);
[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.
x = 1x2
   -0.0898    0.7127

fval = -1.0316

**Vectorize the Objective Function**

By default, `patternsearch` passes in one point at a time to the objective function. Sometimes, you can speed the solver by *vectorizing* the objective function to take a set of points and return a set of function values.

For the solver to evaluate a set of five points in one call to the objective function, for example, the solver calls the objective on a matrix of size 5-by-2 (where 2 is the number of variables). For details, see “Vectorize the Objective and Constraint Functions” on page 4-111.

To vectorize `parameterized_objective`, use the following code:

type vectorized_objective

function y = vectorized_objective(x,p1,p2,p3)
\%VECTORIZED_OBJECTIVE Objective function for PATTERNSEARCH solver
\n\% Copyright 2004-2018 The MathWorks, Inc.

x1 = x(:,1);  \% First column of x
x2 = x(:,2);
y = (p1 - p2.*x1.^2 + x1.^4./3).*x1.^2 + x1.*x2 + (-p3 + p3.*x2.^2).*x2.^2;

This vectorized version of the objective function takes a matrix x with an arbitrary number of points (the rows of x) and returns a column vector y whose length is the number of rows of x.

To take advantage of the vectorized objective function, set the `UseVectorized` option to `true` and the `UseCompletePoll` option to `true`. `patternsearch` requires both of these options to compute in a vectorized manner.
options = optimoptions(@patternsearch,'UseVectorized',true,'UseCompletePoll',true);

Specify the objective function and call patternsearch, including the options argument. Use tic/toc to evaluate the solution time.

ObjectiveFunction = @(x) vectorized_objective(x,4,2.1,4);
tic
[x,fval] = patternsearch(ObjectiveFunction,x0,[],[],[],[],[],[],[],options)

Optimization terminated: mesh size less than options.MeshTolerance.

x = 1x2
   -0.0898    0.7127

fval = -1.0316
toc
Elapsed time is 0.027503 seconds.

Evaluate the nonvectorized solution time for comparison.

tic
[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

x = 1x2
   -0.0898    0.7127

fval = -1.0316
toc
Elapsed time is 0.027502 seconds.

In this case, the vectorization does not have a significant impact on the solution time.
References


See Also

More About

- “Passing Extra Parameters” (Optimization Toolbox)
- “Vectorize the Objective and Constraint Functions” on page 4-111
Constrained Minimization Using Pattern Search

This example shows how to minimize an objective function, subject to nonlinear inequality constraints and bounds, using pattern search.

**Constrained Minimization Problem**

For this problem, the objective function to minimize is a simple function of a 2-D variable \( x \).

\[
simple \_ objective(x) = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;
\]

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

Additionally, the problem has nonlinear constraints and bounds.

\[
x(1)*x(2) + x(1) - x(2) + 1.5 <= 0 \quad \text{(nonlinear constraint)}
\]
\[
10 - x(1)*x(2) <= 0 \quad \text{(nonlinear constraint)}
\]
\[
0 <= x(1) <= 1 \quad \text{(bound)}
\]
\[
0 <= x(2) <= 13 \quad \text{(bound)}
\]

**Code the Objective Function**

Create a MATLAB file named `simple_objective.m` containing the following code:

```matlab
type simple_objective

function y = simple_objective(x)
%SIMPLE_OBJECTIVE Objective function for PATTERNSEARCH solver
% Copyright 2004 The MathWorks, Inc.

x1 = x(1);
x2 = x(2);
y = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2;
```

Solvers such as `patternsearch` accept a single input \( x \), where \( x \) has as many elements as the number of variables in the problem. The objective function computes the scalar value of the objective function and returns it in its single output argument \( y \).

**Coding the Constraint Function**

Create a MATLAB file named `simple_constraint.m` containing the following code:
type simple_constraint

function [c, ceq] = simple_constraint(x)
%SIMPLE_CONSTRAINT Nonlinear inequality constraints.

% Copyright 2005-2007 The MathWorks, Inc.

c = [1.5 + x(1)*x(2) + x(1) - x(2);
    -x(1)*x(2) + 10];

% No nonlinear equality constraints:
ceq = [];

The constraint function computes the values of all the inequality and equality constraints and returns the vectors c and ceq, respectively. The value of c represents nonlinear inequality constraints that the solver attempts to make less than or equal to zero. The value of ceq represents nonlinear equality constraints that the solver attempts to make equal to zero. This example has no nonlinear equality constraints, so ceq = []. For details, see “Nonlinear Constraints” (Optimization Toolbox).

Minimize Using patternsearch

Specify the objective function as a function handle.

ObjectiveFunction = @simple_objective;

Specify the problem bounds.

lb = [0 0];   % Lower bounds
ub = [1 13];  % Upper bounds

Specify the nonlinear constraint function as a function handle.

ConstraintFunction = @simple_constraint;

Specify an initial point for the solver.

x0 = [0.5 0.5];   % Starting point

Call the solver, requesting the optimal point x and the function value at the optimal point fval.

[x,fval] = patternsearch(ObjectiveFunction,x0,[],[],[],[],lb,ub, ... ConstraintFunction)
Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

x = 1×2

0.8122   12.3122

fval = 9.1324e+04

Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot
function psplotbestf plots the best objective function value at every iteration, and the
plot function psplotmaxconstr plots the maximum constraint violation at every
iteration. Set these two plot functions in a cell array. Also, display information about the
solver's progress in the Command Window by setting the Display option to 'iter'.

options = optimoptions(@patternsearch,'PlotFcn',{@psplotbestf,@psplotmaxconstr}, ...
    'Display','iter');

Run the solver, including the options argument.

[x,fval] = patternsearch(ObjectiveFunction,x0,[],[],[],[],lb,ub, ... 
    ConstraintFunction,options)
Max Iter   Func-count       f(x)      Constraint   MeshSize      Method
0         1     0.373958         9.75       0.9086
1        18       113581    1.617e-10        0.001   Increase penalty
2       148        92267            0        1e-05   Increase penalty
3       374      91333.2            0        1e-07   Increase penalty
4       639        91324            0        1e-09   Increase penalty
Optimization terminated: mesh size less than options.MeshTolerance and constraint violation is less than options.ConstraintTolerance.

x = 1×2

0.8122   12.3122
Nonlinear constraints cause \texttt{patternsearch} to solve many subproblems at each iteration. As shown in both the plots and the iterative display, the solution process has few iterations. However, the \texttt{Func-count} column in the iterative display shows many function evaluations per iteration. Both the plots and the iterative display show that the initial point is infeasible, and that the objective function is low at the initial point. During the solution process, the objective function value initially increases, then decreases to its final value.

\textbf{References}


\textbf{See Also}

\textbf{More About}

\begin{itemize}
  \item \texttt{"Write Constraints" on page 2-8}
\end{itemize}


Effects of Some Pattern Search Options

This example shows the effects of some options for pattern search. The options include plotting, stopping criteria, and other algorithmic controls for speeding a solution.

Set Up a Problem for Pattern Search

The problem to minimize is a quadratic function of six variables subject to linear equality and inequality constraints. The objective function, lincontest7, is included with Global Optimization Toolbox software.

type lincontest7

function y = lincontest7(x);
%LINCONTEST7 objective function.
% y = LINCONTEST7(X) evaluates y for the input X. Make sure that x is a column
% vector, whereas objective function gets a row vector.

% Copyright 2003-2004 The MathWorks, Inc.

x = x';
%Define a quadratic problem in terms of H and f (From web unknown source)
H = [36 17 19 12 8 15; 17 33 18 11 7 14; 19 18 43 13 8 16; 12 11 13 18 6 11; 8 7 8 6 9 8; 15 14 16 11 8 29];
f = [ 20 15 21 18 29 24 ]';
y = 0.5*x'*H*x + f'*x;

Specify the function handle @lincontest7 as the objective function.

objectiveFcn = @lincontest7;

The objective function accepts a row vector of length six. Specify an initial point for the optimization.

x0 = [2 1 0 9 1 0];

Create linear constraint matrices representing the constraints Aineq*x <= Bineq and Aeq*x = Beq. For details, see “Linear Constraints” (Optimization Toolbox).

Aineq = [-8 7 3 -4 9 0 ];
Bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
Beq = [84 62 65 1];
Run the `patternsearch` solver, and observe how many iterations and function evaluations it takes to arrive at the solution.

```matlab
[X1,Fval,Exitflag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,Aeq,Beq);
```

Optimization terminated: mesh size less than options.MeshTolerance.

```matlab
fprintf('The number of iterations was : %d
', Output.iterations);
```

The number of iterations was : 244

```matlab
fprintf('The number of function evaluations was : %d
', Output.funccount);
```

The number of function evaluations was : 1895

```matlab
fprintf('The best function value found was : %g
', Fval);
```

The best function value found was : 2189.03

**Adding Visualization**

Monitor the optimization process by specifying two plot functions. Specify the plot functions as the `PlotFcn` option by using `optimoptions`. One plot function, `psplotbestf`, plots the best objective function value at every iteration. Another plot function, `psplotfuncount`, plots the number of times the objective function is evaluated at each iteration. Set these two plot functions in a cell array.

```matlab
opts = optimoptions(@patternsearch,'PlotFcn',{@psplotbestf,@psplotfuncount});
```

Run the `patternsearch` solver. Since there are no upper or lower bound constraints and no nonlinear constraints, pass empty arrays ([]) for the seventh, eighth, and ninth arguments.

```matlab
[X1,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq, ...
 Aeq,Beq,[],[],[],[],opts);
```
Optimization terminated: mesh size less than options.MeshTolerance.

**Mesh Parameters**

**Initial mesh size**

The pattern search algorithm uses a set of rational basis vectors to generate search directions. It performs a search along the search directions using the current mesh size. The solver starts with an initial mesh size of 1 by default. To start the initial mesh size at 10, set the `InitialMeshSize` option:

```matlab
options = optimoptions(opts,'InitialMeshSize',10);
```

**Mesh scaling**
A mesh can be scaled to improve the minimization of a badly scaled optimization problem. Scale is used to rotate the pattern by some degree and scale along the search directions. The scale option is on (true) by default but can be turned off if the problem is well scaled. In general, if the problem is badly scaled, setting this option to true may help in reducing the number of function evaluations. For this objective function, set ScaleMesh to false, because lincontest7 is a well-scaled objective function.

opts = optimoptions(opts,'ScaleMesh',false);

**Mesh accelerator**

Direct search methods require many function evaluations as compared to derivative-based optimization methods. The pattern search algorithm can quickly find the neighborhood of an optimum point, but can be slow in detecting the minimum itself. This is the cost of not using derivatives. The patternsearch solver can reduce the number of function evaluations using an accelerator. When the accelerator is on (opts.AccelerateMesh = true) the mesh size is contracted rapidly after some minimum mesh size is reached. This option is recommended only for smooth problems, otherwise you can lose some accuracy. The accelerator is off (false) by default. Here, set the AccelerateMesh to true because the objective function is smooth.

opts = optimoptions(opts,'AccelerateMesh',true);

Run the patternsearch solver.

[X2,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq, ... Aeq,Beq,[],[],[],opts);
Optimization terminated: mesh size less than options.MeshTolerance.

fprintf('The number of iterations was : %d
', Output.iterations);
The number of iterations was : 200

fprintf('The number of function evaluations was : %d
', Output.funccount);
The number of function evaluations was : 1327

fprintf('The best function value found was : %g
', Fval);
The best function value found was : 2189.03
These option setting reduce the number of iterations and the number of function evaluations, and there is no apparent loss of accuracy.

**Stopping Criteria and Tolerances**

**What are MeshTolerance, StepTolerance and FunctionTolerance?**

MeshTolerance is a tolerance on the mesh size. If the mesh size is less than MeshTolerance, the solver stops. StepTolerance is used as the minimum tolerance on the change in the current point to the next point. FunctionTolerance is used as the minimum tolerance on the change in the function value from the current point to the next point.

Set the MeshTolerance to 1e-7, which is ten times smaller than the default value. This setting can increase the number of function evaluations and iterations, and can lead to a more accurate solution.

```matlab
opts.MeshTolerance = 1e-7;
```

**Search Methods in Pattern Search**

The pattern search algorithm can use an additional search at every iteration. This option is called SearchFcn. When you set a SearchFcn, that search is done first before the mesh search. If the SearchFcn is successful, patternsearch skips the mesh search, commonly called the PollFcn, for that iteration. If the search method is unsuccessful in improving the current point, patternsearch performs the poll.

There are five different search method options. These search methods include searchga and searchneldermead, which are two different optimization algorithms. It is recommended to use these methods only for the first iteration, which is the default. Using these methods repeatedly at every iteration might not improve the results and could be computationally expensive. One the other hand, the searchlhs, which generates Latin hypercube points, can be used in every iteration or possibly every 10 iterations. Other choices for search methods include Poll methods such as positive basis N+1 or positive basis 2N.

A recommended strategy is to use the positive basis N+1 (which requires at most N+1 points to create a pattern) as a search method and positive basis 2N (which requires 2N points to create a pattern) as a poll method. Update the options structure to use positivebasisnp1 as the search method. Since the positive basis 2N is the default PollFcn, do not set that option.

```matlab
opts.SearchFcn = @positivebasisnp1;
```
Run the `patternsearch` solver.

```matlab
[X5,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,Aeq,Beq, [],[],[],[],opts);
```

Optimization terminated: mesh size less than options.MeshTolerance.

```matlab
fprintf('The number of iterations was : %d\n', Output.iterations);
The number of iterations was : 70
```

```matlab
fprintf('The number of function evaluations was : %d\n', Output.funccount);
The number of function evaluations was : 867
```
fprintf('The best function value found was : %g\n', Fval);

The best function value found was : 2189.03

With these options, the total number of iterations and function evaluations decrease. This decrease occurs even though the mesh tolerance is smaller than the previous value, and, as you can see in the exit messages, the mesh tolerance is the stopping criterion that halts the solver.

See Also

More About

• “Set Mesh Options” on page 4-86
• “Pattern Search Options” on page 11-9
• “Custom Plot Function” on page 4-58
In this section...

“Patterns” on page 4-27
“Meshes” on page 4-28
“Polling” on page 4-29
“Expanding and Contracting” on page 4-29

Patterns

A pattern is a set of vectors \( \{v_i\} \) that the pattern search algorithm uses to determine which points to search at each iteration. The set \( \{v_i\} \) is defined by the number of independent variables in the objective function, \( N \), and the positive basis set. Two commonly used positive basis sets in pattern search algorithms are the maximal basis, with \( 2N \) vectors, and the minimal basis, with \( N+1 \) vectors.

With GPS, the collection of vectors that form the pattern are fixed-direction vectors. For example, if there are three independent variables in the optimization problem, the default for a \( 2N \) positive basis consists of the following pattern vectors:

\[
\begin{align*}
v_1 &= [1, 0, 0] \\
v_2 &= [0, 1, 0] \\
v_3 &= [0, 0, 1] \\
v_4 &= [-1, 0, 0] \\
v_5 &= [0, -1, 0] \\
v_6 &= [0, 0, -1]
\end{align*}
\]

An \( N+1 \) positive basis consists of the following default pattern vectors.

\[
\begin{align*}
v_1 &= [1, 0, 0] \\
v_2 &= [0, 1, 0] \\
v_3 &= [0, 0, 1] \\
v_4 &= [-1, -1, -1]
\end{align*}
\]

With GSS, the pattern is identical to the GPS pattern, except when there are linear constraints and the current point is near a constraint boundary. For a description of the way in which GSS forms a pattern with linear constraints, see Kolda, Lewis, and Torczon [1]. The GSS algorithm is more efficient than the GPS algorithm when you have linear constraints. For an example showing the efficiency gain, see “Compare the Efficiency of Poll Options” on page 4-78.

With MADS, the collection of vectors that form the pattern are randomly selected by the algorithm. Depending on the poll method choice, the number of vectors selected will be
2N or N+1. As in GPS, 2N vectors consist of N vectors and their N negatives, while N+1 vectors consist of N vectors and one that is the negative of the sum of the others.

References


Meshes

At each step, `patternsearch` searches a set of points, called a mesh, for a point that improves the objective function. `patternsearch` forms the mesh by

1. Generating a set of vectors \( \{d_i\} \) by multiplying each pattern vector \( v_i \) by a scalar \( \Delta^m \). \( \Delta^m \) is called the mesh size.
2. Adding the \( \{d_i\} \) to the current point—the point with the best objective function value found at the previous step.

For example, using the GPS algorithm, suppose that:

- The current point is \([1.6 \ 3.4]\).
- The pattern consists of the vectors
  \[
  v_1 = [1 \ 0] \\
  v_2 = [0 \ 1] \\
  v_3 = [-1 \ 0] \\
  v_4 = [0 \ -1]
  \]
- The current mesh size \( \Delta^m \) is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current point to obtain the following mesh.

\[
\begin{align*}
[1.6 \ 3.4] + 4*[1 \ 0] &= [5.6 \ 3.4] \\
[1.6 \ 3.4] + 4*[0 \ 1] &= [1.6 \ 7.4] \\
[1.6 \ 3.4] + 4*[-1 \ 0] &= [-2.4 \ 3.4] \\
[1.6 \ 3.4] + 4*[0 \ -1] &= [1.6 \ -0.6]
\end{align*}
\]
The pattern vector that produces a mesh point is called its *direction*.

**Polling**

At each step, the algorithm polls the points in the current mesh by computing their objective function values. When the **Complete poll** option has the (default) setting *Off*, the algorithm stops polling the mesh points as soon as it finds a point whose objective function value is less than that of the current point. If this occurs, the poll is called *successful* and the point it finds becomes the current point at the next iteration.

The algorithm only computes the mesh points and their objective function values up to the point at which it stops the poll. If the algorithm fails to find a point that improves the objective function, the poll is called *unsuccessful* and the current point stays the same at the next iteration.

When the **Complete poll** option has the setting *On*, the algorithm computes the objective function values at all mesh points. The algorithm then compares the mesh point with the smallest objective function value to the current point. If that mesh point has a smaller value than the current point, the poll is successful.

**Expanding and Contracting**

After polling, the algorithm changes the value of the mesh size $\Delta^m$. The default is to multiply $\Delta^m$ by 2 after a successful poll, and by 0.5 after an unsuccessful poll.

**See Also**

**More About**

- “How Pattern Search Polling Works” on page 4-30
- “Searching and Polling” on page 4-43
- “Effects of Some Pattern Search Options”
How Pattern Search Polling Works

In this section...

“Context” on page 4-30
“Successful Polls” on page 4-31
“An Unsuccessful Poll” on page 4-34
“Successful and Unsuccessful Polls in MADS” on page 4-35
“Displaying the Results at Each Iteration” on page 4-35
“More Iterations” on page 4-36
“Poll Method” on page 4-37
“Complete Poll” on page 4-39
“Stopping Conditions for the Pattern Search” on page 4-39
“Robustness of Pattern Search” on page 4-41

Context

patternsearch finds a sequence of points, \(x_0, x_1, x_2, \ldots\), that approach an optimal point. The value of the objective function either decreases or remains the same from each point in the sequence to the next. This section explains how pattern search works for the function described in “Optimize Using the GPS Algorithm” on page 4-3.

To simplify the explanation, this section describes how the generalized pattern search (GPS) works using a maximal positive basis of \(2N\), with Scale set to Off in Mesh options.
How Pattern Search Polling Works

This section does not show how the patternsearch algorithm works with bounds or linear constraints. For bounds and linear constraints, patternsearch modifies poll points to be feasible, meaning to satisfy all bounds and linear constraints.

This section does not encompass nonlinear constraints. To understand how patternsearch works with nonlinear constraints, see “Nonlinear Constraint Solver Algorithm” on page 4-55.

The problem setup:

**Successful Polls**

The pattern search begins at the initial point \(x_0\) that you provide. In this example, \(x_0 = [2.1\ 1.7]\).

**Iteration 1**

At the first iteration, the mesh size is 1 and the GPS algorithm adds the pattern vectors to the initial point \(x_0 = [2.1\ 1.7]\) to compute the following mesh points:
\[
\begin{align*}
[1 \ 0] + x0 &= [3.1 \ 1.7] \\
[0 \ 1] + x0 &= [2.1 \ 2.7] \\
[-1 \ 0] + x0 &= [1.1 \ 1.7] \\
[0 \ -1] + x0 &= [2.1 \ 0.7]
\end{align*}
\]

The algorithm computes the objective function at the mesh points in the order shown above. The following figure shows the value of \texttt{ps\_example} at the initial point and mesh points.

The algorithm polls the mesh points by computing their objective function values until it finds one whose value is smaller than 4.6347, the value at \(x0\). In this case, the first such point it finds is \([1.1 \ 1.7]\), at which the value of the objective function is 4.5146, so the poll at iteration 1 is \textit{successful}. The algorithm sets the next point in the sequence equal to \(x1 = [1.1 \ 1.7]\)

\textbf{Note} By default, the GPS pattern search algorithm stops the current iteration as soon as it finds a mesh point whose fitness value is smaller than that of the current point.
Consequently, the algorithm might not poll all the mesh points. You can make the algorithm poll all the mesh points by setting **Complete poll** to **On**.

### Iteration 2

After a successful poll, the algorithm multiplies the current mesh size by 2, the default value of **Expansion factor** in the **Mesh** options pane. Because the initial mesh size is 1, at the second iteration the mesh size is 2. The mesh at iteration 2 contains the following points:

\[
2*[1 0] + x_1 = [3.1 1.7] \\
2*[0 1] + x_1 = [1.1 3.7] \\
2*[1 0] + x_1 = [-0.9 1.7] \\
2*[0 -1] + x_1 = [1.1 -0.3]
\]

The following figure shows the point \(x_1\) and the mesh points, together with the corresponding values of \(ps\_example\).

![Objective Function Values at \(x_1\) and Mesh Points](image)

The algorithm polls the mesh points until it finds one whose value is smaller than 4.5146, the value at \(x_1\). The first such point it finds is \([-0.9 1.7]\), at which the value of the
objective function is 3.25, so the poll at iteration 2 is again successful. The algorithm sets the second point in the sequence equal to

\[ x_2 = [-0.9 \ 1.7] \]

Because the poll is successful, the algorithm multiplies the current mesh size by 2 to get a mesh size of 4 at the third iteration.

**An Unsuccessful Poll**

By the fourth iteration, the current point is

\[ x_3 = [-4.9 \ 1.7] \]

and the mesh size is 8, so the mesh consists of the points

\[
\begin{align*}
8*[1 \ 0] + x_3 &= [3.1 \ 1.7] \\
8*[0 \ 1] + x_3 &= [-4.9 \ 9.7] \\
8*[-1 \ 0] + x_3 &= [-12.9 \ 1.7] \\
8*[0 \ -1] + x_3 &= [-4.9 \ -1.3]
\end{align*}
\]

The following figure shows the mesh points and their objective function values.
At this iteration, none of the mesh points has a smaller objective function value than the value at \( x_3 \), so the poll is unsuccessful. In this case, the algorithm does not change the current point at the next iteration. That is,

\[ x_4 = x_3; \]

At the next iteration, the algorithm multiplies the current mesh size by 0.5, the default value of **Contraction factor** in the **Mesh** options pane, so that the mesh size at the next iteration is 4. The algorithm then polls with a smaller mesh size.

**Successful and Unsuccessful Polls in MADS**

Setting the **PollMethod** option to 'MADSPositiveBasis2N' or 'MADSPositiveBasisNp1' causes **patternsearch** to use both a different poll type and to react to polling differently than the other polling algorithms.

A MADS poll uses newly generated pseudorandom mesh vectors at each iteration. The vectors are randomly shuffled components from the columns of a random lower-triangular matrix. The components of the matrix have integer sizes up to \( 1/\sqrt{\text{mesh size}} \). In the poll, the mesh vectors are multiplied by the mesh size, so the poll points can be up to \( \sqrt{\text{mesh size}} \) from the current point.

Unsuccessful polls contract the mesh by a factor of 4, ignoring the **MeshContractionFactor** option. Similarly, successful polls expand the mesh by a factor of 4, ignoring the **MeshExpansionFactor** option. The maximum mesh size is 1, despite any setting of the **MaxMeshSize** option.

In addition, when there is a successful poll, **patternsearch** starts at the successful point and polls again. This extra poll uses the same mesh vectors, expanded by a factor of 4 while staying below size 1. The extra poll looks again along the same directions that were just successful.

**Displaying the Results at Each Iteration**

You can display the results of the pattern search at each iteration by setting **Level of display** to **Iterative** in the **Display to command window** options. This enables you to evaluate the progress of the pattern search and to make changes to **options** if necessary.
With this setting, the pattern search displays information about each iteration at the command line. The first four iterations are

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4.63474</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4.51464</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>3.25</td>
<td>4</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>-0.264905</td>
<td>8</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>-0.264905</td>
<td>4</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>

The entry Successful Poll below Method indicates that the current iteration was successful. For example, the poll at iteration 2 is successful. As a result, the objective function value of the point computed at iteration 2, displayed below f(x), is less than the value at iteration 1.

At iteration 4, the entry Refine Mesh tells you that the poll is unsuccessful. As a result, the function value at iteration 4 remains unchanged from iteration 3.

By default, the pattern search doubles the mesh size after each successful poll and halves it after each unsuccessful poll.

**More Iterations**

The pattern search performs 60 iterations before stopping. The following plot shows the points in the sequence computed in the first 13 iterations of the pattern search.
The numbers below the points indicate the first iteration at which the algorithm finds the point. The plot only shows iteration numbers corresponding to successful polls, because the best point doesn't change after an unsuccessful poll. For example, the best point at iterations 4 and 5 is the same as at iteration 3.

Poll Method

At each iteration, the pattern search polls the points in the current mesh—that is, it computes the objective function at the mesh points to see if there is one whose function value is less than the function value at the current point. “How Pattern Search Polling Works” on page 4-30 provides an example of polling. You can specify the pattern that defines the mesh by the Poll method option. The default pattern, GPS Positive basis 2N, consists of the following 2N directions, where N is the number of independent variables for the objective function.

\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}
\]
For example, if the objective function has three independent variables, the GPS Positive basis 2N, consists of the following six vectors.

\[
\begin{bmatrix}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

Alternatively, you can set Poll method to GPS Positive basis Np1, the pattern consisting of the following \(N + 1\) directions.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

For example, if objective function has three independent variables, the GPS Positive basis Np1, consists of the following four vectors.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{bmatrix}
\]

A pattern search will sometimes run faster using GPS Positive basis Np1 rather than the GPS Positive basis 2N as the Poll method, because the algorithm searches fewer points at each iteration. Although not being addressed in this example, the same is true when using the MADS Positive basis Np1 over the MADS Positive basis 2N, and similarly for GSS. For example, if you run a pattern search on the example described in “Linearly Constrained Problem” on page 4-97, the algorithm performs 1588 function evaluations with GPS Positive basis 2N, the default Poll method, but only 877 function evaluations using GPS Positive basis Np1. For more detail, see “Compare the Efficiency of Poll Options” on page 4-78.
However, if the objective function has many local minima, using GPS Positive basis 2N as the Poll method might avoid finding a local minimum that is not the global minimum, because the search explores more points around the current point at each iteration.

**Complete Poll**

By default, if the pattern search finds a mesh point that improves the value of the objective function, it stops the poll and sets that point as the current point for the next iteration. When this occurs, some mesh points might not get polled. Some of these unpollled points might have an objective function value that is even lower than the first one the pattern search finds.

For problems in which there are several local minima, it is sometimes preferable to make the pattern search poll all the mesh points at each iteration and choose the one with the best objective function value. This enables the pattern search to explore more points at each iteration and thereby potentially avoid a local minimum that is not the global minimum. In the Optimization app you can make the pattern search poll the entire mesh setting **Complete poll** to On in Poll options. At the command line, use `optimoptions` to set the `UseCompletePoll` option to true.

**Stopping Conditions for the Pattern Search**

The criteria for stopping the pattern search algorithm are listed in the **Stopping criteria** section of the Optimization app:
The algorithm stops when any of the following conditions occurs:

- The mesh size is less than **Mesh tolerance**.
- The number of iterations performed by the algorithm reaches the value of **Max iteration**.
- The total number of objective function evaluations performed by the algorithm reaches the value of **Max function evaluations**.
- The time, in seconds, the algorithm runs until it reaches the value of **Time limit**.
- After a successful poll, the distance between the point found in the previous two iterations and the mesh size are both less than **X tolerance**.
• After a successful poll, the change in the objective function in the previous two iterations is less than **Function tolerance** and the mesh size is less than **X tolerance**.

**Nonlinear constraint tolerance** is not used as stopping criterion. It determines the feasibility with respect to nonlinear constraints.

The MADS algorithm uses an additional parameter called the poll parameter, \( \Delta_p \), in the mesh size stopping criterion:

\[
\Delta_p = \begin{cases} 
N\sqrt{\Delta_m} & \text{for positive basis } N + 1 \text{ poll} \\
\sqrt{\Delta_m} & \text{for positive basis } 2N \text{ poll},
\end{cases}
\]

where \( \Delta_m \) is the mesh size. The MADS stopping criterion is:

\[
\Delta_p \leq \text{Mesh tolerance}.
\]

**Robustness of Pattern Search**

The pattern search algorithm is robust in relation to objective function failures. This means `patternsearch` tolerates function evaluations resulting in \( \text{NaN} \), \( \text{Inf} \), or complex values. When the objective function at the initial point \( x_0 \) is a real, finite value, `patternsearch` treats poll point failures as if the objective function values are large, and ignores them.

For example, if all points in a poll evaluate to \( \text{NaN} \), `patternsearch` considers the poll unsuccessful, shrinks the mesh, and reevaluates. If even one point in a poll evaluates to a smaller value than any seen yet, `patternsearch` considers the poll successful, and expands the mesh.

**See Also**

**More About**

• “Optimize Using the GPS Algorithm” on page 4-3
• “Linear and Nonlinear Constrained Minimization Using patternsearch” on page 4-97
• “Vectorize the Objective and Constraint Functions” on page 4-111
• “Search and Poll” on page 4-49
**Searching and Polling**

<table>
<thead>
<tr>
<th>In this section…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Definition of Search” on page 4-43</td>
</tr>
<tr>
<td>“How to Use a Search Method” on page 4-45</td>
</tr>
<tr>
<td>“Search Types” on page 4-45</td>
</tr>
<tr>
<td>“When to Use Search” on page 4-46</td>
</tr>
</tbody>
</table>

**Definition of Search**

In patternsearch, a search is an algorithm that runs before a poll. The search attempts to locate a better point than the current point. (Better means one with lower objective function value.) If the search finds a better point, the better point becomes the current point, and no polling is done at that iteration. If the search does not find a better point, patternsearch performs a poll.

By default, patternsearch does not use search. To search, see “How to Use a Search Method” on page 4-45.

The figure “patternsearch With a Search Method” on page 4-44 contains a flow chart of direct search including using a search method.
patternsearch With a Search Method
Iteration limit applies to all built-in search methods except those that are poll methods. If you select an iteration limit for the search method, the search is enabled until the iteration limit is reached. Afterward, `patternsearch` stops searching and only polls.

**How to Use a Search Method**

To use search in `patternsearch`:

- In Optimization app, choose a **Search method** in the **Search** pane.

- At the command line, create options with a search method using `optimoptions`. For example, to use Latin hypercube search:

  ```
 opts = optimoptions('patternsearch','SearchFcn',@searchlhs);
  ```

  For more information, including a list of all built-in search methods, consult the `patternsearch` function reference page, and the “Search Options” on page 11-17 section of the options reference.

You can write your own search method. Use the syntax described in “Structure of the Search Function” on page 11-20. To use your search method in a pattern search, give its function handle as the **Custom Function** (`SearchFcn`) option.

**Search Types**

- Poll methods — You can use any poll method as a search algorithm. `patternsearch` conducts one poll step as a search. For this type of search to be beneficial, your search
type should be different from your poll type. (patternsearch does not search if the selected search method is the same as the poll type.) Therefore, use a MADS search with a GSS or GPS poll, or use a GSS or GPS search with a MADS poll.

- fminsearch, also called Nelder-Mead — fminsearch is for unconstrained problems only. fminsearch runs to its natural stopping criteria; it does not take just one step. Therefore, use fminsearch for just one iteration. This is the default setting. To change settings, see “Search Options” on page 11-17.

- ga — ga runs to its natural stopping criteria; it does not take just one step. Therefore, use ga for just one iteration. This is the default setting. To change settings, see “Search Options” on page 11-17.

- Latin hypercube search — Described in “Search Options” on page 11-17. By default, searches 15n points, where n is the number of variables, and only searches during the first iteration. To change settings, see “Search Options” on page 11-17.

When to Use Search

There are two main reasons to use a search method:

- To speed an optimization (see “Search Methods for Increased Speed” on page 4-46)
- To obtain a better local solution, or to obtain a global solution on page 1-22 (see “Search Methods for Better Solutions” on page 4-46)

Search Methods for Increased Speed

Generally, you do not know beforehand whether a search method speeds an optimization or not. So try a search method when:

- You are performing repeated optimizations on similar problems, or on the same problem with different parameters.
- You can experiment with different search methods to find a lower solution time.

Search does not always speed an optimization. For one example where it does, see “Search and Poll” on page 4-49.

Search Methods for Better Solutions

Since search methods run before poll methods, using search can be equivalent to choosing a different starting point for your optimization. This comment holds for the Nelder-Mead, ga, and Latin hypercube search methods, all of which, by default, run once
at the beginning of an optimization. ga and Latin hypercube searches are stochastic, and can search through several basins of attraction on page 1-23.

See Also

More About
- “Search and Poll” on page 4-49
- “Polling Types” on page 4-73
- “Setting Solver Tolerances” on page 4-48
Setting Solver Tolerances

Tolerance refers to how small a parameter, such as a mesh size, can become before the search is halted or changed in some way. You can specify the value of the following tolerances using `optimoptions` or the Optimization app:

- **Mesh tolerance** — When the current mesh size is less than the value of Mesh tolerance, the algorithm halts.
- **X tolerance** — After a successful poll, if the distance from the previous best point to the current best point is less than the value of X tolerance, the algorithm halts.
- **Function tolerance** — After a successful poll, if the difference between the function value at the previous best point and function value at the current best point is less than the value of Function tolerance, the algorithm halts.
- **Nonlinear constraint tolerance** — The algorithm treats a point to be feasible if constraint violation is less than ConstraintTolerance.
- **Bind tolerance** — Bind tolerance applies to linearly constrained problems. It specifies how close a point must get to the boundary of the feasible region before a linear constraint is considered to be active. When a linear constraint is active, the pattern search polls points in directions parallel to the linear constraint boundary as well as the mesh points.

Usually, you should set Bind tolerance to be at least as large as the maximum of Mesh tolerance, X tolerance, and Function tolerance.

See Also

More About

- “Set Options” on page 4-70
- “How Pattern Search Polling Works” on page 4-30
Search and Poll

Using a Search Method

In addition to polling the mesh points, the pattern search algorithm can perform an optional step at every iteration, called search. At each iteration, the search step applies another optimization method to the current point. If this search does not improve the current point, the poll step is performed.

The following example illustrates the use of a search method on the problem described in “Linearly Constrained Problem” on page 4-97. To set up the example, enter the following commands at the MATLAB prompt to define the initial point and constraints.

```matlab
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
```

Then enter the settings shown in the following figures in the Optimization app.
For comparison, click **Start** to run the example without a search method. This displays the plots shown in the following figure.
To see the effect of using a search method, select **MADS Positive Basis 2N** in the **Search method** field in **Search** options.

This sets the search method to be a pattern search using the pattern for **MADS Positive Basis 2N**. Then click **Start** to run the pattern search. This displays the following plots.
Note that using the search method reduces the total function evaluations—from 1462 to 1256—and reduces the number of iterations from 106 to 97.

To run this problem using command-line functions:

```matlab
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
options = optimoptions('patternsearch','PlotFcns',{@psplotbestf,@psplotfcount});
[x,fval] = patternsearch(@lincontest7,x0,[],[],[],[],[],[],options);
```

Best Function Value: 1919.49
Total Function Evaluations: 1256
To use the MADS search method, change the `SearchFcn` option.

```matlab
options.SearchFcn = @MADSPositiveBasis2N;
[x,fval] = patternsearch(@lincontest7,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);
```

## Search Using a Different Solver

`patternsearch` takes a long time to minimize Rosenbrock's function. The function is
\[
f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.
\]

Rosenbrock's function is described and plotted in “Solve a Constrained Nonlinear Problem, Solver-Based” (Optimization Toolbox).

1. Create the objective function.
   ```matlab
dejong2fcn = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
```

2. Set `patternsearch` options to `MaxFunctionEvaluations` = 5000 and `MaxIterations` = 2000:
   ```matlab
 opts = optimoptions('patternsearch','MaxFunctionEvaluations',5000,'MaxIterations',2000);

 3. Run `patternsearch` starting from [-1.9 2]:
   ```matlab
   [x,feval,eflag,output] = patternsearch(dejong2fcn,...
                      [-1.9,2],[],[],[],[],[],[],[],opts);
   
   Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.

   `feval`

   ```matlab
 feval =
 0.8560
   ```

   The optimization did not complete, and the result is not very close to the optimal value of 0.

4. Set the options to use `fminsearch` as the search method:
   ```matlab
 opts = optimoptions('patternsearch',opts,'SearchFcn',@searchneldermead);

 5. Rerun the optimization, the results are much better:
   ```matlab
   [x2,feval2,eflag2,output2] = patternsearch(dejong2fcn,...
                      [-1.9,2],[],[],[],[],[],[],[],opts);
   
   Optimization terminated: mesh size less than options.MeshTolerance.
feval2
feval2 =
4.0686e-010

fminsearch is not as closely tied to coordinate directions as the default GPS
patternsearch poll method. Therefore, fminsearch is more efficient at getting close
to the minimum of Rosenbrock's function. Adding the search method in this case is
effective.

See Also

More About

• "Polling Types" on page 4-73
• "Vectorize the Objective and Constraint Functions" on page 4-111
Nonlinear Constraint Solver Algorithm

The pattern search algorithm uses the Augmented Lagrangian Pattern Search (ALPS) algorithm to solve nonlinear constraint problems. The optimization problem solved by the ALPS algorithm is

\[
\min_x f(x)
\]

such that

\[
c_i(x) \leq 0, \quad i = 1 \ldots m \\
ceq_i(x) = 0, \quad i = m + 1 \ldots mt \\
A \cdot x \leq b \\
Aeq \cdot x = beq \\
lb \leq x \leq ub,
\]

where \(c(x)\) represents the nonlinear inequality constraints, \(ceq(x)\) represents the equality constraints, \(m\) is the number of nonlinear inequality constraints, and \(mt\) is the total number of nonlinear constraints.

The ALPS algorithm attempts to solve a nonlinear optimization problem with nonlinear constraints, linear constraints, and bounds. In this approach, bounds and linear constraints are handled separately from nonlinear constraints. A subproblem is formulated by combining the objective function and nonlinear constraint function using the Lagrangian and the penalty parameters. A sequence of such optimization problems are approximately minimized using a pattern search algorithm such that the linear constraints and bounds are satisfied.

Each subproblem solution represents one iteration. The number of function evaluations per iteration is therefore much higher when using nonlinear constraints than otherwise.

A subproblem formulation is defined as

\[
\Theta(x, \lambda, s, \rho) = f(x) - \sum_{i=1}^{m} \lambda_i s_i \log(s_i - c_i(x)) + \sum_{i=m+1}^{mt} \lambda_i ceq_i(x) + \frac{\rho}{2} \sum_{i=m+1}^{mt} ceq_i(x)^2,
\]

where

- The components \(\lambda_i\) of the vector \(\lambda\) are nonnegative and are known as Lagrange multiplier estimates.
• The elements $s_i$ of the vector $s$ are nonnegative shifts
• $\rho$ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The pattern search minimizes a sequence of subproblems, each of which is an approximation of the original problem. Each subproblem has a fixed value of $\lambda$, $s$, and $\rho$. When the subproblem is minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This results in a new subproblem formulation and minimization problem. These steps are repeated until the stopping criteria are met.

Each subproblem solution represents one iteration. The number of function evaluations per iteration is therefore much higher when using nonlinear constraints than otherwise.

For a complete description of the algorithm, see the following references:

References


See Also

More About

• “Constrained Minimization Using Pattern Search”
• “Linear and Nonlinear Constrained Minimization Using patternsearch” on page 4-97
Custom Plot Function

In this section...

“About Custom Plot Functions” on page 4-58
“Creating the Custom Plot Function” on page 4-58
“Setting Up the Problem” on page 4-59
“Using the Custom Plot Function” on page 4-60
“How the Plot Function Works” on page 4-62

About Custom Plot Functions

To use a plot function other than those included with the software, you can write your own custom plot function that is called at each iteration of the pattern search to create the plot. This example shows how to create a plot function that displays the logarithmic change in the best objective function value from the previous iteration to the current iteration. More plot function details are available in “Plot Options” on page 11-34.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new function file in the MATLAB Editor:

```matlab
function stop = pspplotchange(optimvalues, flag)
% PSPLOTCHANGE Plots the change in the best objective function
% value from the previous iteration.

% Best objective function value in the previous iteration
persistent last_best

stop = false;
if(strcmp(flag,'init'))
 set(gca,'Yscale','log'); % Set up the plot
 hold on;
 xlabel('Iteration');
 ylabel('Log Change in Values');
 title(['Change in Best Function Value']);
end

% Best objective function value in the current iteration
best = min(optimvalues.fval);
% Set last_best to best
if optimvalues.iteration == 0
 last_best = best;
else
 last_best = best;
end

% Set stop to true if best is zero
stop = best == 0;
end
```

4-58
last_best = best;

else
    change = last_best - best;
    plot(optimvalues.iteration, change, '.r');
end

Then save the file as psplotchange.m in a folder on the MATLAB path.

**Setting Up the Problem**

The problem is the same as “Linearly Constrained Problem” on page 4-97. To set up the problem:

1. Enter the following at the MATLAB command line:

   ```matlab
 x0 = [2 1 0 9 1 0];
 Aineq = [-8 7 3 -4 9 0];
 bineq = 7;
 Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
 beq = [84 62 65 1];
 ``

2. Enter `optimtool` to open the Optimization app.

3. Choose the `patternsearch` solver.

4. Set up the problem to match the following figure.
5 Since this is a linearly constrained problem, set the **Poll method** to GSS Positive basis 2N.

Using the Custom Plot Function

To use the custom plot function, select **Custom function** in the **Plot functions** pane and enter `@psplotchange` in the field to the right. To compare the custom plot with the best function value plot, also select **Best function value**.

Now, when you run the example, pattern search displays the plots shown in the following figure.
Note that because the scale of the y-axis in the lower custom plot is logarithmic, the plot shows only changes that are greater than 0.

To run this problem using command-line functions:

```matlab
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
options = optimoptions('patternsearch',
    'PlotFcns',{@psplotbestf,@psplotchange},
    'PollMethod','GSSPositiveBasis2N');
```
[x,fval] = patternsearch(@lincontest7,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);

How the Plot Function Works

The plot function uses information contained in the following structures, which the Optimization app passes to the function as input arguments:

- **optimvalues** — Current state of the solver, a structure
- **flag** — Current status of the algorithm, a character vector

The most important statements of the custom plot function, `psplotchange.m`, are summarized in the following table.
Custom Plot Function Statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>persistent last_best</code></td>
<td>Creates the persistent variable <code>last_best</code>, the best objective function value in the previous generation. Persistent variables are preserved over multiple calls to the plot function.</td>
</tr>
<tr>
<td><code>set(gca,'Yscale','log')</code></td>
<td>Sets up the plot before the algorithm starts.</td>
</tr>
<tr>
<td><code>best = min(optimvalues.fval)</code></td>
<td>Sets <code>best</code> equal to the minimum objective function value. The field <code>optimvalues.fval</code> contains the objective function value in the current iteration. The variable <code>best</code> is the minimum objective function value. For a complete description of the fields of the structure <code>optimvalues</code>, see “Structure of the Plot Functions” on page 11-11.</td>
</tr>
<tr>
<td><code>change = last_best - best</code></td>
<td>Sets the variable <code>change</code> to the best objective function value at the previous iteration minus the best objective function value in the current iteration.</td>
</tr>
<tr>
<td><code>plot(optimvalues.iteration, change, '.r')</code></td>
<td>Plots the variable <code>change</code> at the current objective function value, for the current iteration contained in <code>optimvalues.iteration</code>.</td>
</tr>
</tbody>
</table>

See Also

More About

- “Plot Options” on page 11-34
Pattern Search Climbs Mount Washington

This example shows visually how pattern search optimizes a function. The function is the height of the terrain near Mount Washington, as a function of the x-y location. In order to find the top of Mount Washington, we minimize the objective function that is the negative of the height. (The Mount Washington in this example is the highest peak in the northeastern United States.)

The US Geological Survey provides data on the height of the terrain as a function of the x-y location on a grid. In order to be able to evaluate the height at an arbitrary point, the objective function interpolates the height from nearby grid points.

It would be faster, of course, to simply find the maximum value of the height as specified on the grid, using the max function. The point of this example is to show how the pattern search algorithm operates; it works on functions defined over continuous regions, not just grid points. Also, if it is computationally expensive to evaluate the objective function, then performing this evaluation on a complete grid, as required by the max function, will be much less efficient than using the pattern search algorithm, which samples a small subset of grid points.

How Pattern Search Works

Pattern search finds a local minimum of an objective function by the following method, called polling. In this description, words describing pattern search quantities are in bold. The search starts at an initial point, which is taken as the current point in the first step:

1. Generate a pattern of points, typically plus and minus the coordinate directions, times a mesh size, and center this pattern on the current point.

2. Evaluate the objective function at every point in the pattern.

3. If the minimum objective in the pattern is lower than the value at the current point, then the poll is successful, and the following happens:
 3a. The minimum point found becomes the current point.
 3b. The mesh size is doubled.
 3c. The algorithm proceeds to Step 1.

4. If the poll is not successful, then the following happens:
4a. The **mesh size** is halved.

4b. If the **mesh size** is below a threshold, the iterations stop.

4c. Otherwise, the **current point** is retained, and the algorithm proceeds at Step 1.

This simple algorithm, with some minor modifications, provides a robust and straightforward method for optimization. It requires no gradients of the objective function. It lends itself to constraints, too, but this example and description deal only with unconstrained problems.

Preparing the Pattern Search

To prepare the pattern search, load the data in `mtWashington.mat`, which contains the USGS data on a 472-by-345 grid. The elevation, Z, is given in feet. The vectors x and y contain the base values of the grid spacing in the east and north directions respectively. The data file also contains the starting point for the search, X0.

```matlab
load mtWashington
```

There are three MATLAB files that perform the calculation of the objective function, and the plotting routines. They are:

1. **terrainfun**, which evaluates the negative of height at any x-y position. `terrainfun` uses the MATLAB® function `interp2` to perform two-dimensional linear interpolation. It takes the Z data and enables evaluation of the negative of the height at all x-y points.

2. **psoutputwashington**, which draws a 3-d rendering of Mt. Washington. In addition, as the run progresses, it draws spheres around each point that is better (higher) than previously-visited points.

3. **psplotwashington**, which draws a contour map of Mt. Washington, and monitors a slider that controls the speed of the run. It shows where the pattern search algorithm looks for optima by drawing + signs at those points. It also draws spheres around each point that is better than previously-visited points.

In the example, `patternsearch` uses `terrainfun` as its objective function, `psoutputwashington` as an output function, and `psplotwashington` as a plot function. We prepare the functions to be passed to `patternsearch` in anonymous function syntax:
mtWashObjectiveFcn = @(xx) terrainfun(xx, x, y, Z);
mtWashOutputFcn = @(xx,arg1,arg2) psoutputwashington(xx,arg1,arg2, x, y, Z);
mtWashPlotFcn = @(xx,arg1) psplotwashington(xx,arg1, x, y, Z);

Pattern Search Options Settings

Next, we create options for pattern search. This set of options has the algorithm halt when the mesh size shrinks below 1, keeps the mesh unscaled (the same size in each direction), sets the initial mesh size to 10, and sets the output function and plot function:

```matlab
options = optimoptions(@patternsearch,'MeshTolerance',1,'ScaleMesh',false, ... 'InitialMeshSize',10,'UseCompletePoll',true,'PlotFcn',mtWashPlotFcn, ... 'OutputFcn',mtWashOutputFcn,'UseVectorized',true);
```

Observing the Progress of Pattern Search

When you run this example you see two windows. One shows the points the pattern search algorithm chooses on a two-dimensional contour map of Mount Washington. This window has a slider that controls the delay between iterations of the algorithm (when it returns to Step 1 in the description of how pattern search works). Set the slider to a low position to speed the run, or to a high position to slow the run.

The other window shows a three-dimensional plot of Mount Washington, along with the steps the pattern search algorithm makes. You can rotate this plot while the run progresses to get different views.

```matlab
[xfinal ffinal] = patternsearch(mtWashObjectiveFcn,X0,[],[],[],[],[], ... [],[],options)
```
Topography Map of White Mountains
Optimization terminated: mesh size less than options.MeshTolerance.

xfinal = 1x2

\[\begin{array}{cc}
316130 & 4904295 \\
\end{array} \]

ffinal = -6280

The final point, xfinal, shows where the pattern search algorithm finished; this is the x-y location of the top of Mount Washington. The final objective function, ff final, is the negative of the height of Mount Washington, 6280 feet. (This should be 6288 feet according to the Mount Washington Observatory).
Examine the files `terrainfun.m`, `psoutputwashington.m`, and `psplotwashington.m` to see how the interpolation and graphics work.

There are many options available for the pattern search algorithm. For example, the algorithm can take the first point it finds that is an improvement, rather than polling all the points in the pattern. It can poll the points in various orders. And it can use different patterns for the poll, both deterministic and random. Consult the Global Optimization Toolbox User's Guide for details.

See Also

More About

- “How Pattern Search Polling Works” on page 4-30
- “Custom Plot Function” on page 4-58
Set Options

In this section...

“Set Options Using optimoptions” on page 4-70
“Create Options and Problems Using the Optimization App” on page 4-72

Set Options Using optimoptions

You can specify any available patternsearch options by passing options as an input argument to patternsearch using the syntax

\[
[x,fval] = \text{patternsearch}(@fitnessfun,nvars, ... \nonlcon,options)
\]

Pass in empty brackets {} for any constraints that do not appear in the problem.

You create options using the function optimoptions.

\[
\text{options} = \text{optimoptions}(@\text{patternsearch})
\]

\[
\text{options} =
\begin{align*}
\text{patternsearch options:} \\
\text{Set properties:} \\
\text{No options set.} \\
\text{Default properties:} \\
\text{AccelerateMesh:} & 0 \\
\text{ConstraintTolerance:} & 1.0000e-06 \\
\text{Display:} & \text{'}final\text{'} \\
\text{FunctionTolerance:} & 1.0000e-06 \\
\text{InitialMeshSize:} & 1 \\
\text{MaxFunctionEvaluations:} & \text{'}2000*numberOfVariables\text{'} \\
\text{MaxIterations:} & \text{'}100*numberOfVariables\text{'} \\
\text{MaxTime:} & \text{Inf} \\
\text{MeshContractionFactor:} & 0.5000 \\
\text{MeshExpansionFactor:} & 2 \\
\text{MeshTolerance:} & 1.0000e-06 \\
\text{OutputFcn:} & [] \\
\text{PlotFcn:} & [] \\
\text{PollMethod:} & \text{'}GPSPositiveBasis2N\text{'}
\end{align*}
\]
The patternsearch function uses these default values if you do not pass in options as an input argument.

The value of each option is stored in a field of options, such as options.MeshExpansionFactor. You can display any of these values by entering options followed by the name of the field. For example, to display the mesh expansion factor for the pattern search, enter

```matlab
options.MeshExpansionFactor
```

```matlab
ans =
    2
```

To create options with a field value that is different from the default, use `optimoptions`. For example, to change the mesh expansion factor to 3 instead of its default value 2, enter

```matlab
options = optimoptions('patternsearch','MeshExpansionFactor',3);
```

This creates options with all values set to defaults except for `MeshExpansionFactor`, which is set to 3.

If you now call `patternsearch` with the argument `options`, the pattern search uses a mesh expansion factor of 3.

If you subsequently decide to change another field in options, such as setting PlotFcn to @psplotmeshsize, which plots the mesh size at each iteration, call `optimoptions` with the syntax

```matlab
options = optimoptions(options,'PlotFcn',@psplotmeshsize)
```

This preserves the current values of all fields of options except for PlotFcn, which is changed to @plotmeshsize. Note that if you omit the options input argument, `optimoptions` resets MeshExpansionFactor to its default value, which is 2.
You can also set both MeshExpansionFactor and PlotFcn with the single command

```matlab
options = optimoptions('patternsearch','MeshExpansionFactor',3,'PlotFcn',@psplotmeshsize)
```

Create Options and Problems Using the Optimization App

As an alternative to creating options using `optimoptions`, you can set the values of options in the Optimization app and then export the options to the MATLAB workspace, as described in “Importing and Exporting Your Work” (Optimization Toolbox). If you export the default options in the Optimization app, the resulting `options` has the same settings as the default options returned by the command

```matlab
options = optimoptions('patternsearch')
```

except for the default value of 'Display', which is 'final' when created by `optimoptions`, but 'none' when created in the Optimization app.

You can also export an entire problem from the Optimization app and run it from the command line. Enter

```matlab
patternsearch(problem)
```

where `problem` is the name of the exported problem.

See Also

`optimoptions` | `patternsearch`

More About

- “Pattern Search Options” on page 11-9
- “Importing and Exporting Your Work” (Optimization Toolbox)
Polling Types

Using a Complete Poll in a Generalized Pattern Search

As an example, consider the following function.

\[f(x_1, x_2) = \begin{cases} x_1^2 + x_2^2 - 25 & \text{for } x_1^2 + x_2^2 \leq 25 \\ x_1^2 + (x_2 - 9)^2 - 16 & \text{for } x_1^2 + (x_2 - 9)^2 \leq 16 \\ 0 & \text{otherwise.} \end{cases} \]

The following figure shows a plot of the function.
The global minimum of the function occurs at (0, 0), where its value is -25. However, the function also has a local minimum at (0, 9), where its value is -16.

To create a file that computes the function, copy and paste the following code into a new file in the MATLAB Editor:

```matlab
function z = poll_example(x)
    if x(1)^2 + x(2)^2 <= 25
        z = x(1)^2 + x(2)^2 - 25;
    elseif x(1)^2 + (x(2) - 9)^2 <= 16
        z = x(1)^2 + (x(2) - 9)^2 - 16;
    else
        z = 0;
    end

Then save the file as poll_example.m in a folder on the MATLAB path.

To run a pattern search on the function, enter the following in the Optimization app:
• Set Solver to patternsearch.
• Set Objective function to @poll_example.
• Set Start point to [0 5].
• Set Level of display to Iterative in the Display to command window options.

Click Start to run the pattern search with Complete poll set to Off, its default value.

Alternatively, to run this problem using command-line functions:

```matlab
options = optimoptions('patternsearch','Display','iter');
[x,fval] = patternsearch(@poll_example,[0,5],...]
 [],[],[],[],[],[],[],[],[],options);
```

The Optimization app displays the results in the Run solver and view results pane, as shown in the following figure.

![Optimization app](image)

The pattern search returns the local minimum at (0, 9). At the initial point, (0, 5), the objective function value is 0. At the first iteration, the search polls the following mesh points.

\[
\begin{align*}
f((0, 5) + (1, 0)) &= f(1, 5) = 0 \\
f((0, 5) + (0, 1)) &= f(0, 6) = -7
\end{align*}
\]

As soon as the search polls the mesh point (0, 6), at which the objective function value is less than at the initial point, it stops polling the current mesh and sets the current point.
at the next iteration to (0, 6). Consequently, the search moves toward the local minimum at (0, 9) at the first iteration. You see this by looking at the first two lines of the command line display.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-7</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
</tbody>
</table>

Note that the pattern search performs only two evaluations of the objective function at the first iteration, increasing the total function count from 1 to 3.

Next, set **Complete poll** to On and click **Start**. Alternatively, at the command line:

```matlab
options.UseCompletePoll = true;
[x,fval] = patternsearch(@poll_example,[0,5],...
 [],[],[],[],[],[],[],options);
```

The **Run solver and view results** pane displays the following results.

This time, the pattern search finds the global minimum at (0, 0). The difference between this run and the previous one is that with **Complete poll** set to On, at the first iteration the pattern search polls all four mesh points.

\[ f((0, 5)) + (1, 0)) = f(1, 5) = 0 \]
Because the last mesh point has the lowest objective function value, the pattern search selects it as the current point at the next iteration. The first two lines of the command-line display show this.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>-9</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
</tbody>
</table>

In this case, the objective function is evaluated four times at the first iteration. As a result, the pattern search moves toward the global minimum at (0, 0).

The following figure compares the sequence of points returned when Complete poll is set to Off with the sequence when Complete poll is On.
Compare the Efficiency of Poll Options

This example shows how several poll options interact in terms of iterations and total function evaluations. The main results are:

- GSS is more efficient than GPS or MADS for linearly constrained problems.
- Whether setting `UseCompletePoll` to `true` increases efficiency or decreases efficiency is unclear, although it affects the number of iterations.
- Similarly, whether having a $2N$ poll is more or less efficient than having an $Np1$ poll is also unclear. The most efficient poll is GSS Positive Basis $Np1$ with `Complete poll` set to on. The least efficient is MADS Positive Basis $Np1$ with `Complete poll` set to on.
Note The efficiency of an algorithm depends on the problem. GSS is efficient for linearly constrained problems. However, predicting the efficiency implications of the other poll options is difficult, as is knowing which poll type works best with other constraints.

Problem setup

The problem is the same as in “Performing a Pattern Search on the Example” on page 4-98. This linearly constrained problem uses the lincontest7 file that comes with the toolbox:

1 Enter the following into your MATLAB workspace:

\[ x_0 = [2 
1 
0 
9 
1 
0]; \]
\[ A_{ineq} = [-8 
7 
3 
-4 
9 
0]; \]
\[ b_{ineq} = 7; \]
\[ A_{eq} = [7 
1 
8 
3 
3 
3; 5 
0 
-5 
1 
-5 
8; -2 
-6 
7 
1 
1 
9; 1 
-1 
2 
-2 
3 
-3]; \]
\[ b_{eq} = [84 
62 
65 
1]; \]

2 Open the Optimization app by entering `optimtool` at the command line.

3 Choose the `patternsearch` solver.

4 Enter the problem and constraints as pictured.

5 Ensure that the Poll method is GPS Positive basis 2N.
Generate the Results

1. Run the optimization.

2. Choose File > Export to Workspace.

3. Export the results and name them gps2noff.
Set **Options > Poll > Complete poll** to on.

Run the optimization.

Export the result and name it **gps2non**.

Set **Options > Poll > Poll method** to **GPS Positive basis Np1** and set **Complete poll** to off.

Run the optimization.

Export the result and name it **gpsnp1off**.

Set **Complete poll** to on.

Run the optimization.

Export the result and name it **gpsnp1on**.

Continue in a like manner to create solution structures for the other poll methods with **Complete poll** set on and off: **gss2noff**, **gss2non**, **gssnp1off**, **gssnp1on**, **mads2noff**, **mads2non**, **madsnp1off**, and **madsnp1on**.

**Generate the Results at the Command Line**

Alternatively, you can generate the results described in “Generate the Results” on page 4-80 at the command line.
1. Set the initial options and objective function.

```matlab
options = optimoptions('patternsearch',...
 'PollMethod','GPSPositiveBasis2N',...
 'PollOrderAlgorithm','consecutive',...
 'UseCompletePoll',false);
fun = @lincontest7;
```

2. Run the optimization, naming the output structure outputgps2noff.

```matlab
[x,fval,exitflag,outputgps2noff] = patternsearch(fun,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);
```

3. Set options to use a complete poll.

```matlab
options.UseCompletePoll = true;
```

4. Run the optimization, naming the output structure outputgps2non.

```matlab
[x,fval,exitflag,outputgps2non] = patternsearch(fun,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);
```

5. Set options to use the 'GPSPositiveBasisNp1' poll method and not to use a complete poll.

```matlab
options.PollMethod = 'GPSPositiveBasisNp1';
options.UseCompletePoll = false;
```

6. Run the optimization, naming the output structure outputgps2np1off.

```matlab
[x,fval,exitflag,outputgps2np1off] = patternsearch(fun,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);
```

7. Continue in a like manner to create output structures for the other poll methods with UseCompletePoll set true and false: outputgss2noff, outputgss2non, outputgssnp1off, outputgssnp1on, outputmads2noff, outputmads2non, outputmadsnp1off, and outputmadsnp1on.

**Examine the Results**

You have the results of 12 optimization runs. The following table shows the efficiency of the runs, measured in total function counts and in iterations. Your MADS results could differ, since MADS is a stochastic algorithm.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Function Count</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS2N, complete poll off</td>
<td>1462</td>
<td>136</td>
</tr>
</tbody>
</table>
### Algorithm | Function Count | Iterations
--- | --- | ---
GPS2N, complete poll on | 1396 | 96
GPSNp1, complete poll off | 864 | 118
GPSNp1, complete poll on | 1007 | 104
GSS2N, complete poll off | 758 | 84
GSS2N, complete poll on | 889 | 74
GSSNp1, complete poll off | 533 | 94
GSSNp1, complete poll on | 491 | 70
MADS2N, complete poll off | 922 | 162
MADS2N, complete poll on | 2285 | 273
MADSNp1, complete poll off | 1155 | 201
MADSNp1, complete poll on | 1651 | 201

To obtain, say, the first row in the table, enter `gps2noff.output.funcCount` and `gps2noff.output.iterations`. You can also examine options in the Variables editor by double-clicking the options in the Workspace Browser, and then double-clicking the `output` structure.
Alternatively, if you ran the problems at the command line, you can access the data from the output structures.

```
[outputgps2noff.funccount, outputgps2noff.iterations]
```

```
ans =
 1462 136
```

The main results gleaned from the table are:
• Setting Complete poll to on generally lowers the number of iterations for GPS and GSS, but the change in number of function evaluations is unpredictable.
• Setting Complete poll to on does not necessarily change the number of iterations for MADS, but substantially increases the number of function evaluations.
• The most efficient algorithm/options settings, with efficiency meaning lowest function count:

1. GSS Positive basis Np1 with Complete poll set to on (function count 491)
2. GSS Positive basis Np1 with Complete poll set to off (function count 533)
3. GSS Positive basis 2N with Complete poll set to off (function count 758)
4. GSS Positive basis 2N with Complete poll set to on (function count 889)

The other poll methods had function counts exceeding 900.
• For this problem, the most efficient poll is GSS Positive Basis Np1 with Complete poll set to on, although the Complete poll setting makes only a small difference. The least efficient poll is MADS Positive Basis 2N with Complete poll set to on. In this case, the Complete poll setting makes a substantial difference.

See Also

More About
• “How Pattern Search Polling Works” on page 4-30
• “Searching and Polling” on page 4-43
• “Search and Poll” on page 4-49
Set Mesh Options

In this section...

“Mesh Expansion and Contraction” on page 4-86
“Mesh Accelerator” on page 4-93

Mesh Expansion and Contraction

The Expansion factor and Contraction factor options, in Mesh options, control how much the mesh size is expanded or contracted at each iteration. With the default Expansion factor value of 2, the pattern search multiplies the mesh size by 2 after each successful poll. With the default Contraction factor value of 0.5, the pattern search multiplies the mesh size by 0.5 after each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the pattern search by selecting Mesh size in the Plot functions pane. To also display the values of the mesh size and objective function at the command line, set Level of display to Iterative in the Display to command window options.

For example, set up the problem described in “Linearly Constrained Problem” on page 4-97 as follows:

1. Enter the following at the command line:

   ```matlab
 x0 = [2 1 0 9 1 0];
 Aineq = [-8 7 3 -4 9 0];
 bineq = 7;
 Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
 beq = [84 62 65 1];
   ```

2. Set up your problem in the Optimization app to match the following figures.
3 Run the optimization.

The Optimization app displays the following plot.
To run this problem at the command line, set options and run the problem as follows.

```matlab
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 3];
beq = [84 62 65 1];
options = optimoptions('patternsearch', ...
 'PollMethod','GSSPositiveBasis2N',...
 'PlotFcn',@psplotmeshsize,....
 'Display','iter');
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);
```
To see the changes in mesh size more clearly, change the y-axis to logarithmic scaling as follows:

1. Select **Axes Properties** from the **Edit** menu in the plot window.
2. In the Properties Editor, select the **Y Axis** tab.
3. Set **Scale** to **Log**.

Updating these settings in the MATLAB Property Editor shows the plot in the following figure.

The first 5 iterations result in successful polls, so the mesh sizes increase steadily during this time. You can see that the first unsuccessful poll occurs at iteration 6 by looking at the command-line display:

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2273.76</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2251.69</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2209.86</td>
<td>4</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2135.43</td>
<td>8</td>
<td>Successful Poll</td>
</tr>
</tbody>
</table>
Note that at iteration 5, which is successful, the mesh size doubles for the next iteration. But at iteration 6, which is unsuccessful, the mesh size is multiplied $0.5$.

To see how Expansion factor and Contraction factor affect the pattern search, make the following changes:

- Set Expansion factor to $3.0$.
- Set Contraction factor to $2/3$.

Then click Start. The Run solver and view results pane shows that the final point is approximately the same as with the default settings of Expansion factor and Contraction factor, but that the pattern search takes longer to reach that point.
Alternatively, at the command line:

```matlab
options.MeshExpansionFactor = 3;
options.MeshContractionFactor = 2/3;
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);
```

When you change the scaling of the y-axis to logarithmic, the mesh size plot appears as shown in the following figure.
Note that the mesh size increases faster with **Expansion factor** set to 3.0, as compared with the default value of 2.0, and decreases more slowly with **Contraction factor** set to 0.75, as compared with the default value of 0.5.

**Mesh Accelerator**

The mesh accelerator can make a pattern search converge faster to an optimal point by reducing the number of iterations required to reach the mesh tolerance. When the mesh size is below a certain value, the pattern search contracts the mesh size by a factor smaller than the **Contraction factor** factor. Mesh accelerator applies only to the GPS and GSS algorithms.

**Note** For best results, use the mesh accelerator for problems in which the objective function is not too steep near the optimal point, or you might lose some accuracy. For differentiable problems, this means that the absolute value of the derivative is not too large near the solution.
To use the mesh accelerator, set Accelerator to On in the Mesh options. Or, at the command line, set the AccelerateMesh option to true.

For example, set up the problem described in “Linearly Constrained Problem” on page 4-97 as follows:

1. Enter the following at the command line:

   ```
 x0 = [2 1 0 9 1 0];
 Aineq = [-8 7 3 -4 9 0];
 bineq = 7;
 Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
 beq = [84 62 65 1];
   ```

2. Set up your problem in the Optimization app to match the following figures.
3 Run the optimization.

Alternatively, at the command line enter

\[
x_0 = [2 \ 1 \ 0 \ 9 \ 1 \ 0];
A_{ineq} = [-8 \ 7 \ 3 \ -4 \ 9 \ 0];
b_{ineq} = 7;
A_{eq} = [7 \ 1 \ 8 \ 3 \ 3 \ 3; 5 \ 0 \ -5 \ 1 \ -5 \ 8; -2 \ -6 \ 7 \ 1 \ 1 \ 9; 1 \ -1 \ 2 \ -2 \ 3 \ -3];
b_{eq} = [84 \ 62 \ 65 \ 1];
\]

options = optimoptions('patternsearch',
    'PollMethod','GSSPositiveBasis2N',
    'Display','iter','AccelerateMesh',true);
\]

\[
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,\]
\[
    A_{ineq},b_{ineq},A_{eq},b_{eq},[],[],[],options);
\]

The number of iterations required to reach the mesh tolerance is 78, as compared with 84
when Accelerator is set to Off.

You can see the effect of the mesh accelerator by setting Level of display to Iterative
in Display to command window. Run the example with Accelerator set to On, and then
run it again with Accelerator set to Off. The mesh sizes are the same until iteration 70,
but differ at iteration 71. The MATLAB Command Window displays the following lines for iterations 70 and 71 with Accelerator set to Off.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>618</td>
<td>1919.54</td>
<td>6.104e-05</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>71</td>
<td>630</td>
<td>1919.54</td>
<td>3.052e-05</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>

Note that the mesh size is multiplied by 0.5, the default value of Contraction factor.

For comparison, the Command Window displays the following lines for the same iteration numbers with Accelerator set to On.

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>618</td>
<td>1919.54</td>
<td>6.104e-05</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>71</td>
<td>630</td>
<td>1919.54</td>
<td>1.526e-05</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>

In this case the mesh size is multiplied by 0.25.

See Also

More About

• “Effects of Some Pattern Search Options” on page 4-19
• “Pattern Search Options” on page 11-9
• “How Pattern Search Polling Works” on page 4-30
Linear and Nonlinear Constrained Minimization Using patternsearch

In this section...

“Linearly Constrained Problem” on page 4-97
“Nonlinearly Constrained Problem” on page 4-101

Linearly Constrained Problem

Problem Description

This section presents an example of performing a pattern search on a constrained minimization problem. The example minimizes the function

\[ F(x) = \frac{1}{2}x^T H x + f^T x, \]

where

\[
H = \begin{bmatrix}
36 & 17 & 19 & 12 & 8 & 15 \\
17 & 33 & 18 & 11 & 7 & 14 \\
19 & 18 & 43 & 13 & 8 & 16 \\
12 & 11 & 13 & 18 & 6 & 11 \\
8 & 7 & 8 & 6 & 9 & 8 \\
15 & 14 & 16 & 11 & 8 & 29
\end{bmatrix},
\]

\[ f = [20 \\ 15 \\ 21 \\ 18 \\ 29 \\ 24], \]

subject to the constraints

\[ A \cdot x \leq b, \]
\[ Aeq \cdot x = beq, \]

where
Performing a Pattern Search on the Example

To perform a pattern search on the example, first enter

`optimtool('patternsearch')`

to open the Optimization app, or enter `optimtool` and then choose `patternsearch` from the Solver menu. Then type the following function in the Objective function field:

@lincontest7

`lincontest7` is a file included in Global Optimization Toolbox software that computes the objective function for the example. Because the matrices and vectors defining the starting point and constraints are large, it is more convenient to set their values as variables in the MATLAB workspace first and then enter the variable names in the Optimization app. To do so, enter

\[
\begin{align*}
  x_0 &= [2 \ 1 \ 0 \ 9 \ 1 \ 0]; \\
  A_{\text{ineq}} &= [-8 \ 7 \ 3 \ -4 \ 9 \ 0]; \\
  b_{\text{ineq}} &= 7; \\
  A_{\text{eq}} &= [7 \ 1 \ 8 \ 3 \ 3 \ 3; \ 5 \ 0 \ -5 \ 1 \ -5 \ 8; \ -2 \ -6 \ 7 \ 1 \ 1 \ 9; \ 1 \ -1 \ 2 \ -2 \ 3 \ -3]; \\
  b_{\text{eq}} &= [84 \ 62 \ 65 \ 1];
\end{align*}
\]

Then, enter the following in the Optimization app:

- Set Start point to \( x_0 \).
- Set the following Linear inequalities:
  - Set \( A \) to \( A_{\text{ineq}} \).
  - Set \( b \) to \( b_{\text{ineq}} \).
  - Set \( A_{\text{eq}} \) to \( A_{\text{eq}} \).
  - Set \( b_{\text{eq}} \) to \( b_{\text{eq}} \).
The following figure shows these settings in the Optimization app.

Since this is a linearly constrained problem, set the **Poll method** to **GSS Positive basis 2N**. For more information about the efficiency of the GSS search methods for linearly constrained problems, see “Compare the Efficiency of Poll Options” on page 4-78.

Then click **Start** to run the pattern search. When the search is finished, the results are displayed in **Run solver and view results** pane, as shown in the following figure.
To run this problem using command-line functions:

```matlab
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
options = optimoptions('patternsearch',
 'PollMethod','GSSPositiveBasis2N');
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],options);
```

View the solution, objective function value, and number of function evaluations during the solution process.

```matlab
x,fval,output.funccount
x =
 8.5165 -6.1094 4.0989 1.2877 -4.2348 2.1812
fval =
```

4-100
1.9195e+03

ans =

  758

**Nonlinearly Constrained Problem**

Suppose you want to minimize the simple objective function of two variables $x_1$ and $x_2$,

$$
\min_{x} f(x) = (4 - 2.1x_1^2 - x_1^{4/3})x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2
$$

subject to the following nonlinear inequality constraints and bounds

\begin{align*}
  x_1x_2 + x_1 - x_2 + 1.5 & \leq 0 \quad \text{(nonlinear constraint)} \\
  10 - x_1x_2 & \leq 0 \quad \text{(nonlinear constraint)} \\
  0 & \leq x_1 \leq 1 \quad \text{(bound)} \\
  0 & \leq x_2 \leq 13 \quad \text{(bound)}
\end{align*}

Begin by creating the objective and constraint functions. First, create a file named `simple_objective.m` as follows:

```matlab
function y = simple_objective(x)
 y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;
end
```

The pattern search solver assumes the objective function will take one input $x$ where $x$ has as many elements as number of variables in the problem. The objective function computes the value of the function and returns that scalar value in its one return argument $y$.

Then create a file named `simple_constraint.m` containing the constraints:

```matlab
function [c, ceq] = simple_constraint(x)
 c = [1.5 + x(1)*x(2) + x(1) - x(2); \\
 -x(1)*x(2) + 10];
 ceq = [];
end
```

The pattern search solver assumes the constraint function will take one input $x$, where $x$ has as many elements as the number of variables in the problem. The constraint function computes the values of all the inequality and equality constraints and returns two vectors, $c$ and $ceq$, respectively.
Next, to minimize the objective function using the `patternsearch` function, you need to pass in a function handle to the objective function as well as specifying a start point as the second argument. Lower and upper bounds are provided as LB and UB respectively. In addition, you also need to pass a function handle to the nonlinear constraint function.

```matlab
ObjectiveFunction = @simple_objective;
X0 = [0 0]; % Starting point
LB = [0 0]; % Lower bound
UB = [1 13]; % Upper bound
ConstraintFunction = @simple_constraint;
[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],...
 LB,UB,ConstraintFunction)
```

Optimization terminated: mesh size less than options.MeshTolerance and constraint violation is less than options.ConstraintTolerance.

```matlab
x =
 0.8122 12.3122
fval =
 9.1324e+004
```

Next, plot the results. Create options using `optimoptions` that selects two plot functions. The first plot function `psplotbestf` plots the best objective function value at every iteration. The second plot function `psplotmaxconstr` plots the maximum constraint violation at every iteration.

```matlab
options = optimoptions('patternsearch','PlotFcn',{@psplotbestf,@psplotmaxconstr},'Display','iter');
[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],LB,UB,ConstraintFunction,options)
```

```
Max Func-count f(x) Constraint MeshSize Method
Iter 0 0 0 10 0.8919
 1 28 113580 0 0.001 Increase penalty
 2 105 91324 1.776e-07 1e-05 Increase penalty
 3 192 91324 1.185e-11 1e-07 Increase penalty
Optimization terminated: mesh size less than options.MeshTolerance and constraint violation is less than options.ConstraintTolerance.
```

```matlab
x =
 0.8122 12.3122
```
Best Objective Function Value and Maximum Constraint Violation at Each Iteration

See Also

More About
- “Constrained Minimization Using Pattern Search”
• “Effects of Some Pattern Search Options”
• “Optimize an ODE in Parallel” on page 4-116
Use Cache

Typically, at any given iteration of a pattern search, some of the mesh points might coincide with mesh points at previous iterations. By default, the pattern search recomputes the objective function at these mesh points even though it has already computed their values and found that they are not optimal. If computing the objective function takes a long time—say, several minutes—this can make the pattern search run significantly longer.

You can eliminate these redundant computations by using a cache, that is, by storing a history of the points that the pattern search has already visited. To do so, set Cache to On in Cache options. At each poll, the pattern search checks to see whether the current mesh point is within a specified tolerance, Tolerance, of a point in the cache. If so, the search does not compute the objective function for that point, but uses the cached function value and moves on to the next point.

**Note** When Cache is set to On, the pattern search might fail to identify a point in the current mesh that improves the objective function because it is within the specified tolerance of a point in the cache. As a result, the pattern search might run for more iterations with Cache set to On than with Cache set to Off. It is generally a good idea to keep the value of Tolerance very small, especially for highly nonlinear objective functions.

For example, set up the problem described in “Linearly Constrained Problem” on page 4-97 as follows:

1. Enter the following at the command line:

   ```
 x0 = [2 1 0 9 1 0];
 Aineq = [-8 7 3 -4 9 0];
 bineq = 7;
 Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
 beq = [84 62 65 1];
   ```

2. Set up your problem in the Optimization app to match the following figures.
Using Direct Search

Problem Setup and Results

Solver: patternsearch - Pattern Search

Objective function: @lincontest7
Start point: x0

Constraints:
Linear inequalities: A: Aineq b: bineq
Linear equalities: Aeq: Aeq beq: beq
Bounds: Lower: Upper:
Nonlinear constraint function:

Poll
Poll method: GSS Positive basis 2N
Complete poll: off
Polling order: Consecutive

Cache
Cache: off
3 Run the optimization.

After the pattern search finishes, the plots appear as shown in the following figure.
Note that the total function count is 758.

Now, set Cache to On and run the example again. This time, the plots appear as shown in the following figure.
This time, the total function count is reduced to 735.

To run this problem at the command line:

```matlab
x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
opts = optimoptions('patternsearch','PollMethod','GSSPositiveBasis2N',
 'PlotFcns',{@psplotbestf,@psplotfcount},'Display','none');
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
 Aineq,bineq,Aeq,beq,[],[],[],opts);
```
opts.Cache = 'on';
[x2,fval2,exitflag2,output2] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],opts);
[output.funccount,output2.funccount]

ans =

    758   735
Vectorize the Objective and Constraint Functions

**In this section...**

"Vectorize for Speed“ on page 4-111
"Vectorized Objective Function“ on page 4-111
"Vectorized Constraint Functions“ on page 4-114
"Example of Vectorized Objective and Constraints“ on page 4-114

**Vectorize for Speed**

Direct search often runs faster if you vectorize the objective and nonlinear constraint functions. This means your functions evaluate all the points in a poll or search pattern at once, with one function call, without having to loop through the points one at a time. Therefore, the option UseVectorized = true works only when UseCompletePoll or UseCompleteSearch is also set to true. However, when you set UseVectorized = true, patternsearch checks that the objective and any nonlinear constraint functions give outputs of the correct shape for vectorized calculations, regardless of the setting of the UseCompletePoll or UseCompleteSearch options.

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

**Note** Write your vectorized objective function or nonlinear constraint function to accept a matrix with an arbitrary number of points. patternsearch sometimes evaluates a single point even during a vectorized calculation.

**Vectorized Objective Function**

A vectorized objective function accepts a matrix as input and generates a vector of function values, where each function value corresponds to one row or column of the input matrix. patternsearch resolves the ambiguity in whether the rows or columns of the matrix represent the points of a pattern as follows. Suppose the input matrix has m rows and n columns:

- If the initial point x0 is a column vector of size m, the objective function takes each column of the matrix as a point in the pattern and returns a row vector of size n.
If the initial point \( x_0 \) is a row vector of size \( n \), the objective function takes each row of the matrix as a point in the pattern and returns a column vector of size \( m \).

If the initial point \( x_0 \) is a scalar, \texttt{patternsearch} assumes that \( x_0 \) is a row vector. Therefore, the input matrix has one column (\( n = 1 \), the input matrix is a vector), and each entry of the matrix represents one row for the objective function to evaluate. The output of the objective function in this case is a column vector of size \( m \).

Pictorially, the matrix and calculation are represented by the following figure.

---

**Structure of Vectorized Functions**

For example, suppose the objective function is
\[ f(x) = x_1^4 + x_2^4 - 4x_1^2 - 2x_2^2 + 3x_1 - x_2/2. \]

If the initial vector \( x_0 \) is a column vector, such as \([0;0]\), a function for vectorized evaluation is

function \( f = \text{vectorizedc}(x) \)

\[
f = x(1,:).^4 + x(2,:).^4 - 4*x(1,:).^2 - 2*x(2,:).^2 ...
+ 3*x(1,:). - 0.5*x(2,:);
\]

If the initial vector \( x_0 \) is a row vector, such as \([0,0]\), a function for vectorized evaluation is

function \( f = \text{vectorizedr}(x) \)

\[
f = x(:,1).^4 + x(:,2).^4 - 4*x(:,1).^2 - 2*x(:,2).^2 ...
+ 3*x(:,1). - 0.5*x(:,2);
\]

**Tip** If you want to use the same objective (fitness) function for both pattern search and genetic algorithm, write your function to have the points represented by row vectors, and write \( x_0 \) as a row vector. The genetic algorithm always takes individuals as the rows of a matrix. This was a design decision—the genetic algorithm does not require a user-supplied population, so needs to have a default format.

To minimize \( \text{vectorizedc} \), enter the following commands:

options=optimoptions('patternsearch','UseVectorized',true,'UseCompletePoll',true);

\[
x0=[0;0];
[x,fval]=patternsearch(@vectorizedc,x0,...
[],[],[],[],[],[],[],options)
\]

MATLAB returns the following output:

Optimization terminated: mesh size less than options.MeshTolerance.

\[
x =
   -1.5737
   1.0575
fval =
   -10.0088
\]
Vectorized Constraint Functions

Only nonlinear constraints need to be vectorized; bounds and linear constraints are handled automatically. If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

The same considerations hold for constraint functions as for objective functions: the initial point \( x_0 \) determines the type of points (row or column vectors) in the poll or search. If the initial point is a row vector of size \( k \), the matrix \( x \) passed to the constraint function has \( k \) columns. Similarly, if the initial point is a column vector of size \( k \), the matrix of poll or search points has \( k \) rows. The figure “Structure of Vectorized Functions” on page 4-112 may make this clear. If the initial point is a scalar, \text{patternsearch} assumes that it is a row vector.

Your nonlinear constraint function returns two matrices, one for inequality constraints, and one for equality constraints. Suppose there are \( n_c \) nonlinear inequality constraints and \( n_{ceq} \) nonlinear equality constraints. For row vector \( x_0 \), the constraint matrices have \( n_c \) and \( n_{ceq} \) columns respectively, and the number of rows is the same as in the input matrix. Similarly, for a column vector \( x_0 \), the constraint matrices have \( n_c \) and \( n_{ceq} \) rows respectively, and the number of columns is the same as in the input matrix. In figure “Structure of Vectorized Functions” on page 4-112, “Results” includes both \( n_c \) and \( n_{ceq} \).

Example of Vectorized Objective and Constraints

Suppose that the nonlinear constraints are

\[
\frac{x_1^2}{9} + \frac{x_2^2}{4} \leq 1 \text{ (the interior of an ellipse)},
\]

\[
x_2 \geq \cosh(x_1) - 1.
\]

Write a function for these constraints for row-form \( x_0 \) as follows:

```matlab
function [c ceq] = ellipsecosh(x)
c(:,1)=x(:,1).^2/9+x(:,2).^2/4-1;
c(:,2)=cosh(x(:,1))-x(:,2)-1;
ceq=[];
```

Minimize \text{vectorizedr} (defined in “Vectorized Objective Function” on page 4-111) subject to the constraints \text{ellipsecosh}:
x0=[0,0];
options = optimoptions('patternsearch','UseVectorized',true,'UseCompletePoll',true);
[x,fval] = patternsearch(@vectorizedr,x0,...
    [],[],[],[],[],[],@ellipsecosh,options)

MATLAB returns the following output:

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

x =
   -1.3516  1.0612

fval =
   -9.5394

See Also

More About

- “Optimize an ODE in Parallel” on page 4-116
- “Compute Objective Functions” on page 2-2
Optimize an ODE in Parallel

This example shows how to optimize parameters of an ODE.

It also shows how to avoid computing the objective and nonlinear constraint function twice when the ODE solution returns both. The example compares `patternsearch` and `ga` in terms of time to run the solver and the quality of the solutions.

You need a Parallel Computing Toolbox license to use parallel computing.

**Step 1. Define the problem.**

The problem is to change the position and angle of a cannon to fire a projectile as far as possible beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is too close to the wall, it has to fire at too steep an angle, and the projectile does not travel far enough. If the cannon is too far from the wall, the projectile does not travel far enough either.

Air resistance slows the projectile. The resisting force is proportional to the square of the velocity, with proportionality constant 0.02. Gravity acts on the projectile, accelerating it downward with constant 9.81 m/s². Therefore, the equations of motion for the trajectory \( x(t) \) are

\[
\frac{d^2 x(t)}{dt^2} = -0.02 \| v(t) \| v(t) - (0, 9.81),
\]

where \( v(t) = \frac{dx(t)}{dt} \).

The initial position \( x(0) \) and initial velocity \( xp(0) \) are 2-D vectors. However, the initial height \( x(0)(2) \) is 0, so the initial position depends only on the scalar \( x(0)(1) \). And the initial velocity \( xp(0) \) has magnitude 300 (the muzzle velocity), so depends only on the initial angle, a scalar. For an initial angle \( \theta \), \( xp(0) = 300 \cdot \cos(\theta), \sin(\theta) \). Therefore, the optimization problem depends only on two scalars, so it is a 2-D problem. Use the horizontal distance and the angle as the decision variables.

**Step 2. Formulate the ODE model.**

ODE solvers require you to formulate your model as a first-order system. Augment the trajectory vector \( (x_1(t), x_2(t)) \) with its time derivative \( (x'_1(t), x'_2(t)) \) to form a 4-D trajectory vector. In terms of this augmented vector, the differential equation becomes
\( \frac{d}{dt} x(t) = \begin{bmatrix} x_3(t) \\ x_4(t) \\ -.02 \| (x_3(t), x_4(t)) \| x_3(t) \\ -.02 \| (x_3(t), x_4(t)) \| x_4(t) - 9.81 \end{bmatrix} \).

Write the differential equation as a function file, and save it on your MATLAB path.

```matlab
function f = cannonfodder(t,x)

f = [x(3);x(4);x(3);x(4)]; % initial, gets f(1) and f(2) correct
nrm = norm(x(3:4)) * .02; % norm of the velocity times constant
f(3) = -x(3)*nrm; % horizontal acceleration
f(4) = -x(4)*nrm - 9.81; % vertical acceleration

Visualize the solution of the ODE starting 30 m from the wall at an angle of \(\frac{\pi}{3} \).
Code for generating the figure

```matlab
x0 = [-30;0;300*cos(pi/3);300*sin(pi/3)];
sol = ode45(@cannonfodder,[0,10],x0);
% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % interpolated x values
ys = deval(sol,t,2); % interpolated y values
plot(xs,ys)
hold on
plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
```

The problem is to find initial position $x_0(1)$ and initial angle $x_0(2)$ to maximize the distance from the wall the projectile lands. Because this is a maximization problem, minimize the negative of the distance (see “Maximizing vs. Minimizing” on page 2-6).

To use `patternsearch` to solve this problem, you must provide the objective, constraint, initial guess, and options.

These two files are the objective and constraint functions. Copy them to a folder on your MATLAB path.

```matlab
function f = cannonobjective(x)
    x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
    sol = ode45(@cannonfodder,[0,15],x0);
    % Find the time t when y_2(t) = 0
    zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
    % Then find the x-position at that time
    f = deval(sol,zerofnd,1);
    f = -f; % take negative of distance for maximization
end
```

```matlab
function [c,ceq] = cannonconstraint(x)
    ceq = [];
    x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
    sol = ode45(@cannonfodder,[0,15],x0);
    if sol.y(1,end) <= 0 % projectile never reaches wall
        c = 20 - sol.y(2,end);
    else
        % Find when the projectile crosses x = 0
        zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);
        % Then find the height there, and subtract from 20
        c = 20 - deval(sol,zerofnd,2);
    end
end
```
Notice that the objective and constraint functions set their input variable \(x_0 \) to a 4-D initial point for the ODE solver. The ODE solver does not stop if the projectile hits the wall. Instead, the constraint function simply becomes positive, indicating an infeasible initial value.

The initial position \(x_0(1) \) cannot be above 0, and it is futile to have it be below −200. (It should be near −20 because, with no air resistance, the longest trajectory would start at −20 at an angle \(\pi/4 \).) Similarly, the initial angle \(x_0(2) \) cannot be below 0, and cannot be above \(\pi/2 \). Set bounds slightly away from these initial values:

\[
\begin{align*}
lb &= [-200;0.05]; \\
ub &= [-1;\pi/2-.05]; \\
x0 &= [-30,\pi/3]; & \text{initial guess}
\end{align*}
\]

Set the `UseCompletePoll` option to `true`. This gives a higher-quality solution, and enables direct comparison with parallel processing, because computing in parallel requires this setting.

\[
\text{opts} = \text{optimoptions('patternsearch','UseCompletePoll',true)};
\]

Call `patternsearch` to solve the problem.

\[
\text{tic} \quad \% \text{time the solution}
[xsolution,distance,eflag,outpt] = \text{patternsearch(@cannonobjective,x0,...}
\quad [],[],[],[],lb,ub,@cannonconstraint,opts)
\text{toc}
\]

Optimization terminated: mesh size less than options.MeshTolerance and constraint violation is less than options.ConstraintTolerance.

\[
\begin{align*}
xsolution &= -28.8123 \quad 0.6095 \\
distance &= -125.9880 \\
eflag &= 1 \\
outpt &= \\
&\quad \text{function: @cannonobjective} \\
&\quad \text{problemtype: 'nonlinearconstr'} \\
&\quad \text{pollmethod: 'gpspositivebasis2n'} \\
&\quad \text{maxconstraint: 0}
\end{align*}
\]
Elaboration on the optimization process and the interaction of ODEs in Computational Physics.
Step 4. Avoid calling the expensive subroutine twice.

Both the objective and nonlinear constraint function call the ODE solver to calculate their values. Use the technique in “Objective and Nonlinear Constraints in the Same Function” (Optimization Toolbox) to avoid calling the solver twice. The `runcannon` file implements this technique. Copy this file to a folder on your MATLAB path.

```matlab
function [x,f,eflag,outpt] = runcannon(x0,opts)

if nargin == 1 % No options supplied
    opts = [];
end

xLast = []; % Last place ode solver was called
```

4-122
sol = [];
% ODE solution structure

fun = @objfun; % the objective function, nested below
cfun = @constr; % the constraint function, nested below

lb = [-200;0.05];
ub = [-1;pi/2-.05];

% Call patternsearch
[x,f,eflag,outpt] = patternsearch(fun,x0,[],[],[],[],lb,ub,cfun,opts);

function y = objfun(x)
 if ~isequal(x,xLast) % Check if computation is necessary
 x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
 sol = ode45(@cannonfodder,[0,15],x0);
 xLast = x;
 end
 % Now compute objective function
 % First find when the projectile hits the ground
 zeroofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
 % Then compute the x-position at that time
 y = deval(sol,zeroofnd,1);
 y = -y; % take negative of distance
end

function [c,ceq] = constr(x)
 ceq = [];
 if ~isequal(x,xLast) % Check if computation is necessary
 x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
 sol = ode45(@cannonfodder,[0,15],x0);
 xLast = x;
 end
 % Now compute constraint functions
 % First find when the projectile crosses x = 0
 zeroofnd = fzero(@(r)deval(sol,r,1),[sol.x(1),sol.x(end)]);
 % Then find the height there, and subtract from 20
 c = 20 - deval(sol,zeroofnd,2);
end

Reinitialize the problem and time the call to runcannon.

x0 = [-30;pi/3];
tic
[xsolution, distance, eflag, outpt] = runcannon(x0, opts);
toc

Elapsed time is 2.610590 seconds.

The solver ran faster than before. If you examine the solution, you see that the output is identical.

Step 5. Compute in parallel.

Try to save more time by computing in parallel. Begin by opening a parallel pool of workers.

parpool

Starting parpool using the 'local' profile ... connected to 4 workers.

ans =

Pool with properties:

Connected: true
NumWorkers: 4
 Cluster: local
AttachedFiles: {}
IdleTimeout: 30 minute(s) (30 minutes remaining)
SpmdEnabled: true

Set the options to use parallel computing, and rerun the solver.

opts = optimoptions('patternsearch', opts, 'UseParallel', true);
x0 = [-30; pi/3];
tic
[xsolution, distance, eflag, outpt] = runcannon(x0, opts);
toc

Elapsed time is 3.917971 seconds.

In this case, parallel computing was slower. If you examine the solution, you see that the output is identical.

Step 6. Compare with the genetic algorithm.

You can also try to solve the problem using the genetic algorithm. However, the genetic algorithm is usually slower and less reliable.
The `runcannonga` file calls the genetic algorithm and avoids double evaluation of the ODE solver. It resembles `runcannon`, but calls `ga` instead of `patternsearch`, and also checks whether the trajectory reaches the wall. Copy this file to a folder on your MATLAB path.

```matlab
function [x,f,eflag,outpt] = runcannonga(opts)

    if nargin == 1 % No options supplied
        opts = []; end
    xLast = []; % Last place ode solver was called
    sol = []; % ODE solution structure
    fun = @objfun; % the objective function, nested below
    cfun = @constr; % the constraint function, nested below
    lb = [-200;0.05];
    ub = [-1;pi/2-.05];
    % Call ga
    [x,f,eflag,outpt] = ga(fun,2,[],[],[],[],lb,ub,cfun,opts);

    function y = objfun(x)
        if ~isequal(x,xLast) % Check if computation is necessary
            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
            sol = ode45(@cannonfodder,[0,15],x0);
            xLast = x;
        end
        % Now compute objective function
        % First find when the projectile hits the ground
        zeroFnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
        % Then compute the x-position at that time
        y = deval(sol,zeroFnd,1);
        y = -y; % take negative of distance
    end

    function [c,ceq] = constr(x)
        ceq = [];
        if ~isequal(x,xLast) % Check if computation is necessary
            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
            sol = ode45(@cannonfodder,[0,15],x0);
            xLast = x;
        end
```

Optimize an ODE in Parallel
% Now compute constraint functions
if sol.y(1,end) <= 0 % projectile never reaches wall
 c = 20 - sol.y(2,end);
else
 % Find when the projectile crosses x = 0
 zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);
 % Then find the height there, and subtract from 20
 c = 20 - deval(sol,zerofnd,2);
end
end

Call runcannonga in parallel.

opts = optimoptions('ga','UseParallel',true);
rng default % for reproducibility
tic
[xsolution,distance,eflag,outpt] = runcannonga(opts)
toc

Optimization terminated: average change in the fitness value less than
options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance.

xsolution =
 -17.9172 0.8417

distance =
 -116.6263
eflag =
 1

outpt =
 problemtype: 'nonlinearconstr'
 rngstate: [1x1 struct]
 generations: 5
 funccount: 20212
 message: [1x140 char]
 maxconstraint: 0

Elapsed time is 119.630284 seconds.
The ga solution is not as good as the patternsearch solution: 117 m versus 126 m. ga took much more time: about 120 s versus under 5 s.

See Also

Related Examples
• “Objective and Nonlinear Constraints in the Same Function” (Optimization Toolbox)

More About
• “Parallel Computing”
• “Surrogate Optimization with Nonlinear Constraint” on page 7-44
Optimization of Stochastic Objective Function

This example shows how to find a minimum of a stochastic objective function using patternsearch. It also shows how Optimization Toolbox™ solvers are not suitable for this type of problem. The example uses a simple 2-dimensional objective function that is then perturbed by noise.

Initialization

X0 = [2.5 -2.5]; % Starting point.
LB = [-5 -5]; % Lower bound
UB = [5 5]; % Upper bound
range = [LB(1) UB(1); LB(2) UB(2)];
Objfcn = @smoothFcn; % Handle to the objective function.
% Plot the smooth objective function
fig = figure('Color','w');
showSmoothFcn(Objfcn,range);
hold on;
title('Smooth objective function');
ph = [];
ph(1) = plot3(X0(1),X0(2),Objfcn(X0)+30,'or','MarkerSize',10,'MarkerFaceColor','r');
hold off;
ax = gca;
ax.CameraPosition = [-31.0391 -85.2792 -281.4265];
ax.CameraTarget = [0 0 -50];
ax.CameraViewAngle = 6.7937;
% Add legend information
legendLabels = {'Start point'};
lh = legend(ph,legendLabels,'Location','SouthEast');
lp = lh.Position;
lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];
Run `fmincon` on a Smooth Objective Function

The objective function is smooth (twice continuously differentiable). Solve the optimization problem using the Optimization Toolbox `fmincon` solver. `fmincon` finds a constrained minimum of a function of several variables. This function has a unique minimum at the point \(x^* = [-5, -5] \) where it has a value \(f(x^*) = -250 \).

Set options to return iterative display.

```matlab
options = optimoptions(@fmincon,'Algorithm','interior-point','Display','iter');
[Xop,Fop] = fmincon(Objfcn,X0,[],[],[],[],LB,UB,[],options);
figure(fig);
hold on;
```
<table>
<thead>
<tr>
<th>Iter</th>
<th>F-count</th>
<th>f(x)</th>
<th>Feasibility</th>
<th>First-order optimality</th>
<th>Norm of step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>-1.062500e+01</td>
<td>0.000e+00</td>
<td>2.004e+01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-1.578420e+02</td>
<td>0.000e+00</td>
<td>5.478e+01</td>
<td>6.734e+00</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>-2.491310e+02</td>
<td>0.000e+00</td>
<td>6.672e+01</td>
<td>1.236e+00</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>-2.497554e+02</td>
<td>0.000e+00</td>
<td>2.397e-01</td>
<td>6.310e-03</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>-2.499986e+02</td>
<td>0.000e+00</td>
<td>5.065e-02</td>
<td>8.016e-03</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>-2.499996e+02</td>
<td>0.000e+00</td>
<td>9.594e-05</td>
<td>3.367e-05</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>-2.500000e+02</td>
<td>0.000e+00</td>
<td>1.509e-04</td>
<td>6.867e-06</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>-2.500000e+02</td>
<td>0.000e+00</td>
<td>7.789e-07</td>
<td>6.920e-08</td>
</tr>
</tbody>
</table>

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

Xop =

-5.0000 -5.0000

Fop =

-250.0000

Plot the final point

```
ph(2) = plot3(Xop(1),Xop(2),Fop,'dm','MarkerSize',10,'MarkerFaceColor','m');
% Add a legend to plot
legendLabels = [legendLabels, 'fmincon solution'];
lh = legend(ph,legendLabels,'Location','SouthEast');
lp = lh.Position;
lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];
hold off;
```
Stochastic Objective Function

Now perturb the objective function by adding random noise.

```matlab
rng(0,'twister') % Reset the global random number generator
peaknoise = 4.5;
Objfcn = @(x) smoothFcn(x,peaknoise); % Handle to the objective function.
% Plot the objective function (non-smooth)
fig = figure('Color','w');
showSmoothFcn(Objfcn,range);
title('Stochastic objective function')
ax = gca;
ax.CameraPosition = [-31.0391  -85.2792 -281.4265];
```
Run `fmincon` on a Stochastic Objective Function

The perturbed objective function is stochastic and not smooth. `fmincon` is a general constrained optimization solver which finds a local minimum using derivatives of the objective function. If you do not provide the first derivatives of the objective function, `fmincon` uses finite differences to approximate the derivatives. In this example, the objective function is random, so finite difference estimates derivatives hence can be unreliable. `fmincon` can potentially stop at a point that is not a minimum. This may happen because the optimal conditions seems to be satisfied at the final point because of noise, or `fmincon` could not make further progress.
[Xop,Fop] = fmincon(Objfcn,X0,[],[],[],[],LB,UB,[],options)
figure(fig);
hold on;
ph = [];
ph(1) = plot3(X0(1),X0(2),Objfcn(X0)+30,'or','MarkerSize',10,'MarkerFaceColor','r');
ph(2) = plot3(Xop(1),Xop(2),Fop,'dm','MarkerSize',10,'MarkerFaceColor','m');
% Add legend to plot
legendLabels = {'Start point','|fmincon| solution'};
lh = legend(ph,legendLabels,'Location','SouthEast');
lp = lh.Position;
lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];
hold off;

Iter F-count f(x) Feasibility optimality step
 0 3 -1.925772e+01 0.000e+00 2.126e+08
 1 6 -7.107849e+01 0.000e+00 2.623e+08 8.873e+00
 2 11 -8.055890e+01 0.000e+00 2.401e+08 6.715e-01
 3 20 -8.325315e+01 0.000e+00 7.348e+07 3.047e-01
 4 48 -8.366302e+01 0.000e+00 1.762e+08 1.593e-07
 5 64 -8.591081e+01 0.000e+00 1.569e+08 3.111e-10

Local minimum possible. Constraints satisfied.
fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Xop =
 -4.9628 2.6673

Fop =
 -85.9108
Run \texttt{patternsearch}

Now minimize the stochastic objective function using the Global Optimization Toolbox \texttt{patternsearch} solver. Pattern search optimization techniques are a class of direct search methods for optimization. A pattern search algorithm does not use derivatives of the objective function to find an optimal point.

\begin{verbatim}
PSoptions = optimoptions(@patternsearch,'Display','iter');
[Xps,Fps] = patternsearch(Objfcn,X0,[],[],[],[],LB,UB,PSoptions)
figure(fig);
hold on;
ph(3) = plot3(Xps(1),Xps(2),Fps,'dc','MarkerSize',10,'MarkerFaceColor','c');
% Add legend to plot
legendLabels = [legendLabels, 'Pattern Search solution'];
\end{verbatim}
\texttt{lh = legend(ph,legendLabels,'Location','SouthEast');}
\texttt{lp = lh.Position;}
\texttt{lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];}
\texttt{hold off}

\begin{verbatim}
<table>
<thead>
<tr>
<th>Iter</th>
<th>Func-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-7.20766</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-34.7227</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-34.7227</td>
<td>1</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>-34.7227</td>
<td>0.5</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>-96.0847</td>
<td>1</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>-96.0847</td>
<td>0.5</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>-132.888</td>
<td>1</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>-132.888</td>
<td>0.5</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>-132.888</td>
<td>0.25</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>-197.689</td>
<td>0.5</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>-197.689</td>
<td>0.25</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>-197.689</td>
<td>0.125</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>-241.344</td>
<td>0.25</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>-241.344</td>
<td>0.125</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
<td>-241.344</td>
<td>0.0625</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>15</td>
<td>36</td>
<td>-241.344</td>
<td>0.03125</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>16</td>
<td>39</td>
<td>-241.344</td>
<td>0.01563</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>17</td>
<td>42</td>
<td>-242.761</td>
<td>0.03125</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>18</td>
<td>45</td>
<td>-242.761</td>
<td>0.01563</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>19</td>
<td>48</td>
<td>-242.761</td>
<td>0.007813</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>20</td>
<td>51</td>
<td>-242.761</td>
<td>0.003906</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>21</td>
<td>55</td>
<td>-242.761</td>
<td>0.001953</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>22</td>
<td>59</td>
<td>-242.761</td>
<td>0.0009766</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>23</td>
<td>63</td>
<td>-242.761</td>
<td>0.0004883</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>24</td>
<td>67</td>
<td>-242.761</td>
<td>0.0002441</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>25</td>
<td>71</td>
<td>-242.761</td>
<td>0.0001221</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>26</td>
<td>75</td>
<td>-242.761</td>
<td>6.104e-05</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>27</td>
<td>79</td>
<td>-242.761</td>
<td>3.052e-05</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>28</td>
<td>83</td>
<td>-242.761</td>
<td>1.526e-05</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>29</td>
<td>87</td>
<td>-242.761</td>
<td>7.629e-06</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>30</td>
<td>91</td>
<td>-242.761</td>
<td>3.815e-06</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>31</td>
<td>95</td>
<td>-242.761</td>
<td>1.907e-06</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>32</td>
<td>99</td>
<td>-242.761</td>
<td>9.537e-07</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>
\end{verbatim}

Optimization terminated: mesh size less than options.MeshTolerance.
Pattern search is not as strongly affected by random noise in the objective function. Pattern search requires only function values and not the derivatives, hence noise (of some uniform kind) may not affect it. However, pattern search requires more function
evaluation to find the true minimum than derivative based algorithms, a cost for not using the derivatives.

See Also

More About

- “Global Optimization Toolbox Solver Characteristics” on page 1-31
Using the Genetic Algorithm

- “What Is the Genetic Algorithm?” on page 5-3
- “Minimize Rastrigin's Function” on page 5-5
- “Genetic Algorithm Terminology” on page 5-15
- “How the Genetic Algorithm Works” on page 5-18
- “Coding and Minimizing a Fitness Function Using the Genetic Algorithm” on page 5-28
- “Constrained Minimization Using the Genetic Algorithm” on page 5-34
- “Genetic Algorithm Options” on page 5-40
- “Mixed Integer Optimization” on page 5-50
- “Solving a Mixed Integer Engineering Design Problem Using the Genetic Algorithm” on page 5-60
- “Nonlinear Constraint Solver Algorithms” on page 5-72
- “Create Custom Plot Function” on page 5-75
- “Reproduce Results in Optimization App” on page 5-80
- “Resume ga” on page 5-81
- “Options and Outputs” on page 5-87
- “Use Exported Options and Problems” on page 5-90
- “Reproduce Results” on page 5-92
- “Run ga from a File” on page 5-94
- “Population Diversity” on page 5-97
- “Fitness Scaling” on page 5-108
- “Vary Mutation and Crossover” on page 5-112
- “Global vs. Local Minima Using ga” on page 5-122
- “Hybrid Scheme in the Genetic Algorithm” on page 5-130
- “Set Maximum Number of Generations” on page 5-136
- “Vectorize the Fitness Function” on page 5-139
• “Nonlinear Constraints Using ga” on page 5-141
• “Custom Output Function for Genetic Algorithm” on page 5-146
• “Custom Data Type Optimization Using the Genetic Algorithm” on page 5-151
• “When to Use a Hybrid Function” on page 5-161
What Is the Genetic Algorithm?

The genetic algorithm is a method for solving both constrained and unconstrained optimization problems that is based on natural selection, the process that drives biological evolution. The genetic algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm selects individuals at random from the current population to be parents and uses them to produce the children for the next generation. Over successive generations, the population "evolves" toward an optimal solution. You can apply the genetic algorithm to solve a variety of optimization problems that are not well suited for standard optimization algorithms, including problems in which the objective function is discontinuous, nondifferentiable, stochastic, or highly nonlinear. The genetic algorithm can address problems of mixed integer programming, where some components are restricted to be integer-valued.

The genetic algorithm uses three main types of rules at each step to create the next generation from the current population:

- *Selection rules* select the individuals, called *parents*, that contribute to the population at the next generation.
- *Crossover rules* combine two parents to form children for the next generation.
- *Mutation rules* apply random changes to individual parents to form children.

The genetic algorithm differs from a classical, derivative-based, optimization algorithm in two main ways, as summarized in the following table.

<table>
<thead>
<tr>
<th>Classical Algorithm</th>
<th>Genetic Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generates a single point at each iteration. The sequence of points approaches an optimal solution.</td>
<td>Generates a population of points at each iteration. The best point in the population approaches an optimal solution.</td>
</tr>
<tr>
<td>Selects the next point in the sequence by a deterministic computation.</td>
<td>Selects the next population by computation which uses random number generators.</td>
</tr>
</tbody>
</table>

See Also

More About

- “Genetic Algorithm Terminology” on page 5-15
• “How the Genetic Algorithm Works” on page 5-18
• “Nonlinear Constraint Solver Algorithms” on page 5-72
Minimize Rastrigin's Function

In this section...

“Rastrigin's Function” on page 5-5
“Finding the Minimum of RastrIGIN's Function” on page 5-7
“Finding the Minimum from the Command Line” on page 5-9
“Displaying Plots” on page 5-10

Rastrigin's Function

This section presents an example that shows how to find the minimum of Rastrigin's function, a function that is often used to test the genetic algorithm.

For two independent variables, Rastrigin's function is defined as

\[Ras(x) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2) \]

Global Optimization Toolbox software contains the `rastriginsfcn.m` file, which computes the values of Rastrigin's function. The following figure shows a plot of Rastrigin's function.
As the plot shows, Rastrigin's function has many local minima—the “valleys” in the plot. However, the function has just one global minimum, which occurs at the point [0 0] in the x-y plane, as indicated by the vertical line in the plot, where the value of the function is 0. At any local minimum other than [0 0], the value of Rastrigin's function is greater than 0. The farther the local minimum is from the origin, the larger the value of the function is at that point.

Rastrigin's function is often used to test the genetic algorithm, because its many local minima make it difficult for standard, gradient-based methods to find the global minimum.

The following contour plot of Rastrigin's function shows the alternating maxima and minima.
Finding the Minimum of Rastrigin's Function

This section explains how to find the minimum of Rastrigin's function using the genetic algorithm.

Note Because the genetic algorithm uses random number generators, the algorithm returns slightly different results each time you run it.

To find the minimum, do the following steps:

1. Enter `optimtool('ga')` at the command line to open the Optimization app.
2. Enter the following in the Optimization app:
• In the **Fitness function** field, enter `@rastriginsfcn`.

• In the **Number of variables** field, enter 2, the number of independent variables for Rastrigin's function.

The **Fitness function** and **Number of variables** fields should appear as shown in the following figure.

3 Click the **Start** button in the **Run solver and view results** pane, as shown in the following figure.

While the algorithm is running, the **Current iteration** field displays the number of the current generation. You can temporarily pause the algorithm by clicking the **Pause** button. When you do so, the button name changes to **Resume**. To resume the algorithm from the point at which you paused it, click **Resume**.

When the algorithm is finished, the **Run solver and view results** pane appears as shown in the following figure. Your numerical results might differ from those in the figure, since **ga** is stochastic.
The display shows:

• The final value of the fitness function when the algorithm terminated:

 Objective function value: 5.550533778020394E-4

Note that the value shown is very close to the actual minimum value of Rastrigin's function, which is 0. “Setting the Initial Range” on page 5-97, “Setting the Amount of Mutation” on page 5-112, and “Set Maximum Number of Generations” on page 5-136 describe some ways to get a result that is closer to the actual minimum.

• The reason the algorithm terminated.

 Optimization terminated: maximum number of generations exceeded.

• The final point, which in this example is [-0.002 -0.001].

Finding the Minimum from the Command Line

To find the minimum of Rastrigin's function from the command line, enter

```matlab
rng(1,'twister') % for reproducibility
[x,fval,exitflag] = ga(@rastriginsfcn,2)
```

This returns

Optimization terminated:
 average change in the fitness value less than options.FunctionTolerance.
\[
\begin{align*}
\mathbf{x} &= \begin{bmatrix} -1.0421 \end{bmatrix} \quad -1.0018 \\
\text{fval} &= 2.4385 \\
\text{exitflag} &= 1
\end{align*}
\]

- \(\mathbf{x} \) is the final point returned by the algorithm.
- \(\text{fval} \) is the fitness function value at the final point.
- \(\text{exitflag} \) is integer value corresponding to the reason that the algorithm terminated.

Note Because the genetic algorithm uses random number generators, the algorithm returns slightly different results each time you run it.

Displaying Plots

The Optimization app **Plot functions** pane enables you to display various plots that provide information about the genetic algorithm while it is running. This information can help you change options to improve the performance of the algorithm. For example, to plot the best and mean values of the fitness function at each generation, select the box next to **Best fitness**, as shown in the following figure.
When you click **Start**, the Optimization app displays a plot of the best and mean values of the fitness function at each generation.

Try this on “Minimize Rastrigin's Function“ on page 5-5:

When the algorithm stops, the plot appears as shown in the following figure.
The points at the bottom of the plot denote the best fitness values, while the points above them denote the averages of the fitness values in each generation. The plot also displays the best and mean values in the current generation numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you can change the scaling of the y-axis in the plot to logarithmic scaling. To do so,

1. Select **Axes Properties** from the **Edit** menu in the plot window to open the Property Editor attached to your figure window as shown below.

2. Click the **Y Axis** tab.

3. In the **Y Scale** pane, select **Log**.

 The plot now appears as shown in the following figure.
Typically, the best fitness value improves rapidly in the early generations, when the individuals are farther from the optimum. The best fitness value improves more slowly in later generations, whose populations are closer to the optimal point.

Note When you display more than one plot, you can open a larger version of a plot in a separate window. Right-click (\texttt{Ctrl}-click for macOS) on a blank area in a plot while \texttt{ga} is running, or after it has stopped, and choose the sole menu item.

“Plot Options” on page 11-34 describes the types of plots you can create.
See Also

More About

• “Constrained Minimization Using the Genetic Algorithm”
• “Genetic Algorithm Options”
• “Nonlinear Constraints Using ga” on page 5-141
Genetic Algorithm Terminology

In this section...

"Fitness Functions" on page 5-15
"Individuals" on page 5-15
"Populations and Generations" on page 5-15
"Diversity" on page 5-16
"Fitness Values and Best Fitness Values" on page 5-16
"Parents and Children" on page 5-17

Fitness Functions

The fitness function is the function you want to optimize. For standard optimization algorithms, this is known as the objective function. The toolbox software tries to find the minimum of the fitness function.

Write the fitness function as a file or anonymous function, and pass it as a function handle input argument to the main genetic algorithm function.

Individuals

An individual is any point to which you can apply the fitness function. The value of the fitness function for an individual is its score. For example, if the fitness function is

\[f(x_1, x_2, x_3) = (2x_1 + 1)^2 + (3x_2 + 4)^2 + (x_3 - 2)^2, \]

the vector (2, -3, 1), whose length is the number of variables in the problem, is an individual. The score of the individual (2, -3, 1) is \(f(2, -3, 1) = 51 \).

An individual is sometimes referred to as a genome and the vector entries of an individual as genes.

Populations and Generations

A population is an array of individuals. For example, if the size of the population is 100 and the number of variables in the fitness function is 3, you represent the population by a
100-by-3 matrix. The same individual can appear more than once in the population. For example, the individual (2, -3, 1) can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations on the current population to produce a new population. Each successive population is called a new generation.

Diversity

Diversity refers to the average distance between individuals in a population. A population has high diversity if the average distance is large; otherwise it has low diversity. In the following figure, the population on the left has high diversity, while the population on the right has low diversity.

Diversity is essential to the genetic algorithm because it enables the algorithm to search a larger region of the space.

Fitness Values and Best Fitness Values

The *fitness value* of an individual is the value of the fitness function for that individual. Because the toolbox software finds the minimum of the fitness function, the *best* fitness value for a population is the smallest fitness value for any individual in the population.
Parents and Children

To create the next generation, the genetic algorithm selects certain individuals in the current population, called parents, and uses them to create individuals in the next generation, called children. Typically, the algorithm is more likely to select parents that have better fitness values.

See Also

More About

- “What Is the Genetic Algorithm?” on page 5-3
- “How the Genetic Algorithm Works” on page 5-18
- “Nonlinear Constraint Solver Algorithms” on page 5-72
How the Genetic Algorithm Works

Outline of the Algorithm

The following outline summarizes how the genetic algorithm works:

1. The algorithm begins by creating a random initial population.
2. The algorithm then creates a sequence of new populations. At each step, the algorithm uses the individuals in the current generation to create the next population. To create the new population, the algorithm performs the following steps:
 a. Scores each member of the current population by computing its fitness value. These values are called the raw fitness scores.
 b. Scales the raw fitness scores to convert them into a more usable range of values. These scaled values are called expectation values.
 c. Selects members, called parents, based on their expectation.
 d. Some of the individuals in the current population that have lower fitness are chosen as *elite*. These elite individuals are passed to the next population.
 e. Produces children from the parents. Children are produced either by making random changes to a single parent—*mutation*—or by combining the vector entries of a pair of parents—*crossover*.
 f. Replaces the current population with the children to form the next generation.
3. The algorithm stops when one of the stopping criteria is met. See “Stopping Conditions for the Algorithm” on page 5-22.
Initial Population

The algorithm begins by creating a random initial population, as shown in the following figure.

In this example, the initial population contains 20 individuals. Note that all the individuals in the initial population lie in the upper-right quadrant of the picture, that is, their coordinates lie between 0 and 1. For this example, the Initial range in the Population options is [0;1].

If you know approximately where the minimal point for a function lies, you should set Initial range so that the point lies near the middle of that range. For example, if you believe that the minimal point for Rastrigin's function is near the point [0 0], you could set Initial range to be [-1;1]. However, as this example shows, the genetic algorithm can find the minimum even with a less than optimal choice for Initial range.

Creating the Next Generation

At each step, the genetic algorithm uses the current population to create the children that make up the next generation. The algorithm selects a group of individuals in the current
population, called parents, who contribute their genes—the entries of their vectors—to their children. The algorithm usually selects individuals that have better fitness values as parents. You can specify the function that the algorithm uses to select the parents in the Selection function field in the Selection options.

The genetic algorithm creates three types of children for the next generation:

- **Elite children** are the individuals in the current generation with the best fitness values. These individuals automatically survive to the next generation.
- **Crossover children** are created by combining the vectors of a pair of parents.
- **Mutation children** are created by introducing random changes, or mutations, to a single parent.

The following schematic diagram illustrates the three types of children.

```
[Diagram showing Elite child, Crossover child, and Mutation child]
```

“Mutation and Crossover” on page 5-26 explains how to specify the number of children of each type that the algorithm generates and the functions it uses to perform crossover and mutation.

The following sections explain how the algorithm creates crossover and mutation children.

Crossover Children

The algorithm creates crossover children by combining pairs of parents in the current population. At each coordinate of the child vector, the default crossover function
randomly selects an entry, or *gene*, at the same coordinate from one of the two parents and assigns it to the child. For problems with linear constraints, the default crossover function creates the child as a random weighted average of the parents.

Mutation Children

The algorithm creates mutation children by randomly changing the genes of individual parents. By default, for unconstrained problems the algorithm adds a random vector from a Gaussian distribution to the parent. For bounded or linearly constrained problems, the child remains feasible.

The following figure shows the children of the initial population, that is, the population at the second generation, and indicates whether they are elite, crossover, or mutation children.

![Figure showing children of the initial population](image)

Plots of Later Generations

The following figure shows the populations at iterations 60, 80, 95, and 100.
As the number of generations increases, the individuals in the population get closer together and approach the minimum point \([0, 0]\).

Stopping Conditions for the Algorithm

The genetic algorithm uses the following conditions to determine when to stop:

- **Generations** — The algorithm stops when the number of generations reaches the value of **Generations**.
- **Time limit** — The algorithm stops after running for an amount of time in seconds equal to **Time limit**.
- **Fitness limit** — The algorithm stops when the value of the fitness function for the best point in the current population is less than or equal to **Fitness limit**.
- **Stall generations** — The algorithm stops when the average relative change in the fitness function value over **Stall generations** is less than **Function tolerance**.
• **Stall time limit** — The algorithm stops if there is no improvement in the objective function during an interval of time in seconds equal to **Stall time limit**.

• **Stall test** — The stall condition is either average change or geometric weighted. For geometric weighted, the weighting function is $1/2^n$, where n is the number of generations prior to the current. Both stall conditions apply to the relative change in the fitness function over **Stall generations**.

• **Function tolerance** — The algorithm runs until the average relative change in the fitness function value over **Stall generations** is less than **Function tolerance**.

• **Constraint tolerance** — The **Constraint tolerance** is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints. Also, \(\max(\sqrt{\text{eps}}, \text{ConstraintTolerance}) \) determines feasibility with respect to linear constraints.

The algorithm stops as soon as any one of these conditions is met. You can specify the values of these criteria in the **Stopping criteria** pane in the Optimization app. The default values are shown in the pane.
When you run the genetic algorithm, the Run solver and view results panel displays the criterion that caused the algorithm to stop.

The options Stall time limit and Time limit prevent the algorithm from running too long. If the algorithm stops due to one of these conditions, you might improve your results by increasing the values of Stall time limit and Time limit.
Selection

The selection function chooses parents for the next generation based on their scaled values from the fitness scaling function. The scaled fitness values are called the expectation values. An individual can be selected more than once as a parent, in which case it contributes its genes to more than one child. The default selection option, Stochastic uniform, lays out a line in which each parent corresponds to a section of the line of length proportional to its scaled value. The algorithm moves along the line in steps of equal size. At each step, the algorithm allocates a parent from the section it lands on.

A more deterministic selection option is Remainder, which performs two steps:

- In the first step, the function selects parents deterministically according to the integer part of the scaled value for each individual. For example, if an individual's scaled value is 2.3, the function selects that individual twice as a parent.
- In the second step, the selection function selects additional parents using the fractional parts of the scaled values, as in stochastic uniform selection. The function lays out a line in sections, whose lengths are proportional to the fractional part of the scaled value of the individuals, and moves along the line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur using Top scaling, the selection is entirely deterministic.

For details and more selection options, see “Selection Options” on page 11-43.

Reproduction Options

Reproduction options control how the genetic algorithm creates the next generation. The options are

- **Elite count** — The number of individuals with the best fitness values in the current generation that are guaranteed to survive to the next generation. These individuals are called *elite children*. The default value of **Elite count** is 2.

When **Elite count** is at least 1, the best fitness value can only decrease from one generation to the next. This is what you want to happen, since the genetic algorithm minimizes the fitness function. Setting **Elite count** to a high value causes the fittest individuals to dominate the population, which can make the search less effective.
• **Crossover fraction** — The fraction of individuals in the next generation, other than elite children, that are created by crossover. “Setting the Crossover Fraction” on page 5-114 describes how the value of Crossover fraction affects the performance of the genetic algorithm.

Mutation and Crossover

The genetic algorithm uses the individuals in the current generation to create the children that make up the next generation. Besides elite children, which correspond to the individuals in the current generation with the best fitness values, the algorithm creates

• Crossover children by selecting vector entries, or genes, from a pair of individuals in the current generation and combines them to form a child
• Mutation children by applying random changes to a single individual in the current generation to create a child

Both processes are essential to the genetic algorithm. Crossover enables the algorithm to extract the best genes from different individuals and recombine them into potentially superior children. Mutation adds to the diversity of a population and thereby increases the likelihood that the algorithm will generate individuals with better fitness values.

See “Creating the Next Generation” on page 5-19 for an example of how the genetic algorithm applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as follows:

• **Elite count**, in Reproduction options, specifies the number of elite children.
• **Crossover fraction**, in Reproduction options, specifies the fraction of the population, other than elite children, that are crossover children.

For example, if the Population size is 20, the Elite count is 2, and the Crossover fraction is 0.8, the numbers of each type of children in the next generation are as follows:

• There are two elite children.
• There are 18 individuals other than elite children, so the algorithm rounds 0.8*18 = 14.4 to 14 to get the number of crossover children.
• The remaining four individuals, other than elite children, are mutation children.
See Also

More About

• “Genetic Algorithm Terminology” on page 5-15
• “Nonlinear Constraint Solver Algorithms” on page 5-72
Coding and Minimizing a Fitness Function Using the Genetic Algorithm

This example shows how to create and minimize a fitness function for the genetic algorithm solver ga using three techniques:

- Basic
- Including additional parameters
- Vectorized for speed

Basic Fitness Function

The basic fitness function is Rosenbrock's function, a common test function for optimizers. The function is a sum of squares:

\[f(x) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2. \]

The function has a minimum value of zero at the point [1,1]. Because the Rosenbrock function is quite steep, plot the logarithm of one plus the function.

```matlab
fsurf(@(x,y)log(1 + 100*(x.^2 - y).^2 + (1 - x).^2),[0,2])
title('log(1 + 100*(x(1)^2 - x(2))^2 + (1 - x(1))^2)')
view(-13,78)
hold on
h1 = plot3(1,1,0.1,'r*','MarkerSize',12);
legend(h1,'Minimum','Location','best'); 
hold off
```
Fitness Function Code

The `simple_fitness` function file implements Rosenbrock's function.

type `simple_fitness`

```matlab
function y = simple_fitness(x)
%SIMPLE_FITNESS fitness function for GA

% Copyright 2004 The MathWorks, Inc.

    y = 100 * (x(1)^2 - x(2))^2 + (1 - x(1))^2;
```
A fitness function must take one input x where x is a row vector with as many elements as number of variables in the problem. The fitness function computes the value of the function and returns that scalar value in its one return argument y.

Minimize Using ga

To minimize the fitness function using ga, pass a function handle to the fitness function as well as the number of variables in the problem. To have ga examine the relevant region, include bounds $-3 \leq x(i) \leq 3$. Pass the bounds as the fifth and sixth arguments after `numberOfVariables`. For ga syntax details, see `ga`.

`ga` is a random algorithm. For reproducibility, set the random number stream.

```matlab
rng default % For reproducibility
FitnessFunction = @simple_fitness;
numberOfVariables = 2;
lb = [-3,-3];
ub = [3,3];
[x,fval] = ga(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub)
```

Optimization terminated: maximum number of generations exceeded.

$x = 1\times2$

```
   1.5083   2.2781
```

$fval = 0.2594$

The x returned by the solver is the best point in the final population computed by `ga`. The $fval$ is the value of the function `simple_fitness` evaluated at the point x. `ga` did not find an especially good solution. For ways to improve the solution, see "Common Tuning Options" in "Genetic Algorithm".

Fitness Function with Additional Parameters

Sometimes your fitness function has extra parameters that act as constants during the optimization. For example, a generalized Rosenbrock's function can have extra parameters representing the constants 100 and 1:

$$f(x, a, b) = a(x_1^2 - x_2)^2 + (b - x_1)^2.$$
a and b are parameters to the fitness function that act as constants during the optimization (they are not varied as part of the minimization). The `parameterized_fitness.m` file implements this parameterized fitness function.

```matlab
type parameterized_fitness
function y = parameterized_fitness(x,p1,p2)
%PARAMETERIZED_FITNESS fitness function for GA
%   Copyright 2004 The MathWorks, Inc.

y = p1 * (x(1)^2 - x(2))^2 + (p2 - x(1))^2;
```

Minimize Using Additional Parameters

Use an anonymous function to capture the values of the additional arguments, namely, the constants a and b. Create a function handle `FitnessFunction` to an anonymous function that takes one input `x`, and calls `parameterized_fitness` with `x`, a, and b. The anonymous function contains the values of a and b that exist when the function handle is created.

```matlab
a = 100;
b = 1; % define constant values
FitnessFunction = @(x) parameterized_fitness(x,a,b);
[x,fval] = ga(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub)
```

Optimization terminated: maximum number of generations exceeded.

```
x = 1x2
    1.3198    1.7434
```

```
fval = 0.1025
```

See “Passing Extra Parameters” (Optimization Toolbox).

Vectorized Fitness Function

To gain speed, *vectorize* your fitness function. A vectorized fitness function computes the fitness of a collection of points at once, which generally saves time over evaluating these points individually. To write a vectorized fitness function, have your function accept a matrix, where each matrix row represents one point, and have the fitness function return a column vector of fitness function values.
To change the `parameterized_fitness` function file to a vectorized form:

- Change each variable $x(i)$ to $x(:,i)$, meaning the column vector of variables corresponding to $x(i)$.
- Change each vector multiplication $*$ to .*$ and each exponentiation $\^$ to .$\^$ indicating that the operations are element-wise. There are no vector multiplications in this code, so simply change the exponents.

```matlab
type vectorized_fitness

function y = vectorized_fitness(x,p1,p2)
%VECTORIZED_FITNESS fitness function for GA

% Copyright 2004-2010 The MathWorks, Inc.
y = p1 * (x(:,1).^2 - x(:,2)).^2 + (p2 - x(:,1)).^2;

This vectorized version of the fitness function takes a matrix $x$ with an arbitrary number of points, meaning and arbitrary number of rows, and returns a column vector $y$ with the same number of rows as $x$.

Tell the solver that the fitness function is vectorized in the 'UseVectorized' option.

```options = optimoptions(@ga,'UseVectorized',true);

Include options as the last argument to `ga`.

```VFitnessFunction = @(x) vectorized_fitness(x,100,1);
[x,fval] = ga(VFitnessFunction,numberOfVariables,[],[],[],[],lb,ub,[],options)

Optimization terminated: maximum number of generations exceeded.

```x = 1x2

1.6219 2.6334

fval = 0.3876

What is the difference in speed? Time the optimization both with and without vectorization.

```tic
[x,fval] = ga(VFitnessFunction,numberOfVariables,[],[],[],[],lb,ub,[],options);
```

5-32
Optimization terminated: maximum number of generations exceeded.

v = toc;
tic
[x,fval] = ga(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub);

Optimization terminated: maximum number of generations exceeded.

nv = toc;
fprintf('Using vectorization took %f seconds. No vectorization took %f seconds.\n',v,nv)

Using vectorization took 0.154365 seconds. No vectorization took 0.220625 seconds.

In this case, the improvement by vectorization was not great, because computing the fitness function takes very little time. However, for more time-consuming fitness functions, vectorization can be helpful. See “Vectorize the Fitness Function” on page 5-139.

See Also

More About

- “Passing Extra Parameters” (Optimization Toolbox)
- “Vectorize the Fitness Function” on page 5-139
Constrained Minimization Using the Genetic Algorithm

This example shows how to minimize an objective function subject to nonlinear inequality constraints and bounds using the Genetic Algorithm.

Constrained Minimization Problem

We want to minimize a simple fitness function of two variables \(x_1 \) and \(x_2 \)

\[
\min f(x) = 100 \times (x_1^2 - x_2)^2 + (1 - x_1)^2;
\]

such that the following two nonlinear constraints and bounds are satisfied

\[
\begin{align*}
 x_1 \times x_2 + x_1 - x_2 + 1.5 & \leq 0, \text{ (nonlinear constraint)} \\
 10 - x_1 \times x_2 & \leq 0, \text{ (nonlinear constraint)} \\
 0 & \leq x_1 \leq 1, \text{ and (bound)} \\
 0 & \leq x_2 \leq 13 \text{ (bound)}
\end{align*}
\]

The above fitness function is known as 'cam' as described in L.C.W. Dixon and G.P. Szego (eds.), Towards Global Optimisation 2, North-Holland, Amsterdam, 1978.

Coding the Fitness Function

We create a MATLAB file named simple_fitness.m with the following code in it:

```matlab
function y = simple_fitness(x)
    y = 100 * (x(1)^2 - x(2))^2 + (1 - x(1))^2;
end
```

The Genetic Algorithm function ga assumes the fitness function will take one input \(x \) where \(x \) has as many elements as number of variables in the problem. The fitness function computes the value of the function and returns that scalar value in its one return argument \(y \).

Coding the Constraint Function

We create a MATLAB file named simple_constraint.m with the following code in it:

```matlab
function [c, ceq] = simple_constraint(x)
    c = [x1*x2 + x1 - x2 + 1.5 <= 0, x1*x2 - 10 <= 0, 0 <= x1 <= 1, 0 <= x2 <= 13];
    ceq = [];
end
```

The ga function assumes the constraint function will take one input \(x \) where \(x \) has as many elements as number of variables in the problem. The constraint function computes
the values of all the inequality and equality constraints and returns two vectors \(c \) and \(ceq \) respectively.

Minimizing Using ga

To minimize our fitness function using the `ga` function, we need to pass in a function handle to the fitness function as well as specifying the number of variables as the second argument. Lower and upper bounds are provided as \(LB \) and \(UB \) respectively. In addition, we also need to pass in a function handle to the nonlinear constraint function.

```matlab
ObjectiveFunction = @simple_fitness;
nvars = 2; % Number of variables
LB = [0 0]; % Lower bound
UB = [1 13]; % Upper bound
ConstraintFunction = @simple_constraint;
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB, ... ConstraintFunction)
```

Optimization terminated: average change in the fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance.

```matlab
x = 1x2

0.8122   12.3104
```

\(fval = 1.3574e+04 \)

Note that for our constrained minimization problem, the `ga` function changed the mutation function to `mutationadaptfeasible`. The default mutation function, `mutationgaussian`, is only appropriate for unconstrained minimization problems.

ga Operators for Constrained Minimization

The `ga` solver handles linear constraints and bounds differently from nonlinear constraints. All the linear constraints and bounds are satisfied throughout the optimization. However, `ga` may not satisfy all the nonlinear constraints at every generation. If `ga` converges to a solution, the nonlinear constraints will be satisfied at that solution.

`ga` uses the mutation and crossover functions to produce new individuals at every generation. The way the `ga` satisfies the linear and bound constraints is to use mutation and crossover functions that only generate feasible points. For example, in the previous call to `ga`, the default mutation function `mutationgaussian` will not satisfy the linear
constraints and so the \texttt{mutationadaptfeasible} is used instead. If you provide a custom mutation function, this custom function must only generate points that are feasible with respect to the linear and bound constraints. All the crossover functions in the toolbox generate points that satisfy the linear constraints and bounds.

We specify \texttt{mutationadaptfeasible} as the \texttt{MutationFcn} for our minimization problem by creating options with the \texttt{optimoptions} function.

```matlab
options = optimoptions(@ga,'MutationFcn',@mutationadaptfeasible);
% Next we run the GA solver.
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,...
    ConstraintFunction,options)
```

Optimization terminated: average change in the fitness value less than \texttt{options.FunctionTolerance} and constraint violation is less than \texttt{options.ConstraintTolerance}.

\[x = 1 \times 2 \]

\[
\begin{array}{ll}
0.8122 & 12.3103 \\
\end{array}
\]

\[fval = 1.3573e+04 \]

Adding Visualization

Next we use \texttt{optimoptions} to select two plot functions. The first plot function is \texttt{gaplotbestf}, which plots the best and mean score of the population at every generation. The second plot function is \texttt{gaplotmaxconstr}, which plots the maximum constraint violation of nonlinear constraints at every generation. We can also visualize the progress of the algorithm by displaying information to the command window using the \texttt{Display} option.

```matlab
options = optimoptions(options,'PlotFcn',{@gaplotbestf,@gaplotmaxconstr},...
    'Display','iter');
% Next we run the GA solver.
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,...
    ConstraintFunction,options)
```

5-36
Optimization terminated: average change in the fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance.

\[x = 1 \times 2 \]

\[0.8123 \quad 12.3103 \]

\[fval = 1.3574e+04 \]
Providing a Start Point

A start point for the minimization can be provided to `ga` function by specifying the `InitialPopulationMatrix` option. The `ga` function will use the first individual from `InitialPopulationMatrix` as a start point for a constrained minimization. Refer to the documentation for a description of specifying an initial population to `ga`.

```
X0 = [0.5 0.5]; % Start point (row vector)
options.InitialPopulationMatrix = X0;
% Next we run the GA solver.
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB, ...
              ConstraintFunction,options)
```

![Fitness value graph](image1)

Best: 13573 Mean: 13573.5

![Max constraint graph](image2)

Max constraint: 0.000991296
<table>
<thead>
<tr>
<th>Generation</th>
<th>Func-count</th>
<th>f(x)</th>
<th>Constraint</th>
<th>Stall</th>
<th>Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2670</td>
<td>13578.1</td>
<td>0.0005448</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5282</td>
<td>13578.2</td>
<td>8.021e-06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8394</td>
<td>14034.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>16256</td>
<td>14052.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>18856</td>
<td>13573.5</td>
<td>0.0009913</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimization terminated: average change in the fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance.

\[x = 1 \times 2 \]

\[
\begin{align*}
0.8122 & \quad 12.3103 \\
\end{align*}
\]

fval = 1.3573e+04

See Also

More About

- “Write Constraints” on page 2-8
Genetic Algorithm Options

This example shows how to create and manage options for the genetic algorithm function `ga` using `optimoptions` in the Global Optimization Toolbox.

Setting Up a Problem for `ga`

g`a` searches for a minimum of a function using the genetic algorithm. For this example we will use `ga` to minimize the fitness function `shufcn`. `shufcn` is a real valued function of two variables.

We can use the function `plotobjective` in the toolbox to plot the function `shufcn` over the range = [-2 2; -2 2].

```matlab
plotobjective(@shufcn,[-2 2; -2 2]);
```
To use the ga solver, we need to provide at least two input arguments, a fitness function and the number of variables in the problem. The first two output arguments returned by ga are x, the best point found, and Fval, the function value at the best point. A third output argument, exitFlag tells you the reason why ga stopped. ga can also return a fourth argument, Output, which contains information about the performance of the solver.

FitnessFunction = @shufcn;
numberOfVariables = 2;

Run the ga solver.

rng default % For reproducibility
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The number of generations was : %d\n', Output.generations);
The number of generations was : 124

fprintf('The number of function evaluations was : %d\n', Output.funccount);
The number of function evaluations was : 6250

fprintf('The best function value found was : %g\n', Fval);
The best function value found was : -186.199

If you run this example without the rng default command, your result can differ. This behavior is explained later in this example.

How the Genetic Algorithm Works

The Genetic Algorithm works on a population using a set of operators that are applied to the population. A population is a set of points in the design space. The initial population is generated randomly by default. The next generation of the population is computed using the fitness of the individuals in the current generation.

Adding Visualization

`ga` can accept one or more plot functions through an `options` argument. This feature is useful for visualizing the performance of the solver at run time. Plot functions can be selected using `optimoptions`.

Here we use `optimoptions` to select two plot functions. The first plot function is `gaplotbestf`, which plots the best and mean score of the population at every generation. The second plot function is `gaplotstopping`, which plots the percentage of stopping criteria satisfied.

```matlab
opts = optimoptions(@ga,'PlotFcns',{@gaplotbestf,@gaplotstopping});
```

Run the `ga` solver.

```matlab
[x,Fval,exitFlag,Output] = ...  
    ga(FitnessFunction,numberOfVariables,[],[],[],[],[],[],opts);
```
Specifying Population Options

The default initial population is created using a uniform random number generator. Default values for the population size and the range of the initial population are used to create the initial population.

Specify a population size

The default population size used by `ga` is 50 when the number of decision variables is less than 5 and 200 otherwise. This size can be a poor one for some problems; a smaller population size can be sufficient for smaller problems. Since we only have two variables,
we specify a population size of 10. We directly set the value of the option PopulationSize to 10 in our previously created options, opts.

```matlab
opts.PopulationSize = 10;
```

Specify initial population range

The default method for generating an initial population uses a uniform random number generator. This creates an initial population where all the points are in the range 0 to 1. For example, a population of size 3 in a problem with two variables could look like:

```matlab
Population = rand(3,2)
```

```
Population = 3x2
0.0149    0.0858
0.3852    0.9966
0.3954    0.4020
```

The initial range can be set by changing the InitialPopulationRange option. The range must be a matrix with two rows. If the range has only one column, i.e., it is 2-by-1, then the range of every variable is the given range. For example, if we set the range to [-1; 1], then the initial range for both our variables is -1 to 1. To specify a different initial range for each variable, the range must be specified as a matrix with two rows and numberOfVariables columns. For example if we set the range to [-1 0; 1 2], then the first variable will be in the range -1 to 1, and the second variable will be in the range 0 to 2 (so each column corresponds to a variable).

We will directly modify the value of the option InitialPopulationRange in our previously created options, opts.

```matlab
opts.InitialPopulationRange = [-1 0; 1 2];
```

Run the ga solver.

```matlab
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[],[], ... 
    [],[],[],[],opts);
```
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

```matlab
fprintf('The number of generations was : %d\n', Output.generations);
The number of generations was : 67
fprintf('The number of function evaluations was : %d\n', Output.funccount);
The number of function evaluations was : 680
fprintf('The best function value found was : %g\n', Fval);
The best function value found was : -179.987
```
Reproducing Your Results

By default, ga starts with a random initial population which is created using MATLAB® random number generators. The next generation is produced using ga operators that also use these same random number generators. Every time a random number is generated, the state of the random number generators change. This means that even if you do not change any options, when you run again you can get different results.

Here we run the solver twice to show this phenomenon.

Run the ga solver.

```matlab
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
fprintf('The best function value found was : %g\n', Fval);
The best function value found was : -186.484
```

Run ga again.

```matlab
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
fprintf('The best function value found was : %g\n', Fval);
The best function value found was : -185.867
```

In the previous two runs, ga gave different results. The results are different because the states of the random number generators have changed from one run to another.

If you know that you want to reproduce your results before you run ga, you can save the state of the random number stream.

```matlab
thestate = rng;
```

Run ga.

```matlab
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
fprintf('The best function value found was : %g\n', Fval);
```
The best function value found was: -186.467

Reset the stream and rerun ga. The results are identical to the previous run.

rng(thestate);
[x,Fval,exitFlag,Output] = ga(FitnessFunction, numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The best function value found was: %g\n', Fval);

The best function value found was: -186.467

However, you might not have realized that you would want to try to reproduce the results before running ga. In that case, as long as you have the output structure, you can reset the random number generator as follows.

strm = RandStream.getGlobalStream;
strm.State = Output.rngstate.State;

Rerun ga. Again, the results are identical.

[x,Fval,exitFlag,Output] = ga(FitnessFunction, numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The best function value found was: %g\n', Fval);

The best function value found was: -186.467

Modifying the Stopping Criteria

ga uses four different criteria to determine when to stop the solver. ga stops when the maximum number of generations is reached; by default this number is 100. ga also detects if there is no change in the best fitness value for some time given in seconds (stall time limit), or for some number of generations (maximum stall generations). Another criteria is the maximum time limit in seconds. Here we modify the stopping criteria to increase the maximum number of generations to 150 and the maximum stall generations to 100.

opts = optimoptions(opts, 'MaxGenerations', 150, 'MaxStallGenerations', 100);

Run the ga solver again.

[x,Fval,exitFlag,Output] = ga(FitnessFunction, numberOfVariables, [], [], [], ..., [], [], [], [], opts);
Optimization terminated: maximum number of generations exceeded.

fprintf('The number of generations was : %d\n', Output.generations);
The number of generations was : 150
fprintf('The number of function evaluations was : %d\n', Output.funccount);
The number of function evaluations was : 1510
fprintf('The best function value found was : %g\n', Fval);
The best function value found was : -186.692
Choosing ga Operators

ga starts with a random set of points in the population and uses operators to produce the next generation of the population. The different operators are scaling, selection, crossover, and mutation. The toolbox provides several functions to choose from for each operator. Here we choose fitscalingprop for FitnessScalingFcn and selectiontournament for SelectionFcn.

opts = optimoptions(@ga,'SelectionFcn',@selectiontournament, ... 'FitnessScalingFcn',@fitscalingprop);

Run the ga solver:

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[],[], ... [],[],[],[],opts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The number of generations was : %d\n', Output.generations);

The number of generations was : 144

fprintf('The number of function evaluations was : %d\n', Output.funccount);

The number of function evaluations was : 7250

fprintf('The best function value found was : %g\n', Fval);

The best function value found was : -173.284

The best function value can improve or it can get worse by choosing different operators. Choosing a good set of operators for your problem is often best done by experimentation.

See Also

More About

• “Set and Change Options” on page 2-12
Mixed Integer Optimization

In this section...

“Solving Mixed Integer Optimization Problems” on page 5-50
“Characteristics of the Integer ga Solver” on page 5-52
“Effective Integer ga” on page 5-58
“Integer ga Algorithm” on page 5-59

Solving Mixed Integer Optimization Problems

ga can solve problems when certain variables are integer-valued. Give IntCon, a vector of the x components that are integers:

\[
[x,fval,exitflag] = \text{ga}(\text{fitnessfcn},\text{nvars},A,b,[],[],\ldots
lb,ub,\text{nonlcon},\text{IntCon},\text{options})
\]

IntCon is a vector of positive integers that contains the x components that are integer-valued. For example, if you want to restrict \(x(2)\) and \(x(10)\) to be integers, set IntCon to \([2,10]\).

Note Restrictions exist on the types of problems that ga can solve with integer variables. In particular, ga does not accept any equality constraints when there are integer variables. For details, see “Characteristics of the Integer ga Solver” on page 5-52.

Tip ga solves integer problems best when you provide lower and upper bounds for every x component.

Mixed Integer Optimization of Rastrigin's Function

This example shows how to find the minimum of Rastrigin's function restricted so the first component of x is an integer. The components of x are further restricted to be in the region \(5\pi \leq x(1) \leq 20\pi, \quad -20\pi \leq x(2) \leq -4\pi\).

Set up the bounds for your problem

\[
\text{lb} = [5*\pi,-20*\pi];
\]
\[
\text{ub} = [20*\pi,-4*\pi];
\]
Set a plot function so you can view the progress of ga

```matlab
opts = optimoptions('ga','PlotFcn',@gaplotbestf);
```

Call the ga solver where x(1) has integer values

```matlab
rng(1,'twister') % for reproducibility
IntCon = 1;
[x,fval,exitflag] = ga(@rastriginsfcn,2,[],[],[],[],...
    lb,ub,[],IntCon,opts)
```

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstaintTolerance.
x = 1×2

16.0000 -12.9325

fval = 424.1355

exitflag = 1

ga converges quickly to the solution.

Characteristics of the Integer ga Solver

There are some restrictions on the types of problems that ga can solve when you include integer constraints:

- No linear equality constraints. You must have Aeq = [] and beq = []. For a possible workaround, see “No Equality Constraints” on page 5-53.
- No nonlinear equality constraints. Any nonlinear constraint function must return [] for the nonlinear equality constraint. For a possible workaround, see “Example: Integer Programming with a Nonlinear Equality Constraint” on page 5-53.
- Only doubleVector population type.
- No custom creation function (CreationFcn option), crossover function (CrossoverFcn option), mutation function (MutationFcn option), or initial scores (InitialScoreMatrix option). If you supply any of these, ga overrides their settings.
- ga uses only the binary tournament selection function (SelectionFcn option), and overrides any other setting.
- No hybrid function. ga overrides any setting of the HybridFcn option.
- ga ignores the ParetoFraction, DistanceMeasureFcn, InitialPenalty, and PenaltyFactor options.

The listed restrictions are mainly natural, not arbitrary. For example:

- There are no hybrid functions that support integer constraints. So ga does not use hybrid functions when there are integer constraints.
- To obtain integer variables, ga uses special creation, crossover, and mutation functions.
No Equality Constraints

You cannot use equality constraints and integer constraints in the same problem. You can try to work around this restriction by including two inequality constraints for each linear equality constraint. For example, to try to include the constraint

\[3x_1 - 2x_2 = 5, \]

create two inequality constraints:

\[
\begin{align*}
3x_1 - 2x_2 & \leq 5 \\
3x_1 - 2x_2 & \geq 5.
\end{align*}
\]

To write these constraints in the form \(Ax \leq b\), multiply the second inequality by -1:

\[
-3x_1 + 2x_2 \leq -5.
\]

You can try to include the equality constraint using \(A = [3, -2; -3, 2]\) and \(b = [5; -5]\).

Be aware that this procedure can fail; ga has difficulty with simultaneous integer and equality constraints.

Example: Integer Programming with a Nonlinear Equality Constraint

This example attempts to locate the minimum of the Ackley function in five dimensions with these constraints:

- \(x(1), x(3),\) and \(x(5)\) are integers.
- \(\text{norm}(x) = 4.\)

The Ackley function, described briefly in “Resuming ga From the Final Population” on page 5-81, is difficult to minimize. Adding integer and equality constraints increases the difficulty.

To include the nonlinear equality constraint, give a small tolerance \(\text{tol}\) that allows the norm of \(x\) to be within \(\text{tol}\) of 4. Without a tolerance, the nonlinear equality constraint is never satisfied, and the solver does not realize when it has a feasible solution.

1. Write the expression \(\text{norm}(x) = 4\) as two “less than zero” inequalities:

\[
\begin{align*}
\text{norm}(x) - 4 & \leq 0 \\
-(\text{norm}(x) - 4) & \leq 0.
\end{align*}
\]
Allow a small tolerance in the inequalities:

\[
\begin{align*}
norm(x) - 4 - \text{tol} & \leq 0 \\
-(\norm(x) - 4) - \text{tol} & \leq 0.
\end{align*}
\]

Write a nonlinear inequality constraint function that implements these inequalities:

```matlab
function [c, ceq] = eqCon(x)

ceq = [];
rad = 4;
tol = 1e-3;
confcnval = norm(x) - rad;
c = [confcnval - tol;-confcnval - tol];
```

Set options:

- `MaxStallGenerations = 50` — Allow the solver to try for a while.
- `FunctionTolerance = 1e-10` — Specify a stricter stopping criterion than usual.
- `MaxGenerations = 300` — Allow more generations than default.
- `PlotFcn = @gaplotbestfun` — Observe the optimization.

```matlab
opts = optimoptions('ga','MaxStallGenerations',50,'FunctionTolerance',1e-10,...
    'MaxGenerations',300,'PlotFcns',@gatool);```

Set lower and upper bounds to help the solver:

```matlab
nVar = 5;
lb = -5*ones(1,nVar);
ub = 5*ones(1,nVar);
```

Solve the problem:

```matlab
rng(1,'twister') % for reproducibility
[x,fval,exitflag] = ga(@ackleyfcn,nVar,[],[],[],[],...
 lb,ub,[],[],opts);
```

Optimization terminated: stall generations limit exceeded and constraint violation is less than options.ConstraintTolerance.
Examine the solution:

```matlab
x, fval, exitflag, norm(x)
```

```matlab
x =
 -3.0000 0.8233 1.0000 -1.1503 2.0000
```

```matlab
fval =
 5.1119
```

```matlab
exitflag =
```
ans = 4.0001

The odd x components are integers, as specified. The norm of x is 4, to within the given relative tolerance of 1e-3.

Despite the positive exit flag, the solution is not the global optimum. Run the problem again and examine the solution:

```matlab
opts = optimoptions('ga',opts,'Display','off');
[x2,fval2,exitflag2] = ga(ackleyfcn,nVar,[],[],[],
 lb,ub,@eqCon,[1 3 5],opts);
```
Examine the second solution:

\[ x2, fval2, exitflag2, \text{norm}(x2) \]

\[ x2 = \]

\[-1.0000 \quad -0.9959 \quad -2.0000 \quad 0.9960 \quad 3.0000 \]

\[ fval2 = \]

\[ 4.2359 \]
exitflag2 =

1

ans =

3.9980

The second run gives a better solution (lower fitness function value). Again, the odd x components are integers, and the norm of x2 is 4, to within the given relative tolerance of 1e-3.

Be aware that this procedure can fail; ga has difficulty with simultaneous integer and equality constraints.

**Effective Integer ga**

To use ga most effectively on integer problems, follow these guidelines.

- Bound each component as tightly as you can. This practice gives ga the smallest search space, enabling ga to search most effectively.
- If you cannot bound a component, then specify an appropriate initial range. By default, ga creates an initial population with range [-1e4, 1e4] for each component. A smaller or larger initial range can give better results when the default value is inappropriate. To change the initial range, use the InitialPopulationRange option.
- If you have more than 10 variables, set a population size that is larger than default by using the PopulationSize option. The default value is 200 for six or more variables. For a large population size:
  - ga can take a long time to converge. If you reach the maximum number of generations (exit flag 0), increase the value of the MaxGenerations option.
  - Decrease the mutation rate. To do so, increase the value of the CrossoverFraction option from its default of 0.8 to 0.9 or higher.
  - Increase the value of the EliteCount option from its default of 0.05*PopulationSize to 0.1*PopulationSize or higher.

For information on options, see the ga options input argument.


**Integer ga Algorithm**

Integer programming with ga involves several modifications of the basic algorithm (see “How the Genetic Algorithm Works” on page 5-18). For integer programming:

- Special creation, crossover, and mutation functions enforce variables to be integers. For details, see Deep et al. [2].

- The genetic algorithm attempts to minimize a penalty function, not the fitness function. The penalty function includes a term for infeasibility. This penalty function is combined with binary tournament selection to select individuals for subsequent generations. The penalty function value of a member of a population is:
  - If the member is feasible, the penalty function is the fitness function.
  - If the member is infeasible, the penalty function is the maximum fitness function among feasible members of the population, plus a sum of the constraint violations of the (infeasible) point.

For details of the penalty function, see Deb [1].

- ga does not enforce linear constraints when there are integer constraints. Instead, ga incorporates linear constraint violations into the penalty function.

**References**


**See Also**

**Related Examples**

- “Solving a Mixed Integer Engineering Design Problem Using the Genetic Algorithm” on page 5-60
Solving a Mixed Integer Engineering Design Problem Using the Genetic Algorithm

This example shows how to solve a mixed integer engineering design problem using the Genetic Algorithm (ga) solver in Global Optimization Toolbox.

The problem illustrated in this example involves the design of a stepped cantilever beam. In particular, the beam must be able to carry a prescribed end load. We will solve a problem to minimize the beam volume subject to various engineering design constraints.

In this example we will solve two bounded versions of the problem published in [1].

Stepped Cantilever Beam Design Problem

A stepped cantilever beam is supported at one end and a load is applied at the free end, as shown in the figure below. The beam must be able to support the given load, $P$, at a fixed distance $L$ from the support. Designers of the beam can vary the width ($h_i$) and height ($h_i$) of each section. We will assume that each section of the cantilever has the same length, $l$. 
Volume of the beam

The volume of the beam, $V$, is the sum of the volume of the individual sections

$$V = l(b_1 h_1 + b_2 h_2 + b_3 h_3 + b_4 h_4 + b_5 h_5)$$

Constraints on the Design : 1 - Bending Stress

Consider a single cantilever beam, with the centre of coordinates at the centre of its cross section at the free end of the beam. The bending stress at a point $(x, y, z)$ in the beam is given by the following equation

$$\sigma_b = M(x) y / I$$

where $M(x)$ is the bending moment at $x$, $x$ is the distance from the end load and $I$ is the area moment of inertia of the beam.
Now, in the stepped cantilever beam shown in the figure, the maximum moment of each section of the beam is \( PD_i \), where \( D_i \) is the maximum distance from the end load, \( P \), for each section of the beam. Therefore, the maximum stress for the \( i \)-th section of the beam, \( \sigma_i \), is given by

\[
\sigma_i = \frac{PD_i(h_i/2)}{I_i}
\]

where the maximum stress occurs at the edge of the beam, \( y = h_i/2 \). The area moment of inertia of the \( i \)-th section of the beam is given by

\[
I_i = \frac{b_i h_i^3}{12}
\]

Substituting this into the equation for \( \sigma_i \) gives

\[
\sigma_i = \frac{6PD_i}{b_i h_i^2}
\]

The bending stress in each part of the cantilever should not exceed the maximum allowable stress, \( \sigma_{max} \). Consequently, we can finally state the five bending stress constraints (one for each step of the cantilever)

\[
\frac{6P_l}{b_5 h_5^2} \leq \sigma_{max}
\]

\[
\frac{6P(2l)}{b_4 h_4^2} \leq \sigma_{max}
\]

\[
\frac{6P(3l)}{b_3 h_3^2} \leq \sigma_{max}
\]

\[
\frac{6P(4l)}{b_2 h_2^2} \leq \sigma_{max}
\]

\[
\frac{6P(5l)}{b_1 h_1^2} \leq \sigma_{max}
\]

**Constraints on the Design : 2 - End deflection**

The end deflection of the cantilever can be calculated using Castigliano’s second theorem, which states that
\[ \delta = \frac{\partial U}{\partial P} \]

where \( \delta \) is the deflection of the beam, \( U \) is the energy stored in the beam due to the applied force, \( P \).

The energy stored in a cantilever beam is given by

\[ U = \int_0^L \frac{M^2}{2EI} \, dx \]

where \( M \) is the moment of the applied force at \( x \).

Given that \( M = Px \) for a cantilever beam, we can write the above equation as

\[ U = \frac{P^2}{2E} \int_0^l \left[ \frac{(x + 4l)^2}{I_1} + \frac{(x + 3l)^2}{I_2} + \frac{(x + 2l)^2}{I_3} + \frac{(x + l)^2}{I_4} + \frac{x^2}{I_5} \right] \, dx \]

where \( I_n \) is the area moment of inertia of the \( n \)-th part of the cantilever. Evaluating the integral gives the following expression for \( U \).

\[ U = \left( \frac{P^2}{2} \right) \left( \frac{l^3}{3E} \right) \left( \frac{61}{I_1} + \frac{37}{I_2} + \frac{19}{I_3} + \frac{7}{I_4} + \frac{1}{I_5} \right) \]

Applying Castigliano's theorem, the end deflection of the beam is given by

\[ \delta = \frac{Pl^3}{3E} \left( \frac{61}{I_1} + \frac{37}{I_2} + \frac{19}{I_3} + \frac{7}{I_4} + \frac{1}{I_5} \right) \]

Now, the end deflection of the cantilever, \( \delta \), should be less than the maximum allowable deflection, \( \delta_{\text{max}} \), which gives us the following constraint.

\[ \frac{Pl^3}{3E} \left( \frac{61}{I_1} + \frac{37}{I_2} + \frac{19}{I_3} + \frac{7}{I_4} + \frac{1}{I_5} \right) \leq \delta_{\text{max}} \]

**Constraints on the Design : 3 - Aspect ratio**

For each step of the cantilever, the aspect ratio must not exceed a maximum allowable aspect ratio, \( a_{\text{max}} \). That is,

\[ \frac{h_i}{b_i} \leq a_{\text{max}} \text{ for } i = 1, \ldots, 5 \]
State the Optimization Problem

We are now able to state the problem to find the optimal parameters for the stepped cantilever beam given the stated constraints.

Let \( x_1 = b_1, x_2 = h_1, x_3 = b_2, x_4 = h_2, x_5 = b_3, x_6 = h_3, x_7 = b_4, x_8 = h_4, x_9 = b_5 \) and \( x_{10} = h_5 \)

Minimize:

\[
V = l(x_1 x_2 + x_3 x_4 + x_5 x_6 + x_7 x_8 + x_9 x_{10})
\]

Subject to:

\[
\frac{6P l}{x_9 x_{10}^2} \leq \sigma_{\text{max}}
\]

\[
\frac{6P (2l)}{x_7 x_8^2} \leq \sigma_{\text{max}}
\]

\[
\frac{6P (3l)}{x_5 x_6^2} \leq \sigma_{\text{max}}
\]

\[
\frac{6P (4l)}{x_3 x_4^2} \leq \sigma_{\text{max}}
\]

\[
\frac{6P (5l)}{x_1 x_2^2} \leq \sigma_{\text{max}}
\]

\[
\frac{P l^3}{E} \left( \frac{244}{x_1 x_2^3} + \frac{148}{x_3 x_4^3} + \frac{76}{x_5 x_6^3} + \frac{28}{x_7 x_8^3} + \frac{4}{x_9 x_{10}^3} \right) \leq \delta_{\text{max}}
\]

\[
x_2/x_1 \leq 20, \ x_4/x_3 \leq 20, \ x_6/x_5 \leq 20, \ x_8/x_7 \leq 20 \text{ and } x_{10}/x_9 \leq 20
\]

The first step of the beam can only be machined to the nearest centimetre. That is, \( x_1 \) and \( x_2 \) must be integer. The remaining variables are continuous. The bounds on the variables are given below:

\[
1 \leq x_1 \leq 5
\]
Design Parameters for this Problem

For the problem we will solve in this example, the end load that the beam must support is \( P = 50000\, N \).

The beam lengths and maximum end deflection are:

- Total beam length, \( L = 500\, cm \)
- Individual section of beam, \( l = 100\, cm \)
- Maximum beam end deflection, \( \delta_{\text{max}} = 2.7\, cm \)

The maximum allowed stress in each step of the beam, \( \sigma_{\text{max}} = 14000\, N/cm^2 \)

Young's modulus of each step of the beam, \( E = 2 \times 10^7\, N/cm^2 \)

Solve the Mixed Integer Optimization Problem

We now solve the problem described in State the Optimization Problem.

Define the Fitness and Constraint Functions

Examine the MATLAB files cantileverVolume.m and cantileverConstraints.m to see how the fitness and constraint functions are implemented.

A note on the linear constraints: When linear constraints are specified to \texttt{ga}, you normally specify them via the \texttt{A}, \texttt{b}, \texttt{Aeq} and \texttt{beq} inputs. In this case we have specified them via the nonlinear constraint function. This is because later in this example, some of the variables will become discrete. When there are discrete variables in the problem it is far easier to specify linear constraints in the nonlinear constraint function. The alternative is to modify the linear constraint matrices to work in the transformed variable space, which is not trivial and maybe not possible. Also, in the mixed integer \texttt{ga} solver, the linear constraints

\[
\begin{align*}
30 & \leq x_2 \leq 65 \\
2.4 & \leq x_3, x_5 \leq 3.1 \\
45 & \leq x_4, x_6 \leq 60 \\
1 & \leq x_7, x_9 \leq 5 \\
30 & \leq x_8, x_{10} \leq 65
\end{align*}
\]
are not treated any differently to the nonlinear constraints regardless of how they are specified.

Set the Bounds

Create vectors containing the lower bound (lb) and upper bound constraints (ub).

```matlab
lb = [1 30 2.4 45 2.4 45 1 30 1 30];
ub = [5 65 3.1 60 3.1 60 5 65 5 65];
```

Set the Options

To obtain a more accurate solution, we increase the PopulationSize, and MaxGenerations options from their default values, and decrease the EliteCount and FunctionTolerance options. These settings cause `ga` to use a larger population (increased PopulationSize), to increase the search of the design space (reduced EliteCount), and to keep going until its best member changes by very little (small FunctionTolerance). We also specify a plot function to monitor the penalty function value as `ga` progresses.

Note that there are a restricted set of `ga` options available when solving mixed integer problems - see Global Optimization Toolbox User's Guide for more details.

```matlab
opts = optimoptions(@ga, ...
 'PopulationSize', 150, ...
 'MaxGenerations', 200, ...
 'EliteCount', 10, ...
 'FunctionTolerance', 1e-8, ...
 'PlotFcn', @gaplotbestf);
```

Call ga to Solve the Problem

We can now call `ga` to solve the problem. In the problem statement \( x_1 \) and \( x_2 \) are integer variables. We specify this by passing the index vector \([1 2]\) to `ga` after the nonlinear constraint input and before the options input. We also seed and set the random number generator here for reproducibility.

```matlab
rng(0, 'twister');
[xbest, fbest, exitflag] = ga(@cantileverVolume, 10, [], [], [], [], lb, ub, @cantileverConstraints, [1 2], opts);
```

Optimization terminated: maximum number of generations exceeded.
Analyze the Results

If a problem has integer constraints, ga reformulates it internally. In particular, the fitness function in the problem is replaced by a penalty function which handles the constraints. For feasible population members, the penalty function is the same as the fitness function.

The solution returned from ga is displayed below. Note that the section nearest the support is constrained to have a width ($x_1$) and height ($x_2$) which is an integer value and this constraint has been honored by GA.

display(xbest);

xbest =
Columns 1 through 7

3.0000  60.0000    2.8326   56.6516    2.5725   51.4445    2.2126

Columns 8 through 10

44.2423    1.7512   34.9805

We can also ask ga to return the optimal volume of the beam.

fprintf('
Cost function returned by ga = %g\n', fbest);

Cost function returned by ga = 63196.6

Add Discrete Non-Integer Variable Constraints

The engineers are now informed that the second and third steps of the cantilever can only have widths and heights that are chosen from a standard set. In this section, we show how to add this constraint to the optimization problem. Note that with the addition of this constraint, this problem is identical to that solved in [1].

First, we state the extra constraints that will be added to the above optimization

- The width of the second and third steps of the beam must be chosen from the following set:- [2.4, 2.6, 2.8, 3.1] cm
- The height of the second and third steps of the beam must be chosen from the following set:- [45, 50, 55, 60] cm

To solve this problem, we need to be able to specify the variables $x_3, x_4, x_5$ and $x_6$ as discrete variables. To specify a component $x_j$ as taking discrete values from the set $S = v_1, \ldots, v_k$, optimize with $x_j$ an integer variable taking values from 1 to $k$; and use $S(x_j)$ as the discrete value. To specify the range (1 to $k$), set 1 as the lower bound and $k$ as the upper bound.

So, first we transform the bounds on the discrete variables. Each set has 4 members and we will map the discrete variables to an integer in the range [1, 4]. So, to map these variables to be integer, we set the lower bound to 1 and the upper bound to 4 for each of the variables.
lb = [1 30 1 1 1 1 30 1 30];
ub = [5 65 4 4 4 4 5 65 5 65];

Transformed (integer) versions of \( x_3, x_4, x_5 \) and \( x_6 \) will now be passed to the fitness and constraint functions when the \texttt{ga} \ solver is called. To evaluate these functions correctly, \( x_3, x_4, x_5 \) and \( x_6 \) need to be transformed to a member of the given discrete set in these functions. To see how this is done, examine the MATLAB files \texttt{cantileverVolumeWithDisc.m}, \texttt{cantileverConstraintsWithDisc.m} and \texttt{cantileverMapVariables.m}.

Now we can call \texttt{ga} to solve the problem with discrete variables. In this case \( x_1, \ldots, x_6 \) are integers. This means that we pass the index vector 1:6 to \texttt{ga} to define the integer variables.

```matlab
rng(0, 'twister');
[xbestDisc, fbestDisc, exitflagDisc] = ga(@cantileverVolumeWithDisc, ...
 10, [], [], [], [], lb, ub, @cantileverConstraintsWithDisc, 1:6, opts);
```

Optimization terminated: maximum number of generations exceeded.
Analyze the Results

`xbestDisc(3:6)` are returned from `ga` as integers (i.e. in their transformed state). We need to reverse the transform to retrieve the value in their engineering units.

```matlab
xbestDisc = cantileverMapVariables(xbestDisc);
display(xbestDisc);
```

```
xbestDisc =
 Columns 1 through 7
 3.0000 60.0000 3.1000 55.0000 2.8000 50.0000 2.3036
```
Columns 8 through 10

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>43.6153</td>
<td>1.7509</td>
<td>35.0071</td>
</tr>
</tbody>
</table>

As before, the solution returned from ga honors the constraint that $x_1$ and $x_2$ are integers. We can also see that $x_3$, $x_5$ are chosen from the set [2.4, 2.6, 2.8, 3.1] cm and $x_4$, $x_6$ are chosen from the set [45, 50, 55, 60] cm.

Recall that we have added additional constraints on the variables $x(3)$, $x(4)$, $x(5)$ and $x(6)$. As expected, when there are additional discrete constraints on these variables, the optimal solution has a higher minimum volume. Note further that the solution reported in [1] has a minimum volume of $64558\text{cm}^3$ and that we find a solution which is approximately the same as that reported in [1].

```plaintext
fprintf('
Cost function returned by ga = %g
', fbestDisc);
```

Cost function returned by ga = 65226.5

**Summary**

This example illustrates how to use the genetic algorithm solver, ga, to solve a constrained nonlinear optimization problem which has integer constraints. The example also shows how to handle problems that have discrete variables in the problem formulation.

**References**


**See Also**

**More About**

- “Mixed Integer Optimization” on page 5-50
Nonlinear Constraint Solver Algorithms

**Augmented Lagrangian Genetic Algorithm**

By default, the genetic algorithm uses the Augmented Lagrangian Genetic Algorithm (ALGA) to solve nonlinear constraint problems without integer constraints. The optimization problem solved by the ALGA algorithm is

\[
\min_x f(x)
\]

such that

\[
c_i(x) \leq 0, \quad i = 1...m
\]
\[
ceq_i(x) = 0, \quad i = m + 1...mt
\]
\[
A \cdot x \leq b
\]
\[
Aeq \cdot x = beq
\]
\[
lb \leq x \leq ub,
\]

where \(c(x)\) represents the nonlinear inequality constraints, \(ceq(x)\) represents the equality constraints, \(m\) is the number of nonlinear inequality constraints, and \(mt\) is the total number of nonlinear constraints.

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a nonlinear optimization problem with nonlinear constraints, linear constraints, and bounds. In this approach, bounds and linear constraints are handled separately from nonlinear constraints. A subproblem is formulated by combining the fitness function and nonlinear constraint function using the Lagrangian and the penalty parameters. A sequence of such optimization problems are approximately minimized using the genetic algorithm such that the linear constraints and bounds are satisfied.

A subproblem formulation is defined as

\[
\Theta(x, \lambda, s, \rho) = f(x) - \sum_{i=1}^{m} \lambda_i s_i \log(s_i - c_i(x)) + \sum_{i=m+1}^{mt} \lambda_i ceq_i(x) + \frac{\rho}{2} \sum_{i=m+1}^{mt} ceq_i(x)^2,
\]
where

- The components $\lambda_i$ of the vector $\lambda$ are nonnegative and are known as Lagrange multiplier estimates
- The elements $s_i$ of the vector $s$ are nonnegative shifts
- $\rho$ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The genetic algorithm minimizes a sequence of subproblems, each of which is an approximation of the original problem. Each subproblem has a fixed value of $\lambda$, $s$, and $\rho$. When the subproblem is minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This results in a new subproblem formulation and minimization problem. These steps are repeated until the stopping criteria are met.

Each subproblem solution represents one generation. The number of function evaluations per generation is therefore much higher when using nonlinear constraints than otherwise.

Choose the Augmented Lagrangian algorithm by setting the NonlinearConstraintAlgorithm option to 'auglag' using optimoptions.

For a complete description of the algorithm, see the following references:

**References**


Penalty Algorithm

The penalty algorithm is similar to the “Integer ga Algorithm” on page 5-59. In its evaluation of the fitness of an individual, ga computes a penalty value as follows:

- If the individual is feasible, the penalty function is the fitness function.
- If the individual is infeasible, the penalty function is the maximum fitness function among feasible members of the population, plus a sum of the constraint violations of the (infeasible) individual.

For details of the penalty function, see Deb [1].

Choose the penalty algorithm by setting the NonlinearConstraintAlgorithm option to 'penalty' using optimoptions. When you make this choice, ga solves the constrained optimization problem as follows.

1  ga defaults to the @gacreationnonlinearfeasible creation function. This function attempts to create a feasible population with respect to all constraints. ga creates enough individuals to match the PopulationSize option. For details, see “Penalty Algorithm” on page 11-53.

2  ga overrides your choice of selection function, and uses @selectiontournament with two individuals per tournament.

3  ga proceeds according to “How the Genetic Algorithm Works” on page 5-18, using the penalty function as the fitness measure.

References


See Also

More About
- “Genetic Algorithm Terminology” on page 5-15
- “How the Genetic Algorithm Works” on page 5-18
Create Custom Plot Function

About Custom Plot Functions

If none of the plot functions that come with the software is suitable for the output you want to plot, you can write your own custom plot function, which the genetic algorithm calls at each generation to create the plot. This example shows how to create a plot function that displays the change in the best fitness value from the previous generation to the current generation.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new file in the MATLAB Editor.

```matlab
function state = gaplotchange(options, state, flag)
% GAPLOTCHANGE Plots the logarithmic change in the best score from the previous generation.
%
persistent last_best % Best score in the previous generation

if(strcmp(flag,'init')) % Set up the plot
 xlim([1,options.MaxGenerations]);
 axx = gca;
 axx.Yscale = 'log';
 hold on;
 xlabel Generation
 title('Log Absolute Change in Best Fitness Value')
end

best = min(state.Score); % Best score in the current generation
if state.Generation == 0 % Set last_best to best.
 last_best = best;
end
```
else
    change = last_best - best; % Change in best score
    last_best = best;
    if change > 0 % Plot only when the fitness improves
        plot(state.Generation,change,'xr');
    end
end

Then save the file as gaplotchange.m in a folder on the MATLAB path.

**Using the Plot Function**

To use the custom plot function, select **Custom** in the **Plot functions** pane and enter `@gaplotchange` in the field to the right. To compare the custom plot with the best fitness value plot, also select **Best fitness**.

![Plot functions](image)

Now, if you run the example described in “Minimize Rastrigin's Function” on page 5-5, the tool displays plots similar to those shown in the following figure.
The plot only shows changes that are greater than 0, which are improvements in best fitness. The logarithmic scale enables you to see small changes in the best fitness function that the upper plot does not reveal.

**How the Plot Function Works**

The plot function uses information contained in the following structures, which the genetic algorithm passes to the function as input arguments:

- **options** — The current options settings
- **state** — Information about the current generation
• **flag** — Current status of the algorithm

The most important lines of the plot function are the following:

• **persistent last_best**

  Creates the persistent variable last_best—the best score in the previous generation. Persistent variables are preserved over multiple calls to the plot function.

• `xlim([1,options.MaxGenerations]);`

  `axx = gca;`

  `axx.Yscale = 'log';`

  Sets up the plot before the algorithm starts. `options.MaxGenerations` is the maximum number of generations.

• **best = min(state.Score)**

  The field `state.Score` contains the scores of all individuals in the current population. The variable `best` is the minimum score. For a complete description of the fields of the structure `state`, see “Structure of the Plot Functions” on page 11-36.

• **change = last_best - best**

  The variable change is the best score at the previous generation minus the best score in the current generation.

• **if change > 0**

  Plot only if there is a change in the best fitness.

• `plot(state.Generation,change,'xr')`

  Plots the change at the current generation, whose number is contained in `state.Generation`.

The code for `gaplotchange` contains many of the same elements as the code for `gaplotbestf`, the function that creates the best fitness plot.
See Also

Related Examples

- “Custom Output Function for Genetic Algorithm” on page 5-146
- “Plot Options” on page 11-34
Reproduce Results in Optimization App

To reproduce the results of the last run of the genetic algorithm, select the **Use random states from previous run** check box. This resets the states of the random number generators used by the algorithm to their previous values. If you do not change any other settings in the Optimization app, the next time you run the genetic algorithm, it returns the same results as the previous run.

Normally, you should leave **Use random states from previous run** unselected to get the benefit of randomness in the genetic algorithm. Select the **Use random states from previous run** check box if you want to analyze the results of that particular run or show the exact results to others. After the algorithm has run, you can clear your results using the **Clear Status** button in the **Run solver** settings.

**Note** If you select **Include information needed to resume this run**, then selecting **Use random states from previous run** has no effect on the initial population created when you import the problem and run the genetic algorithm on it. The latter option is only intended to reproduce results from the beginning of a new run, not from a resumed run.

**See Also**

**More About**

- “Resume ga” on page 5-81
- “Reproduce Results” on page 5-92
Resume ga

**In this section...**

“Resuming ga From the Final Population” on page 5-81
“Resuming ga From a Previous Run” on page 5-85

**Resuming ga From the Final Population**

The following example shows how to export a problem so that when you import it and click **Start**, the genetic algorithm resumes from the final population saved with the exported problem. To run the example, enter the following in the Optimization app:

1. Set **Fitness function** to @ackleyfcn, which computes Ackley's function, a test function provided with the software.
2. Set **Number of variables** to 10.
3. Select **Best fitness** in the **Plot functions** pane.
4. Click **Start**.

This displays the following plot, or similar.
Suppose you want to experiment by running the genetic algorithm with other options settings, and then later restart this run from its final population with its current options settings. You can do this using the following steps:

1. Click **Export to Workspace**.
2. In the dialog box that appears,
   - Select **Export problem and options to a MATLAB structure named**.
   - Enter a name for the problem and options, such as **ackley_uniform**, in the text field.
   - Select **Include information needed to resume this run**.

The dialog box should now appear as in the following figure.
3 Click OK.

This exports the problem and options to a structure in the MATLAB workspace. You can view the structure in the MATLAB Command Window by entering

```
ackley_uniform
```

```
ackley_uniform =

 fitnessfcn: @ackleyfcn
 nvars: 10
 Aineq: []
 bineq: []
 Aeq: []
 beq: []
 lb: []
 ub: []
 nonlcon: []
 intcon: []
 rngstate: []
 solver: 'ga'
 options: [1x1 struct]
```

After running the genetic algorithm with different options settings or even a different fitness function, you can restore the problem as follows:

1 Select Import Problem from the File menu. This opens the dialog box shown in the following figure.
2 Select ackley_uniform.
3 Click Import.

This sets the Initial population and Initial scores fields in the Population panel to the final population of the run before you exported the problem. All other options are restored to their setting during that run. When you click Start, the genetic algorithm resumes from the saved final population. The following figure shows the best fitness plots from the original run and the restarted run.
Note If, after running the genetic algorithm with the imported problem, you want to restore the genetic algorithm's default behavior of generating a random initial population, delete the population in the **Initial population** field.

The version of Ackley's function in the toolbox differs from the published version of Ackley's function in Ackley [1]. The toolbox version has another exponential applied, leading to flatter regions, so a more difficult optimization problem.

**References**


**Resuming ga From a Previous Run**

By default, *ga* creates a new initial population each time you run it. However, you might get better results by using the final population from a previous run as the initial population for a new run. To do so, you must have saved the final population from the previous run by calling *ga* with the syntax

```
[x,fval,exitflag,output,final_pop] = ga(@fitnessfcn, nvars);
```

The last output argument is the final population. To run *ga* using `final_pop` as the initial population, enter
options = optimoptions('ga','InitialPop', final_pop);
[x,fval,exitflag,output,final_pop2] = ... 
    ga(@fitnessfcn,nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as the initial population for a third run.

In Optimization app, you can choose to export a problem in a way that lets you resume the run. Simply check the box **Include information needed to resume this run** when exporting the problem.

![Export To Workspace](image)

This saves the final population, which becomes the initial population when imported.

If you want to run a problem that was saved with the final population, but would rather not use the initial population, simply delete or otherwise change the initial population in the **Options > Population** pane.

**See Also**

**More About**

- “How the Genetic Algorithm Works” on page 5-18
- “Reproduce Results in Optimization App” on page 5-80
- “Reproduce Results” on page 5-92
Options and Outputs

In this section...

"Running ga with the Default Options" on page 5-87
"Setting Options at the Command Line" on page 5-88
"Additional Output Arguments” on page 5-89

Running ga with the Default Options

To run the genetic algorithm with the default options, call ga with the syntax

\[ [x,fval] = \text{ga}(@\text{fitnessfun}, \text{nvars}) \]

The input arguments to \text{ga} are

- \text{@fitnessfun} — A function handle to the file that computes the fitness function. “Compute Objective Functions” on page 2-2 explains how to write this file.
- \text{nvars} — The number of independent variables for the fitness function.

The output arguments are

- \text{x} — The final point
- \text{fval} — The value of the fitness function at \text{x}

For a description of additional input and output arguments, see the reference page for \text{ga}.

You can run the example described in “Minimize Rastrigin's Function” on page 5-5 from the command line by entering

\[
\text{rng}(1,'\text{twister}') \% \text{ for reproducibility}
[x,fval] = \text{ga}(@\text{rastrignsfcn},2)
\]

This returns

Optimization terminated:
  average change in the fitness value less than options.FunctionTolerance.

\[ x = \]

\[
-1.0421 \quad -1.0018
\]
fval = 2.4385

### Setting Options at the Command Line

You can specify any of the options that are available for `ga` by passing `options` as an input argument to `ga` using the syntax

```
[x,fval] = ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)
```

This syntax does not specify any linear equality, linear inequality, or nonlinear constraints.

You create `options` using the function `optimoptions`.

```
options = optimoptions(@ga);
```

This returns `options` with the default values for its fields. `ga` uses these default values if you do not pass in options as an input argument.

The value of each option is stored in a field of `options`, such as `options.PopulationSize`. You can display any of these values by entering `options` followed by a period and the name of the field. For example, to display the size of the population for the genetic algorithm, enter

```
options.PopulationSize
```

```
ans = '50 when numberOfVariables <= 5, else 200'
```

To create `options` with a field value that is different from the default — for example to set `PopulationSize` to 100 instead of its default value 50 — enter

```
options = optimoptions('ga','PopulationSize',100);
```

This creates `options` with all values set to their defaults except for `PopulationSize`, which is set to 100.

If you now enter,

```
ga(@fitnessfun,nvars,[],[],[],[],[],[],[],[],options)
```

`ga` runs the genetic algorithm with a population size of 100.
If you subsequently decide to change another field in `options`, such as setting `PlotFcn` to `@gaplotbestf`, which plots the best fitness function value at each generation, call `optimoptions` with the syntax

```matlab
options = optimoptions(options,'PlotFcn',@plotbestf);
```

This preserves the current values of all fields of `options` except for `PlotFcn`, which is changed to `@plotbestf`. Note that if you omit the input argument `options`, `optimoptions` resets `PopulationSize` to its default value.

You can also set both `PopulationSize` and `PlotFcn` with the single command

```matlab
options = optimoptions('ga','PopulationSize',100,'PlotFcn',@plotbestf);
```

### Additional Output Arguments

To get more information about the performance of the genetic algorithm, you can call `ga` with the syntax

```matlab
[x,fval,exitflag,output,population,scores] = ga(@fitnessfcn, nvars)
```

Besides `x` and `fval`, this function returns the following additional output arguments:

- `exitflag` — Integer value corresponding to the reason the algorithm terminated
- `output` — Structure containing information about the performance of the algorithm at each generation
- `population` — Final population
- `scores` — Final scores

See the `ga` reference page for more information about these arguments.

### See Also

`ga`

### More About

- “Genetic Algorithm Options” on page 11-33
- “Population Diversity” on page 5-97
Use Exported Options and Problems

As an alternative to creating options using `optimoptions`, you can set the values of options in the Optimization app and then export the options to the MATLAB workspace, as described in “Importing and Exporting Your Work” (Optimization Toolbox). If you export the default options in the Optimization app, the resulting `options` has the same settings as the default options returned by the command

```matlab
options = optimoptions(@ga)
```

except that the exported 'Display' option defaults to 'off', and is 'final' in the default at the command line.

If you export a problem, `ga_problem`, from the Optimization app, you can apply `ga` to it using the syntax

```matlab
[x,fval] = ga(ga_problem)
```

`ga_problem` contains the following fields:

- `fitnessfcn` — Fitness function
- `nvars` — Number of variables for the problem
- `Aineq` — Matrix for inequality constraints
- `Bineq` — Vector for inequality constraints
- `Aeq` — Matrix for equality constraints
- `Beq` — Vector for equality constraints
- `LB` — Lower bound on `x`
- `UB` — Upper bound on `x`
- `nonlcon` — Nonlinear constraint function
- `options` — Optimization options

See Also

More About

- “Importing and Exporting Your Work” (Optimization Toolbox)
• “Options and Outputs” on page 5-87
Reproduce Results

Because the genetic algorithm is stochastic—that is, it makes random choices—you get slightly different results each time you run the genetic algorithm. The algorithm uses the default MATLAB pseudorandom number stream. For more information about random number streams, see `RandStream`. Each time `ga` calls the stream, its state changes. So that the next time `ga` calls the stream, it returns a different random number. This is why the output of `ga` differs each time you run it.

If you need to reproduce your results exactly, you can call `ga` with an output argument that contains the current state of the default stream, and then reset the state to this value before running `ga` again. For example, to reproduce the output of `ga` applied to Rastrigin's function, call `ga` with the syntax

```matlab
gc = RandStream.getDefaultStream;
gc.State = output.rngstate.State;
[x,fval,exitflag] = ga(@rastriginsfcn, 2);
```

Suppose the results are

```matlab
x =
 -1.0421 -1.0018
fval =
 2.4385
exitflag =
 1
```

The state of the stream is stored in `output.rngstate`. To reset the state, enter

```matlab
stream = RandStream.getDefaultStream;
stream.State = output.rngstate.State;
```

If you now run `ga` a second time, you get the same results as before:

```matlab
[x,fval,exitflag] = ga(@rastriginsfcn, 2)
```

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

```matlab
x =
 -1.0421 -1.0018
```
fval =
  2.4385

exitflag =
  1

You can reproduce your run in the Optimization app by checking the box **Use random states from previous run** in the **Run solver and view results** section.

**Note** If you do not need to reproduce your results, it is better not to set the state of the stream, so that you get the benefit of the randomness in the genetic algorithm.

**See Also**

**More About**
- “Reproduce Results in Optimization App” on page 5-80
- “Resume ga” on page 5-81
Run ga from a File

The command-line interface enables you to run the genetic algorithm many times, with different options settings, using a file. For example, you can run the genetic algorithm with different settings for **Crossover fraction** to see which one gives the best results. The following code runs the function ga 21 times, varying `options.CrossoverFraction` from 0 to 1 in increments of 0.05, and records the results.

```matlab
options = optimoptions('ga','MaxGenerations',300,'Display','none');
rng default % for reproducibility
record=[];
for n=0:.05:1
 options = optimoptions(options,'CrossoverFraction',n);
 [x,fval]=ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
 record = [record; fval];
end
```

You can plot the values of `fval` against the crossover fraction with the following commands:

```matlab
plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')
```

The following plot appears.
The plot suggests that you get the best results by setting `options.CrossoverFraction` to a value somewhere between 0.4 and 0.8.

You can get a smoother plot of `fval` as a function of the crossover fraction by running `ga` 20 times and averaging the values of `fval` for each crossover fraction. The following figure shows the resulting plot.
This plot also suggests the range of best choices for options. CrossoverFraction is \(0.4\) to \(0.8\).

**See Also**

**More About**

- “Constrained Minimization Using the Genetic Algorithm”
- “Coding and Minimizing a Fitness Function Using the Genetic Algorithm”
Population Diversity

<table>
<thead>
<tr>
<th>In this section…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Importance of Population Diversity” on page 5-97</td>
</tr>
<tr>
<td>“Setting the Initial Range” on page 5-97</td>
</tr>
<tr>
<td>“Custom Plot Function and Linear Constraints in ga” on page 5-102</td>
</tr>
<tr>
<td>“Setting the Population Size” on page 5-106</td>
</tr>
</tbody>
</table>

**Importance of Population Diversity**

One of the most important factors that determines the performance of the genetic algorithm performs is the diversity of the population. If the average distance between individuals is large, the diversity is high; if the average distance is small, the diversity is low. Getting the right amount of diversity is a matter of start and error. If the diversity is too high or too low, the genetic algorithm might not perform well.

This section explains how to control diversity by setting the initial range of the population. “Setting the Amount of Mutation” on page 5-112 describes how the amount of mutation affects diversity.

This section also explains how to set the population size on page 5-106.

**Setting the Initial Range**

By default, ga creates a random initial population using a creation function. You can specify the range of the vectors in the initial population in the initial range field in Population options.

**Note** The initial range restricts the range of the points in the initial population by specifying the lower and upper bounds. Subsequent generations can contain points whose entries do not lie in the initial range. Set upper and lower bounds for all generations in the Bounds fields in the Constraints panel.

If you know approximately where the solution to a problem lies, specify the initial range so that it contains your guess for the solution. However, the genetic algorithm can find
the solution even if it does not lie in the initial range, if the population has enough diversity.

The following example shows how the initial range affects the performance of the genetic algorithm. The example uses Rastrigin's function, described in “Minimize Rastrigin's Function” on page 5-5. The minimum value of the function is 0, which occurs at the origin.

To run the example, open the ga solver in the Optimization app by entering optimtool('ga') at the command line. Set the following:

- Set **Fitness function** to @rastriginsfcn.
- Set **Number of variables** to 2.
- Select **Best fitness** in the **Plot functions** pane of the **Options** pane.
- Select **Distance** in the **Plot functions** pane.
- Set **Initial range** in the **Population** pane of the **Options** pane to [1; 1.1].

Click **Start** in **Run solver and view results**. Although the results of genetic algorithm computations are random, your results are similar to the following figure, with a best fitness function value of approximately 2.
The upper plot, which displays the best fitness at each generation, shows little progress in lowering the fitness value. The lower plot shows the average distance between individuals at each generation, which is a good measure of the diversity of a population. For this setting of initial range, there is too little diversity for the algorithm to make progress.

To run this problem using command-line functions:

```matlab
options = optimoptions('ga','InitialPopulationRange',[1;1.1],...
'PlotFcns',{@gaplotbestf,@gaplotdistance});
x = ga(@rastriginsfcn,2,[],[],[],[],[],[],options)
```
Next, try setting **Initial range** to $[1; 100]$ and running the algorithm. This time the results are more variable. You might obtain a plot with a best fitness value of about 7, as in the following plot. You might obtain different results.

This time, the genetic algorithm makes progress, but because the average distance between individuals is so large, the best individuals are far from the optimal solution.

To run this problem using command-line functions:

```matlab
options = optimoptions('ga','InitialPopulationRange',[1;100],...
 'PlotFcn',{@gaplotbestf,@gaplotdistance});
x = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options)
```
Finally, set **Initial range** to $[1;2]$ and run the genetic algorithm. Again, there is variability in the result, but you might obtain a result similar to the following figure. Run the optimization several times, and you eventually obtain a final point near $[0;0]$, with a fitness function value near 0.

```plaintext
The diversity in this case is better suited to the problem, so `ga` usually returns a better result than in the previous two cases.

To run this problem using command-line functions:

```plaintext
options = optimoptions('ga','InitialPopulationRange',[1;2],...
                       'PlotFcn',{@gaplotbestf,@gaplotdistance});
x = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options)
```
Custom Plot Function and Linear Constraints in ga

This example shows how @gacreationlinearfeasible, the default creation function for linearly constrained problems, creates a population for ga. The population is well-dispersed, and is biased to lie on the constraint boundaries. The example uses a custom plot function.

Fitness Function

The fitness function is lincontest6, included with your software. This is a quadratic function of two variables:

\[
f(x) = \frac{x_1^2}{2} + x_2^2 - x_1x_2 - 2x_1 - 6x_2.
\]

Custom Plot Function

Save the following code to a file on your MATLAB® path named gaplotshowpopulation2.

```matlab
function state = gaplotshowpopulation2(~,state,flag,fcn)
%gaplotshowpopulation2 Plots the population and linear constraints in 2-d.
%   STATE = gaplotshowpopulation2(OPTIONS,STATE,FLAG) plots the population
%   in two dimensions.
%
%   Example:
%   fun = @lincontest6;
%   options = gaoptimset('PlotFcns',{@gaplotshowpopulation2,fun});
%   [x,fval,exitflag] = ga(fun,2,A,b,[],[],lb,[],[],options);
%
% This plot function works in 2-d only
if size(state.Population,2) > 2
    return;
end
if nargin < 4
    fcn = [];
end
% Dimensions to plot
dimensionsToPlot = [1 2];

switch flag
    % Plot initialization
```
case 'init'
 pop = state.Population(:,dimensionsToPlot);
 plotHandle = plot(pop(:,1),pop(:,2),'*');
 set(plotHandle,'Tag','gaplotshowpopulation2')
 title('Population plot in two dimension','interp','none')
 xlabelStr = sprintf('%s %s','Variable ', num2str(dimensionsToPlot(1)));
 ylabelStr = sprintf('%s %s','Variable ', num2str(dimensionsToPlot(2)));
 xlabel(xlabelStr,'interp','none');
 ylabel(ylabelStr,'interp','none');
 hold on;
 % plot the inequalities
 plot([0 1.5],[2 0.5],'m-.') % x1 + x2 <= 2
 plot([0 1.5],[1 3.5/2],'m-.'); % -x1 + 2*x2 <= 2
 plot([0 1.5],[3 0],'m-.'); % 2*x1 + x2 <= 3
 % plot lower bounds
 plot([0 0], [0 2],'m-.'); % lb = [0 0];
 plot([0 1.5], [0 0],'m-.'); % lb = [0 0];
 set(gca,'xlim',[-0.7,2.2])
 set(gca,'ylim',[-0.7,2.7])
 axx = gcf;
 % Contour plot the objective function
 if ~isempty(fcn)
 range = [-0.5,2;-0.5,2];
 pts = 100;
 span = diff(range')/(pts - 1);
 x = range(1,1): span(1) : range(1,2);
 y = range(2,1): span(2) : range(2,2);

 pop = zeros(pts * pts,2);
 values = zeros(pts,1);
 k = 1;
 for i = 1:pts
 for j = 1:pts
 pop(k,:) = [x(i),y(j)];
 values(k) = fcn(pop(k,:));
 k = k + 1;
 end
 end
 values = reshape(values,pts,pts);
 contour(x,y,values);
 colorbar
 end
 % Show the initial population
The custom plot function plots the lines representing the linear inequalities and bound constraints, plots level curves of the fitness function, and plots the population as it evolves. This plot function expects to have not only the usual inputs (options, state, flag), but also a function handle to the fitness function, @lincontest6 in this example. To generate level curves, the custom plot function needs the fitness function.

Problem Constraints

Include bounds and linear constraints.

A = [1,1;-1,2;2,1];
b = [2;2;3];
lb = zeros(2,1);

Options to Include Plot Function

Set options to include the plot function when ga runs.

options = optimoptions('ga','PlotFcns',...
{{@gaplotshowpopulation2,@lincontest6}});

Run Problem and Observe Population

The initial population, in the first plot, has many members on the linear constraint boundaries. The population is reasonably well-dispersed.

rng default % for reproducibility
[x,fval] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
Population Diversity

Population plot in two dimension

Variable 2

Variable 1
ga converges quickly to a single point, the solution.

Setting the Population Size

The **Population size** field in **Population** options determines the size of the population at each generation. Increasing the population size enables the genetic algorithm to search more points and thereby obtain a better result. However, the larger the population size, the longer the genetic algorithm takes to compute each generation.

Note You should set **Population size** to be at least the value of **Number of variables**, so that the individuals in each population span the space being searched.
You can experiment with different settings for **Population size** that return good results without taking a prohibitive amount of time to run.

See Also

More About
- “Options and Outputs” on page 5-87
- “Global vs. Local Minima Using ga” on page 5-122
Fitness Scaling

Scaling the Fitness Scores

Fitness scaling converts the raw fitness scores that are returned by the fitness function to values in a range that is suitable for the selection function. The selection function uses the scaled fitness values to select the parents of the next generation. The selection function assigns a higher probability of selection to individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic algorithm. If the scaled values vary too widely, the individuals with the highest scaled values reproduce too rapidly, taking over the population gene pool too quickly, and preventing the genetic algorithm from searching other areas of the solution space. On the other hand, if the scaled values vary only a little, all individuals have approximately the same chance of reproduction and the search will progress very slowly.

The default fitness scaling option, Rank, scales the raw scores based on the rank of each individual instead of its score. The rank of an individual is its position in the sorted scores: the rank of the most fit individual is 1, the next most fit is 2, and so on. The rank scaling function assigns scaled values so that

- The scaled value of an individual with rank \(n \) is proportional to \(1/\sqrt{n} \).
- The sum of the scaled values over the entire population equals the number of parents needed to create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20 individuals, sorted in increasing order.
The following plot shows the scaled values of the raw scores using rank scaling.

Because the algorithm minimizes the fitness function, lower raw scores have higher scaled values. Also, because rank scaling assigns values that depend only on an individual's rank, the scaled values shown would be the same for any population of size 20 and number of parents equal to 32.
Comparing Rank and Top Scaling

To see the effect of scaling, you can compare the results of the genetic algorithm using rank scaling with one of the other scaling options, such as Top. By default, top scaling assigns 40 percent of the fittest individuals to the same scaled value and assigns the rest of the individuals to value 0. Using the default selection function, only 40 percent of the fittest individuals can be selected as parents.

The following figure compares the scaled values of a population of size 20 with number of parents equal to 32 using rank and top scaling.

Because top scaling restricts parents to the fittest individuals, it creates less diverse populations than rank scaling. The following plot compares the variances of distances between individuals at each generation using rank and top scaling.
Variance of Distance Between Individuals Using Rank and Top Scaling

See Also

External Websites
- “How the Genetic Algorithm Works” on page 5-18
Vary Mutation and Crossover

In this section...

“Setting the Amount of Mutation” on page 5-112
“Setting the Crossover Fraction” on page 5-114
“Comparing Results for Varying Crossover Fractions” on page 5-119

Setting the Amount of Mutation

The genetic algorithm applies mutations using the option that you specify on the Mutation function pane. The default mutation option, Gaussian, adds a random number, or mutation, chosen from a Gaussian distribution, to each entry of the parent vector. Typically, the amount of mutation, which is proportional to the standard deviation of the distribution, decreases at each new generation. You can control the average amount of mutation that the algorithm applies to a parent in each generation through the Scale and Shrink options:

- **Scale** controls the standard deviation of the mutation at the first generation, which is Scale multiplied by the range of the initial population, which you specify by the Initial range option.
- **Shrink** controls the rate at which the average amount of mutation decreases. The standard deviation decreases linearly so that its final value equals 1 - Shrink times its initial value at the first generation. For example, if Shrink has the default value of 1, then the amount of mutation decreases to 0 at the final step.

You can see the effect of mutation by selecting the plot options Distance and Range, and then running the genetic algorithm on a problem such as the one described in “Minimize Rastrigin’s Function” on page 5-5. The following figure shows the plot after setting the random number generator.

```matlab
crng default % for reproducibility
options = optimoptions('ga','PlotFcns',{@gaplotdistance,@gaplotrange},...
'MaxStallGenerations',200); % to get a long run
[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
```
The upper plot displays the average distance between points in each generation. As the amount of mutation decreases, so does the average distance between individuals, which is approximately 0 at the final generation. The lower plot displays a vertical line at each generation, showing the range from the smallest to the largest fitness value, as well as mean fitness value. As the amount of mutation decreases, so does the range. These plots show that reducing the amount of mutation decreases the diversity of subsequent generations.

For comparison, the following figure shows the plots for **Distance** and **Range** when you set **Shrink** to 0.5.

```matlab
options = optimoptions('ga',options,'MutationFcn',{@mutationgaussian,1,.5});
[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
```
With **Shrink** set to 0.5, the average amount of mutation decreases by a factor of 1/2 by the final generation. As a result, the average distance between individuals decreases less than before.

Setting the Crossover Fraction

The **Crossover fraction** field, in the **Reproduction** options, specifies the fraction of each population, other than elite children, that are made up of crossover children. A crossover fraction of 1 means that all children other than elite individuals are crossover children, while a crossover fraction of 0 means that all children are mutation children. The following example show that neither of these extremes is an effective strategy for optimizing a function.
The example uses the fitness function whose value at a point is the sum of the absolute values of the coordinates at the points. That is,

\[
f(x_1, x_2, ..., x_n) = |x_1| + |x_2| + \cdots + |x_n|.
\]

You can define this function as an anonymous function by setting **Fitness function** to @\(x\) sum(abs(x))

To run the example,

- Set **Fitness function** to @\(x\) sum(abs(x)).
- Set **Number of variables** to 10.
- Set **Initial range** to [-1; 1].
- Select **Best fitness** and **Distance** in the **Plot functions** pane.

Run the example with the default value of 0.8 for **Crossover fraction**, in the **Options > Reproduction** pane. For reproducibility, switch to the command line and enter

```matlab
rng(14,'twister')
```

Switch back to Optimization app, and click **Run solver and view results > Start**. This returns the best fitness value of approximately 0.0799 and displays the following plots.
Crossover Without Mutation

To see how the genetic algorithm performs when there is no mutation, set **Crossover fraction** to 1.0 and click **Start**. This returns the best fitness value of approximately .66 and displays the following plots.

Best fitness

Mean fitness

Average Distance Between Individuals
In this case, the algorithm selects genes from the individuals in the initial population and recombines them. The algorithm cannot create any new genes because there is no mutation. The algorithm generates the best individual that it can using these genes at generation number 8, where the best fitness plot becomes level. After this, it creates new copies of the best individual, which are then selected for the next generation. By generation number 17, all individuals in the population are the same, namely, the best individual. When this occurs, the average distance between individuals is 0. Since the algorithm cannot improve the best fitness value after generation 8, it stalls after 50 more generations, because Stall generations is set to 50.
Mutation Without Crossover

To see how the genetic algorithm performs when there is no crossover, set **Crossover fraction** to 0 and click **Start**. This returns the best fitness value of approximately 3 and displays the following plots.

In this case, the random changes that the algorithm applies never improve the fitness value of the best individual at the first generation. While it improves the individual genes of other individuals, as you can see in the upper plot by the decrease in the mean value of the fitness function, these improved genes are never combined with the genes of the best individual because there is no crossover. As a result, the best fitness plot is level and the algorithm stalls at generation number 50.
Comparing Results for Varying Crossover Fractions

The example `deterministicstudy.m`, which is included in the software, compares the results of applying the genetic algorithm to Rastrigin's function with **Crossover fraction** set to 0, .2, .4, .6, .8, and 1. The example runs for 10 generations. At each generation, the example plots the means and standard deviations of the best fitness values in all the preceding generations, for each value of the **Crossover fraction**.

To run the example, enter

deterministicstudy

at the MATLAB prompt. When the example is finished, the plots appear as in the following figure.
The lower plot shows the means and standard deviations of the best fitness values over 10 generations, for each of the values of the crossover fraction. The upper plot shows a color-coded display of the best fitness values in each generation.

For this fitness function, setting **Crossover fraction** to 0.8 yields the best result. However, for another fitness function, a different setting for **Crossover fraction** might yield the best result.
See Also

More About

• “How the Genetic Algorithm Works” on page 5-18
• “Custom Output Function for Genetic Algorithm” on page 5-146
Global vs. Local Minima Using ga

In this section...

“Searching for a Global Minimum” on page 5-122
“Running the Genetic Algorithm on the Example” on page 5-124

Searching for a Global Minimum

Sometimes the goal of an optimization is to find the global minimum or maximum of a function—a point where the function value is smaller or larger at any other point in the search space. However, optimization algorithms sometimes return a local minimum—a point where the function value is smaller than at nearby points, but possibly greater than at a distant point in the search space. The genetic algorithm can sometimes overcome this deficiency with the right settings.

As an example, consider the following function

\[f(x) = \begin{cases}
-\exp\left(-\left(\frac{x}{100}\right)^2\right) & \text{for } x \leq 100, \\
-\exp(-1) + (x - 100)(x - 102) & \text{for } x > 100.
\end{cases} \]

The following figure shows a plot of the function.
Code for generating the figure

```matlab
t = -10:.1:103;
for ii = 1:length(t)
    y(ii) = two_min(t(ii));
end
plot(t,y)
```

The function has two local minima, one at $x = 0$, where the function value is -1, and the other at $x = 101$, where the function value is $-1 - 1/e$. Since the latter value is smaller, the global minimum occurs at $x = 101$.
Running the Genetic Algorithm on the Example

To run the genetic algorithm on this example,

1. Copy and paste the following code into a new file in the MATLAB Editor.

   ```matlab
   function y = two_min(x)
   if x <= 100
       y = -exp(-(x/100).^2);
   else
       y = -exp(-1) + (x-100)*(x-102);
   end
   ```

2. Save the file as `two_min.m` in a folder on the MATLAB path.

3. In the Optimization app,
 - Set **Fitness function** to `@two_min`.
 - Set **Number of variables** to 1.
 - Click **Start**.

The genetic algorithm returns a point very close to the local minimum at \(x = 0 \).

The following custom plot shows why the algorithm finds the local minimum rather than the global minimum. The plot shows the range of individuals in each generation and the population mean.
Code for Creating the Figure

```matlab
function state = gaplot1drange(options, state, flag)
% gaplot1drange Plots the mean and the range of the population.
% STATE = gaplot1drange(OPTIONS, STATE, FLAG) plots the mean and the range
% (highest and the lowest) of individuals (1-D only).

% Example:
% Create options that use gaplot1drange
% as the plot function
% options = optimoptions('ga', 'PlotFcn', @gaplot1drange);

% Copyright 2012-2014 The MathWorks, Inc.
```
if isinf(options.MaxGenerations) || size(state.Population,2) > 1
 title('Plot Not Available','interp','none');
 return;
end

generation = state.Generation;
score = state.Population;
smean = mean(score);
Y = smean;
L = smean - min(score);
U = max(score) - smean;

switch flag
 case 'init'
 set(gca,'xlim',[1,options.MaxGenerations+1]);
 plotRange = errorbar(generation,Y,L,U);
 set(plotRange,'Tag','gaplot1drange');
 title('Range of Population, Mean','interp','none')
 xlabel('Generation','interp','none')
 case 'iter'
 plotRange = findobj(get(gca,'Children'),'Tag','gaplot1drange');
 newX = [get(plotRange,'Xdata') generation];
 newY = [get(plotRange,'Ydata') Y];
 newL = [get(plotRange,'Ldata') L];
 newU = [get(plotRange,'Udata') U];
 set(plotRange,'Xdata',newX,'Ydata',newY,'Ldata',newL,'Udata',newU);
end

Note that all individuals lie between –70 and 70. The population never explores points near the global minimum at x = 101.

To run this problem using command-line functions:

options = optimoptions('ga','PlotFcn',@gaplot1drange);
x = ga(@two_min,1,[],[],[],[],[],[],[],options)

One way to make the genetic algorithm explore a wider range of points—that is, to increase the diversity of the populations—is to increase the Initial range. The Initial range does not have to include the point x = 101, but it must be large enough so that the algorithm generates individuals near x = 101. Set Initial range to [-10;90] as shown in the following figure.
Then click **Start**. The genetic algorithm returns a point very close to 101.
This time, the custom plot shows a much wider range of individuals. There are individuals near 101 from early on, and the population mean begins to converge to 101.

To run this problem using command-line functions:

```matlab
options = optimoptions('ga','PlotFcn',@gaplot1drange,...
    'InitialPopulationRange',[-10;90]);
x = ga(@two_min,1,[],[],[],[],[],[],[],options)
```

![Range of Population, Mean](image)
See Also

More About

• “What Is Global Optimization?” on page 1-22
• “Isolated Global Minimum” on page 3-117
Hybrid Scheme in the Genetic Algorithm

Introduction

This example shows how to use a hybrid scheme to optimize a function using the Genetic Algorithm and another optimization method. \texttt{ga} can reach the region near an optimum point relatively quickly, but it can take many function evaluations to achieve convergence. A commonly used technique is to run \texttt{ga} for a small number of generations to get near an optimum point. Then the solution from \texttt{ga} is used as an initial point for another optimization solver that is faster and more efficient for local search.

Rosenbrock's Function

In this example we will optimize Rosenbrock's function (also known as Dejong's second function):

\[
f(x) = 100 \times (x(2) - x(1)^2)^2 + (1 - x(1))^2
\]

This function is notorious in optimization because of the slow convergence most methods exhibit when trying to minimize this function. This function has a unique minimum at the point \(x^* = (1,1)\) where it has a function value \(f(x^*) = 0\).

We can view the code for this fitness function.

type \texttt{dejong2fcn.m}

function scores = dejong2fcn(pop)
%DEJONG2FCN Compute DeJongs second function.
%This function is also known as Rosenbrock's function

% Copyright 2003-2004 The MathWorks, Inc.

scores = zeros(size(pop,1),1);
for i = 1:size(pop,1)
 p = pop(i,:);
 scores(i) = 100 * (p(1)^2 - p(2))^2 + (1 - p(1))^2;
end

We use the function \texttt{plotobjective} in the toolbox to plot the function \texttt{dejong2fcn} over the range \([-2 2; -2 2]\).

\texttt{plotobjective(@dejong2fcn,[-2 2; -2 2]);}
To start, we will use the Genetic Algorithm, \texttt{ga}, alone to find the minimum of Rosenbrock's function. We need to supply \texttt{ga} with a function handle to the fitness function \texttt{dejong2fcn.m}. Also, \texttt{ga} needs to know the how many variables are in the problem, which is two for this function.

\begin{verbatim}
FitnessFcn = @dejong2fcn;
numberOfVariables = 2;
\end{verbatim}

Some plot functions can be selected to monitor the performance of the solver.

\begin{verbatim}
options = optimoptions(@ga,'PlotFcns',{@gaplotbestf,@gaplotstopping});
\end{verbatim}

We set the random number stream for reproducibility, and run \texttt{ga} with the above inputs.
rng('default')
[x,fval] = ga(FitnessFcn,numberOfVariables,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1x2

 0.3454 0.1444

fval = 0.4913

The global optimum is at x* = (1,1). ga found a point near the optimum, but could not get a more accurate answer with the default stopping criteria. By changing the stopping criteria, we might find a more accurate solution, but it may take many more function
evaluations to reach $x^* = (1,1)$. Instead, we can use a more efficient local search that starts where ga left off. The hybrid function field in ga provides this feature automatically.

Adding a Hybrid Function

We will use a hybrid function to solve the optimization problem, i.e., when ga stops (or you ask it to stop) this hybrid function will start from the final point returned by ga. Our choices are fminsearch, patternsearch, or fminunc. Since this optimization example is smooth, i.e., continuously differentiable, we can use the fminunc function from Optimization Toolbox as our hybrid function. Since fminunc has its own options structure, we provide it as an additional argument when specifying the hybrid function.

```matlab
fminuncOptions = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');
options = optimoptions(options,'HybridFcn',{@fminunc, fminuncOptions});
```

Run ga solver again with fminunc as the hybrid function.

```matlab
[x,fval] = ga(FitnessFcn,numberOfVariables,[],[],[],[],[],[],[],options)
```
Using the Genetic Algorithm

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Func-count</th>
<th>f(x)</th>
<th>Step-size</th>
<th>First-order optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0.664192</td>
<td></td>
<td>28.1</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>0.489131</td>
<td>0.000402247</td>
<td>0.373</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>0.48383</td>
<td>91</td>
<td>1.22</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>0.422036</td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>0.225633</td>
<td>0.295475</td>
<td>7.36</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>0.221682</td>
<td>0.269766</td>
<td>10.1</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>0.126376</td>
<td>10</td>
<td>7.96</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>0.0839643</td>
<td>1</td>
<td>0.457</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>0.0519836</td>
<td>0.5</td>
<td>4.56</td>
</tr>
<tr>
<td>9</td>
<td>57</td>
<td>0.0387946</td>
<td>1</td>
<td>5.37</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>0.0149721</td>
<td>1</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Local minimum found.

Optimization completed because the size of the gradient is less than the value of the optimality tolerance.

\[x = 1 \times 2 \]

\[
\begin{array}{cc}
1.0000 & 1.0000 \\
\end{array}
\]

fval = 1.7215e-11

The first plot shows the best and mean values of the population in every generation. The best value found by ga when it terminated is also shown in the plot title. When ga terminated, fminunc (the hybrid function) was automatically called with the best point found by ga so far. The solution x and fval is the result of using ga and fminunc together. As shown here, using the hybrid function can improve the accuracy of the solution efficiently.

See Also

More About

- “Options and Outputs” on page 5-87
- “Global vs. Local Minima Using ga” on page 5-122
Set Maximum Number of Generations

The **Generations** option in **Stopping criteria** determines the maximum number of generations the genetic algorithm runs for—see “Stopping Conditions for the Algorithm” on page 5-22. Increasing the **Generations** option often improves the final result.

As an example, change the settings in the Optimization app as follows:

- Set **Fitness function** to @rastriginsfcn.
- Set **Number of variables** to 10.
- Select **Best fitness** in the **Plot functions** pane.
- Set **Generations** to Inf.
- Set **Stall generations** to Inf.
- Set **Stall time limit** to Inf.

Run the genetic algorithm for approximately 300 generations and click **Stop**. The following figure shows the resulting best fitness plot after 300 generations.
Note that the algorithm *stalls* at approximately generation number 170—that is, there is no immediate improvement in the fitness function after generation 170. If you restore Stall generations to its default value of 50, the algorithm could terminate at approximately generation number 220. If the genetic algorithm stalls repeatedly with the current setting for Generations, you can try increasing both the Generations and Stall generations options to improve your results. However, changing other options might be more effective.

The command-line options relating to Generations and Stall generations are MaxGenerations and MaxStallGenerations, respectively. To run this example at the command line:

```matlab
options = optimoptions('ga','MaxGenerations',300,...
                      'MaxStallGenerations',Inf,'PlotFcns',{@gaplotbestf});
x = ga(@rastriginsfcn,10,[],[],[],[],[],[],[],options);
```
Note When *Mutation function* is set to Gaussian, increasing the value of *Generations* might actually worsen the final result. This can occur because the Gaussian mutation function decreases the average amount of mutation in each generation by a factor that depends on the value specified in *Generations*. Consequently, the setting for *Generations* affects the behavior of the algorithm.

See Also

More About
- “Options and Outputs” on page 5-87
- “Population Diversity” on page 5-97
Vectorize the Fitness Function

In this section...

“Vectorize for Speed” on page 5-139
“Vectorized Constraints” on page 5-140

Vectorize for Speed

The genetic algorithm usually runs faster if you vectorize the fitness function. This means that the genetic algorithm only calls the fitness function once, but expects the fitness function to compute the fitness for all individuals in the current population at once. To vectorize the fitness function,

• Write the file that computes the function so that it accepts a matrix with arbitrarily many rows, corresponding to the individuals in the population. For example, to vectorize the function

\[f(x_1, x_2) = x_1^2 - 2x_1x_2 + 6x_1 + x_2^2 - 6x_2 \]

write the file using the following code:

```matlab
z = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).^2 - 6*x(:,2);
```

The colon in the first entry of \(x \) indicates all the rows of \(x \), so that \(x(:, 1) \) is a vector. The \(^\text{.}^\text{.^2} \) and \(^\text{.}^\text{.*} \) operators perform elementwise operations on the vectors.

• At the command line, set the UseVectorized option to true using `optimoptions`.
• In the Optimization app, set User function evaluation > Evaluate fitness and constraint functions to vectorized.

Note The fitness function, and any nonlinear constraint function, must accept an arbitrary number of rows to use the Vectorize option. `ga` sometimes evaluates a single row even during a vectorized calculation.

The following comparison, run at the command line, shows the improvement in speed with vectorization.

```matlab
options = optimoptions('ga','PopulationSize',2000);
tic;ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);toc
```
Optimization terminated: maximum number of generations exceeded.
Elapsed time is 12.054973 seconds.

options = optimoptions(options,'UseVectorized',true);
tic;
ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);
toc

Optimization terminated: maximum number of generations exceeded.
Elapsed time is 1.860655 seconds.

Vectorized Constraints

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

“Vectorize the Objective and Constraint Functions” on page 4-111 contains an example of how to vectorize both for the solver patternsearch. The syntax is nearly identical for ga. The only difference is that patternsearch can have its patterns appear as either row or column vectors; the corresponding vectors for ga are the population vectors, which are always rows.

See Also

More About
• “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
• “Compute Objective Functions” on page 2-2
Nonlinear Constraints Using ga

Suppose you want to minimize the simple fitness function of two variables \(x_1 \) and \(x_2 \),

\[
\min_{x} f(x) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2
\]

subject to the following nonlinear inequality constraints and bounds

\[
\begin{align*}
&x_1 \cdot x_2 + x_1 - x_2 + 1.5 \leq 0 \quad \text{(nonlinear constraint)} \\
&10 - x_1 \cdot x_2 \leq 0 \quad \text{(nonlinear constraint)} \\
&0 \leq x_1 \leq 1 \quad \text{(bound)} \\
&0 \leq x_2 \leq 13 \quad \text{(bound)}
\end{align*}
\]

Begin by creating the fitness and constraint functions. First, create a file named simple_fitness.m as follows:

```matlab
function y = simple_fitness(x)
    y = 100*(x(1)^2 - x(2))^2 + (1 - x(1))^2;
```

(simple_fitness.m ships with Global Optimization Toolbox software.)

The genetic algorithm function, ga, assumes the fitness function will take one input \(x \), where \(x \) has as many elements as the number of variables in the problem. The fitness function computes the value of the function and returns that scalar value in its one return argument, \(y \).

Then create a file, simple_constraint.m, containing the constraints

```matlab
function [c, ceq] = simple_constraint(x)
    c = [1.5 + x(1)*x(2) + x(1) - x(2);...
         -x(1)*x(2) + 10];
    ceq = [];
```

The ga function assumes the constraint function will take one input \(x \), where \(x \) has as many elements as the number of variables in the problem. The constraint function computes the values of all the inequality and equality constraints and returns two vectors, \(c \) and \(ceq \), respectively.

To minimize the fitness function, you need to pass a function handle to the fitness function as the first argument to the ga function, as well as specifying the number of variables as
the second argument. Lower and upper bounds are provided as LB and UB respectively. In addition, you also need to pass a function handle to the nonlinear constraint function.

ObjectiveFunction = @simple_fitness;
nvars = 2; % Number of variables
LB = [0 0]; % Lower bound
UB = [1 13]; % Upper bound
ConstraintFunction = @simple_constraint;
rng(1,'twister') % for reproducibility
[x,fval] = ga(ObjectiveFunction,nvars,...
 [],[],[],[],LB,UB,ConstraintFunction)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

x =

 0.8123 12.3137

fval =

 1.3581e+04

For problems without integer constraints, the genetic algorithm solver handles linear constraints and bounds differently from nonlinear constraints. All the linear constraints and bounds are satisfied throughout the optimization. However, ga may not satisfy all the nonlinear constraints at every generation. If ga converges to a solution, the nonlinear constraints will be satisfied at that solution.

If there are integer constraints, ga does not enforce the feasibility of linear constraints, and instead adds any linear constraint violations to the penalty function. See “Integer ga Algorithm” on page 5-59.

ga uses the mutation and crossover functions to produce new individuals at every generation. ga satisfies linear and bound constraints by using mutation and crossover functions that only generate feasible points. For example, in the previous call to ga, the mutation function mutationguassian does not necessarily obey the bound constraints. So when there are bound or linear constraints, the default ga mutation function is mutationadaptfeasible. If you provide a custom mutation function, this custom function must only generate points that are feasible with respect to the linear and bound constraints. All the included crossover functions generate points that satisfy the linear constraints and bounds except the crossoverheuristic function.
To see the progress of the optimization, use the `optimoptions` function to create options that select two plot functions. The first plot function is `gaplotbestf`, which plots the best and mean score of the population at every generation. The second plot function is `gaplotmaxconstr`, which plots the maximum constraint violation of nonlinear constraints at every generation. You can also visualize the progress of the algorithm by displaying information to the command window using the 'Display' option.

```matlab
options = optimoptions('ga','PlotFcns',{@gaplotbestf,@gaplotmaxconstr},'Display','iter');

Rerun the ga solver.

```matlab
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],...
 LB,UB,ConstraintFunction,options)
```

<table>
<thead>
<tr>
<th>Generation</th>
<th>Func-count</th>
<th>Best</th>
<th>Max</th>
<th>Stall Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2670</td>
<td>13603.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5282</td>
<td>13578.2</td>
<td>5.718e-06</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7994</td>
<td>14033.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11794</td>
<td>13573.7</td>
<td>0.0009577</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimization terminated: average change in the fitness value less than `options.FunctionTolerance` and constraint violation is less than `options.ConstraintTolerance`.

```matlab
x =

0.8122 12.3104

fval =

1.3574e+04
```
You can provide a start point for the minimization to the `ga` function by specifying the `InitialPopulationMatrix` option. The `ga` function will use the first individual from `InitialPopulationMatrix` as a start point for a constrained minimization.

\[ X_0 = [0.5 \ 0.5]; \]  
% Start point (row vector)  
\[ \text{options} = \text{optimoptions}('ga', \text{options}, 'InitialPopulationMatrix', X_0); \]

Now, rerun the `ga` solver.

\[ [x,fval] = \text{ga}(\text{ObjectiveFunction}, nvars, [], [], [], [], [], [], [], [], [], LB, UB, \text{ConstraintFunction}, \text{options}); \]
1       2670       13578.1    0.0005269      0
2       5282       13578.2    1.815e-05      0
3       8494       14031.3            0      0
4       14356       14054.9            0      0
5       18706       13573.5    0.0009986      0

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

x =

    0.8122   12.3103

fval =

    1.3573e+04

See Also

More About

- “Constrained Minimization Using the Genetic Algorithm”
- “Genetic Algorithm Options”
Custom Output Function for Genetic Algorithm

This example shows the use of a custom output function in the genetic algorithm solver `ga`. The custom output function performs the following tasks:

- Plot the range of the first two components of the population as a rectangle. The left and lower sides of the rectangle are at the minima of \( x(1) \) and \( x(2) \) respectively, and the right and upper sides are at the respective maxima.
- Halt the iterations when the best function value drops below \( 0.1 \) (the minimum value of the objective function is \( 0 \)).
- Record the entire population in a variable named `gapopulationhistory` in your MATLAB® workspace every 10 generations.
- Modify the initial crossover fraction to the custom value \( 0.2 \), and then update it back to the default \( 0.8 \) after 25 generations. The initial setting of \( 0.2 \) causes the first several iterations to search primarily at random via mutation. The later setting of \( 0.8 \) causes the following iterations to search primarily via combinations of existing population members.

Objective Function

The objective function is for four-dimensional \( x \) whose first two components are integer-valued.

```matlab
function f = gaintobj(x)
f = rastriginsfcn([x(1)-6 x(2)-13]);
f = f + rastriginsfcn([x(3)-3*pi x(4)-5*pi]);
```

Output Function

The custom output function sets up the plot during initialization, and maintains the plot during iterations. The output function also pauses the iterations for \( 0.1 \)s so you can see the plot as it develops.

```matlab
function [state,options,optchanged] = gaoutfun(options,state,flag)
persistent h1 history r
optchanged = false;
switch flag
 case 'init'
```
h1 = figure;
ax = gca;
ax.XLim = [0 21];
ax.YLim = [0 21];
l1 = min(state.Population(:,1));
m1 = max(state.Population(:,1));
l2 = min(state.Population(:,2));
m2 = max(state.Population(:,2));
r = rectangle(ax,'Position', [l1 l2 m1-l1 m2-l2]);

% Update the history every 10 generations.
if rem(state.Generation,10) == 0
    ss = size(history,3);
    history(:,:,ss+1) = state.Population;
    assignin('base','gapopulationhistory',history);
end

% Find the best objective function, and stop if it is low.
ibest = state.Best(end);
ibest = find(state.Score == ibest,1,'last');
bestx = state.Population(ibest,:);
bestf = gaintobj(bestx);
if bestf <= 0.1
    state.StopFlag = 'y';
    disp('Got below 0.1')
end

% Update the plot.
figure(h1)
l1 = min(state.Population(:,1));
m1 = max(state.Population(:,1));
l2 = min(state.Population(:,2));
m2 = max(state.Population(:,2));
r.Position = [l1 l2 m1-l1 m2-l2];
pause(0.1)

% Update the fraction of mutation and crossover after 25 generations.
if state.Generation == 25
    options.CrossoverFraction = 0.8;
    optchanged = true;
end

% Include the final population in the history.
ss = size(history,3);
history(:,:,ss+1) = state.Population;
Problem Setup and Solution

Set the lower and upper bounds.

\[
lb = [1 \ 1 \ -30 \ -30];
ub = [20 \ 20 \ 70 \ 70];
\]

Set the integer variables and number of variables.

\[
\text{IntCon} = [1 \ 2];
n\text{var} = 4;
\]

Set options to call the custom output function, and to initially have little crossover.

\[
options = \text{optimoptions}('ga','OutputFcn',@gaoutfun,'CrossoverFraction',0.2);
\]

For reproducibility, set the random number generator.

\[
\text{rng(10)}
\]

Set the objective function and call the solver.

\[
\text{fun} = @gaintobj;
[x,fval] = \text{ga(fun,nvar,[],[],[],[],lb,ub,[],IntCon,options)}
\]

Got below 0.1
Optimization terminated: y;

\[
x =
\begin{array}{cccc}
6.0000 & 13.0000 & 9.4217 & 15.7016 \\
\end{array}
\]

\[
fval =
\begin{array}{c}
0.0098 \\
\end{array}
\]
The output function halted the solver.

View the size of the recorded history.

disp(size(gapopulationhistory))

40 4 7
There are seven records of the 40-by-4 population matrix (40 individuals, each a 4-element row vector).

**See Also**

**Related Examples**
- “Create Custom Plot Function” on page 5-75
- “Output Function Options“ on page 11-58
Custom Data Type Optimization Using the Genetic Algorithm

This example shows how to use the genetic algorithm to minimize a function using a custom data type. The genetic algorithm is customized to solve the traveling salesman problem.

Traveling Salesman Problem

The traveling salesman problem is an optimization problem where there is a finite number of cities, and the cost of travel between each city is known. The goal is to find an ordered set of all the cities for the salesman to visit such that the cost is minimized. To solve the traveling salesman problem, we need a list of city locations and distances, or cost, between each of them.

Our salesman is visiting cities in the United States. The file usborder.mat contains a map of the United States in the variables x and y, and a geometrically simplified version of the same map in the variables xx and yy.

load('usborder.mat','x','y','xx','yy');
plot(x,y,'Color','red'); hold on;
We will generate random locations of cities inside the border of the United States. We can use the `inpolygon` function to make sure that all the cities are inside or very close to the US boundary.

cities = 40;
locations = zeros(cities,2);
n = 1;
while (n <= cities)
    xp = rand*1.5;
    yp = rand;
    if inpolygon(xp,yp,xx,yy)
        locations(n,1) = xp;
        locations(n,2) = yp;
        n = n+1;
Blue circles represent the locations of the cities where the salesman needs to travel and deliver or pickup goods. Given the list of city locations, we can calculate the distance matrix for all the cities.

```
distances = zeros(cities);
for count1=1:cities,
 for count2=1:count1,
 x1 = locations(count1,1);
 y1 = locations(count1,2);
 x2 = locations(count2,1);
 y2 = locations(count2,2);
 distances(count1,count2) = sqrt((x1-x2)^2 + (y1-y2)^2);
 end
end
```

```matlab
plot(locations(:,1),locations(:,2),'bo');
```
y2 = locations(count2,2);
distances(count1,count2)=sqrt((x1-x2)^2+(y1-y2)^2);
distances(count2,count1)=distances(count1,count2);
end;
end;

Customizing the Genetic Algorithm for a Custom Data Type

By default, the genetic algorithm solver solves optimization problems based on double and binary string data types. The functions for creation, crossover, and mutation assume the population is a matrix of type double, or logical in the case of binary strings. The genetic algorithm solver can also work on optimization problems involving arbitrary data types. You can use any data structure you like for your population. For example, a custom data type can be specified using a MATLAB® cell array. In order to use ga with a population of type cell array you must provide a creation function, a crossover function, and a mutation function that will work on your data type, e.g., a cell array.

Required Functions for the Traveling Salesman Problem

This section shows how to create and register the three required functions. An individual in the population for the traveling salesman problem is an ordered set, and so the population can easily be represented using a cell array. The custom creation function for the traveling salesman problem will create a cell array, say \( P \), where each element represents an ordered set of cities as a permutation vector. That is, the salesman will travel in the order specified in \( P[i] \). The creation function will return a cell array of size \( \text{PopulationSize} \).

type create_permutations.m

function pop = create_permutations(NVARS,FitnessFcn,options)
%CREATE_PERMUTATIONS Creates a population of permutations.
% POP = CREATE_PERMUTATION(NVARS,FITNESSFCN,OPTIONS) creates a population
% of permutations POP each with a length of NVARS.
% The arguments to the function are
% NVARS: Number of variables
% FITNESSFCN: Fitness function
% OPTIONS: Options structure used by the GA

% Copyright 2004-2007 The MathWorks, Inc.

totalPopulationSize = sum(options.PopulationSize);
n = NVARS;
pop = cell(totalPopulationSize,1);
for i = 1:totalPopulationSize
    pop{i} = randperm(n);
end

The custom crossover function takes a cell array, the population, and returns a cell array, the children that result from the crossover.

```
type crossover_permutation.m
```

```matlab
function xoverKids = crossover_permutation(parents,options,NVARS, ...
 FitnessFcn,thisScore,thisPopulation)
 % CROSSOVER_PERMUTATION Custom crossover function for traveling salesman.
 % XOVERKIDS = CROSSOVER_PERMUTATION(PARENTS,OPTIONS,NVARS, ...
 % FITNESSFCN,THISSCORE,THISPOPULATION) crossovers PARENTS to produce
 % the children XOVERKIDS.
 %
 % The arguments to the function are
 % PARENTS: Parents chosen by the selection function
 % OPTIONS: Options created from OPTIMOPTIONS
 % NVARS: Number of variables
 % FITNESSFCN: Fitness function
 % STATE: State structure used by the GA solver
 % THISSCORE: Vector of scores of the current population
 % THISPOPULATION: Matrix of individuals in the current population
 %
 % Copyright 2004-2015 The MathWorks, Inc.

 nKids = length(parents)/2;
 xoverKids = cell(nKids,1); % Normally zeros(nKids,NVARS);
 index = 1;

 for i=1:nKids
 % here is where the special knowledge that the population is a cell
 % array is used. Normally, this would be thisPopulation(parents(index),:);
 parent = thisPopulation{parents(index)};
 index = index + 2;

 % Flip a section of parent1.
 p1 = ceil((length(parent) -1) * rand);
 p2 = p1 + ceil((length(parent) - p1 - 1) * rand);
 child = parent;
 child(p1:p2) = fliplr(child(p1:p2));
```
The custom mutation function takes an individual, which is an ordered set of cities, and returns a mutated ordered set.

We also need a fitness function for the traveling salesman problem. The fitness of an individual is the total distance traveled for an ordered set of cities. The fitness function also needs the distance matrix to calculate the total distance.
function scores = traveling_salesman_fitness(x,distances)
%TRAVELING_SALESMAN_FITNESS_ Custom fitness function for TSP.
%   SCORES = TRAVELING_SALESMAN_FITNESS(X,DISTANCES) Calculate the fitness
%   of an individual. The fitness is the total distance traveled for an
%   ordered set of cities in X. DISTANCE(A,B) is the distance from the city
%   A to the city B.
%
%   Copyright 2004-2007 The MathWorks, Inc.

scores = zeros(size(x,1),1);
for j = 1:size(x,1)
    % here is where the special knowledge that the population is a cell
    % array is used. Normally, this would be pop(j,:);
    p = x{j};
    f = distances(p(end),p(1));
    for i = 2:length(p)
        f = f + distances(p(i-1),p(i));
    end
    scores(j) = f;
end

%ga will call our fitness function with just one argument x, but our fitness function has two
%arguments: x, distances. We can use an anonymous function to capture the values of
%the additional argument, the distances matrix. We create a function handle FitnessFcn
%to an anonymous function that takes one input x, but calls
%traveling_salesman_fitness with x, and distances. The variable, distances has a
%value when the function handle FitnessFcn is created, so these values are captured by
%the anonymous function.

%distances defined earlier
FitnessFcn = @(x) traveling_salesman_fitness(x,distances);

We can add a custom plot function to plot the location of the cities and the current best
route. A red circle represents a city and the blue lines represent a valid path between two
cities.

function state = traveling_salesman_plot(options,state,flag,locations)
%   TRAVELING_SALESMAN_PLOT Custom plot function for traveling salesman.
%   STATE = TRAVELING_SALESMAN_PLOT(OPTIONS,STATE,FLAG,LOCATIONS) Plot city
%   LOCATIONS and connecting route between them. This function is specific

5-157
% to the traveling salesman problem.

% Copyright 2004-2006 The MathWorks, Inc.
persistent x y xx yy
if strcmpi(flag,'init')
    load('usborder.mat','x','y','xx','yy');
end
plot(x,y,'Color','red');
axis([-0.1 1.5 -0.2 1.2]);
hold on;
[unused,i] = min(state.Score);
genotype = state.Population{i};
plot(locations(:,1),locations(:,2),'bo');
plot(locations(genotype,1),locations(genotype,2));
hold off

Once again we will use an anonymous function to create a function handle to an anonymous function which calls traveling_salesman_plot with the additional argument locations.

%locations defined earlier
my_plot = @(options,state,flag) traveling_salesman_plot(options, ... 
           state,flag,locations);

**Genetic Algorithm Options Setup**

First, we will create an options container to indicate a custom data type and the population range.

options = optimoptions(@ga, 'PopulationType', 'custom','InitialPopulationRange', ... 
                      [1;cities]);

We choose the custom creation, crossover, mutation, and plot functions that we have created, as well as setting some stopping conditions.

options = optimoptions(options,'CreationFcn',@create_permutations, ... 
                        'CrossoverFcn',@crossover_permutation, ... 
                        'MutationFcn',@mutate_permutation, ... 
                        'PlotFcn', my_plot, ... 
                        'MaxGenerations',500,'PopulationSize',60, ... 
                        'MaxStallGenerations',200,'UseVectorized',true);

Finally, we call the genetic algorithm with our problem information.
numberOfVariables = cities;
[x,fval,reason,output] = ... 
  ga(FitnessFcn,numberOfVariables,[],[],[],[],[],[],[],options)

Optimization terminated: maximum number of generations exceeded.

x =

1x1 cell array

{1x40 double}

fval =

5.3846

reason =

0

output =

struct with fields:

  problemtype: 'unconstrained'
  rngstate: [1x1 struct]
  generations: 500
  funccount: 30060
  message: 'Optimization terminated: maximum number of generations exceeded.'
  maxconstraint: []
The plot shows the location of the cities in blue circles as well as the path found by the genetic algorithm that the salesman will travel. The salesman can start at either end of the route and at the end, return to the starting city to get back home.

**See Also**

**More About**
- “Traveling Salesman Problem: Solver-Based” (Optimization Toolbox)
When to Use a Hybrid Function

A hybrid function is a function that continues the optimization after the original solver terminates.

These Global Optimization Toolbox solvers can automatically run a hybrid function, or second solver, after they finish:

- `ga`
- `gamultiobj`
- `particleswarm`
- `simulannealbnd`

To run a hybrid function, set the `HybridFcn` option to the second solver.

A hybrid function can obtain a more accurate solution, starting from the relatively rough solution found by the first solver, in the following circumstances:

- Whether or not the objective function has nonsmooth regions, if the solution is in a smooth region with smooth constraints, then use a hybrid function from Optimization Toolbox, such as `fmincon`.
- If the objective function or a constraint is nonsmooth near the solution, then use `patternsearch` as a hybrid function.
- Suppose that the problem has multiple local minima, and you want to obtain an accurate global solution. The single-objective solvers can search for the vicinity of a global solution, but do not necessarily obtain an extremely accurate result. If the objective function is smooth, then use a hybrid function from Optimization Toolbox, such as `fminunc`.
- For smooth multiobjective problems, a hybrid function usually improves on solutions from `gamultiobj`.

To see which solvers are available as hybrid functions, refer to the `options` input argument on the reference page for the original solver. To tune the hybrid function, you can include a separate set of options for the hybrid function. For example, if the hybrid function is `fmincon`:

```matlab
hybridopts = optimoptions('fmincon','OptimalityTolerance',1e-10);
options = optimoptions('ga','HybridFcn',{fmincon,hybridopts});
[x,fval] = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)
```
See Also

gagamultiobjparticleswarmsimulannealbnd

More About

- “Hybrid Scheme in the Genetic Algorithm” on page 5-130
- “Tune Particle Swarm Optimization Process” on page 6-15
- “Design Optimization of a Welded Beam” on page 9-70
Particle Swarm Optimization

- “What Is Particle Swarm Optimization?” on page 6-2
- “Optimize Using Particle Swarm” on page 6-3
- “Particle Swarm Output Function” on page 6-6
- “Particle Swarm Optimization Algorithm” on page 6-10
- “Tune Particle Swarm Optimization Process” on page 6-15
What Is Particle Swarm Optimization?

Particle swarm is a population-based algorithm. In this respect it is similar to the genetic algorithm. A collection of individuals called particles move in steps throughout a region. At each step, the algorithm evaluates the objective function at each particle. After this evaluation, the algorithm decides on the new velocity of each particle. The particles move, then the algorithm reevaluates.

The inspiration for the algorithm is flocks of birds or insects swarming. Each particle is attracted to some degree to the best location it has found so far, and also to the best location any member of the swarm has found. After some steps, the population can coalesce around one location, or can coalesce around a few locations, or can continue to move.

The `particleswarm` function attempts to optimize using a “Particle Swarm Optimization Algorithm” on page 6-10.

See Also

Related Examples

- “Optimize Using Particle Swarm” on page 6-3

More About

- “Particle Swarm Optimization Algorithm” on page 6-10
Optimize Using Particle Swarm

This example shows how to optimize using the particleswarm solver.

The objective function in this example is De Jong’s fifth function, which is included with Global Optimization Toolbox software.

dejong5fcn

This function has 25 local minima.

Try to find the minimum of the function using the default particleswarm settings.
fun = @dejong5fcn;
nvars = 2;
rng default % For reproducibility
[x,fval,exitflag] = particleswarm(fun,nvars)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1x2
   -31.9521  -16.0176

fval = 5.9288
exitflag = 1

Is the solution x the global optimum? It is unclear at this point. Looking at the function
plot shows that the function has local minima for components in the range [-50,50]. So
restricting the range of the variables to [-50,50] helps the solver locate a global
minimum.

lb = [-50;-50];
ub = -lb;
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1x2
   -16.0079  -31.9697

fval = 1.9920
exitflag = 1

This looks promising: the new solution has lower fval than the previous one. But is x
truly a global solution? Try minimizing again with more particles, to better search the
region.

options = optimoptions('particleswarm','SwarmSize',100);
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)
Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

\[
x = 1 \times 2
\]
\[
-31.9781 \quad -31.9784
\]

\[
fval = 0.9980
\]
\[
extitflag = 1
\]

This looks even more promising. But is this answer a global solution, and how accurate is it? Rerun the solver with a hybrid function. \texttt{particleswarm} calls the hybrid function after \texttt{particleswarm} finishes its iterations.

\[
\text{options.HybridFcn} = @fmincon;
\]
\[
[x,fval,exitflag] = \text{particleswarm}(\text{fun},\text{nvars},\text{lb},\text{ub},\text{options})
\]

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

\[
x = 1 \times 2
\]
\[
-31.9783 \quad -31.9784
\]

\[
fval = 0.9980
\]
\[
extitflag = 1
\]

\texttt{particleswarm} found essentially the same solution as before. This gives you some confidence that \texttt{particleswarm} reports a local minimum and that the final \(x\) is the global solution.

**See Also**

**More About**

- “What Is Particle Swarm Optimization?” on page 6-2
- “Particle Swarm Optimization Algorithm” on page 6-10
Particle Swarm Output Function

This example shows how to use an output function for `particleswarm`. The output function plots the range that the particles occupy in each dimension.

An output function runs after each iteration of the solver. For syntax details, and for the data available to an output function, see the `particleswarm` options reference pages.

**Custom Plot Function**

This output function draws a plot with one line per dimension. Each line represents the range of the particles in the swarm in that dimension. The plot is log-scaled to accommodate wide ranges. If the swarm converges to a single point, then the range of each dimension goes to zero. But if the swarm does not converge to a single point, then the range stays away from zero in some dimensions.

Copy the following code into a file named `pswplotranges.m` on your MATLAB® path. The code sets up `nplot` subplots, where `nplot` is the number of dimensions in the problem.

```matlab
function stop = pswplotranges(optimValues,state)

stop = false; % This function does not stop the solver

switch state
 case 'init'
 nplot = size(optimValues.swarm,2); % Number of dimensions
 for i = 1:nplot % Set up axes for plot
 subplot(nplot,1,i);
 tag = sprintf('psoplotrange_var_%g',i); % Set a tag for the subplot
 semilogy(optimValues.iteration,0,'-k','Tag',tag); % Log-scaled plot
 ylabel(num2str(i))
 end
 xlabel('Iteration','interp','none'); % Iteration number at the bottom
 subplot(nplot,1,1) % Title at the top
 title('Log range of particles by component')
 setappdata(gcf,'t0',tic); % Set up a timer to plot only when needed
 case 'iter'
 nplot = size(optimValues.swarm,2); % Number of dimensions
 for i = 1:nplot
 subplot(nplot,1,i);
 % Calculate the range of the particles at dimension i
 irange = max(optimValues.swarm(:,i)) - min(optimValues.swarm(:,i));
```
tag = sprintf('psoplotrange_var_%g',i);
plotHandle = findobj(get(gca,'Children'),'Tag',tag); % Get the subplot
xdata = plotHandle.XData; % Get the X data from the plot
newX = [xdata optimValues.iteration]; % Add the new iteration
plotHandle.XData = newX; % Put the X data into the plot
ydata = plotHandle.YData; % Get the Y data from the plot
newY = [ydata irange]; % Add the new value
plotHandle.YData = newY; % Put the Y data into the plot
end
if toc(getappdata(gcf,'t0')) > 1/30 % If 1/30 s has passed
drawnow % Show the plot
setappdata(gcf,'t0',tic); % Reset the timer
end

Objective Function

The multirosenbrock function is a generalization of Rosenbrock's function to any even number of dimensions. It has a global minimum of 0 at the point [1,1,1,1,...].

```matlab
function F = multirosenbrock(x)
% This function is a multidimensional generalization of Rosenbrock's
% function. It operates in a vectorized manner, assuming that x is a matrix
% whose rows are the individuals.

% Copyright 2014 by The MathWorks, Inc.

N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
 error('Input rows must have an even number of elements')
end

odds = 1:2:N-1;
evens = 2:2:N;
F = zeros(size(x));
F(:,odds) = 1-x(:,odds);
F(:,evens) = 10*(x(:,evens)-x(:,odds).^2);
F = sum(F.^2,2);
```
Set Up and Run Problem

Set the `multirosenbrock` function as the objective function. Use four variables. Set a lower bound of -10 and an upper bound of 10 on each variable.

```matlab
fun = @multirosenbrock;
nvar = 4; % A 4-D problem
lb = -10*ones(nvar,1); % Bounds to help the solver converge
ub = -lb;
```

Set options to use the output function.

```matlab
options = optimoptions(@particleswarm,'OutputFcn',@pswplotranges);
```

Set the random number generator to get reproducible output. Then call the solver.

```matlab
rng default % For reproducibility
[x,fval,eflag] = particleswarm(fun,nvar,lb,ub,options)
```

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
x =
 0.9964 0.9930 0.9835 0.9681
```

```matlab
fval =
 3.4935e-04
```

```matlab
eflag =
 1
```
Results

The solver returned a point near the optimum $[1, 1, 1, 1]$. But the span of the swarm did not converge to zero.

See Also

More About
- “Output Function and Plot Function” on page 11-67
Particle Swarm Optimization Algorithm

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Algorithm Outline” on page 6-10</td>
</tr>
<tr>
<td>“Initialization” on page 6-10</td>
</tr>
<tr>
<td>“Iteration Steps” on page 6-11</td>
</tr>
<tr>
<td>“Stopping Criteria” on page 6-12</td>
</tr>
</tbody>
</table>

**Algorithm Outline**

`particleswarm` is based on the algorithm described in Kennedy and Eberhart [1], using modifications suggested in Mezura-Montes and Coello Coello [2] and in Pedersen [3].

The particle swarm algorithm begins by creating the initial particles, and assigning them initial velocities.

It evaluates the objective function at each particle location, and determines the best (lowest) function value and the best location.

It chooses new velocities, based on the current velocity, the particles’ individual best locations, and the best locations of their neighbors.

It then iteratively updates the particle locations (the new location is the old one plus the velocity, modified to keep particles within bounds), velocities, and neighbors.

Iterations proceed until the algorithm reaches a stopping criterion.

Here are the details of the steps.

**Initialization**

By default, `particleswarm` creates particles at random uniformly within bounds. If there is an unbounded component, `particleswarm` creates particles with a random uniform distribution from -1000 to 1000. If you have only one bound, `particleswarm` shifts the creation to have the bound as an endpoint, and a creation interval 2000 wide. Particle i has position \(x(i)\), which is a row vector with `nvars` elements. Control the span of the initial swarm using the `InitialSwarmSpan` option.
Similarly, particleswarm creates initial particle velocities $v$ at random uniformly within the range $[-r, r]$, where $r$ is the vector of initial ranges. The range of component $k$ is $\min(\text{ub}(k) - \text{lb}(k), \text{InitialSwarmSpan}(k))$.

particleswarm evaluates the objective function at all particles. It records the current position $p(i)$ of each particle $i$. In subsequent iterations, $p(i)$ will be the location of the best objective function that particle $i$ has found. And $b$ is the best over all particles: $b = \min(\text{fun}(p(i)))$. $d$ is the location such that $b = \text{fun}(d)$.

particleswarm initializes the neighborhood size $N$ to $\min\text{NeighborhoodSize} = \max(2, \text{floor}(	ext{SwarmSize} \times \text{MinNeighborsFraction}))$.

particleswarm initializes the inertia $W = \max(\text{InertiaRange})$, or if $\text{InertiaRange}$ is negative, it sets $W = \min(\text{InertiaRange})$.

particleswarm initializes the stall counter $c = 0$.

For convenience of notation, set the variable $y_1 = \text{SelfAdjustmentWeight}$, and $y_2 = \text{SocialAdjustmentWeight}$, where $\text{SelfAdjustmentWeight}$ and $\text{SocialAdjustmentWeight}$ are options.

**Iteration Steps**

The algorithm updates the swarm as follows. For particle $i$, which is at position $x(i)$:

1. Choose a random subset $S$ of $N$ particles other than $i$.
2. Find $f_{\text{best}}(S)$, the best objective function among the neighbors, and $g(S)$, the position of the neighbor with the best objective function.
3. For $u_1$ and $u_2$ uniformly $(0,1)$ distributed random vectors of length $nvars$, update the velocity

   $$v = W \cdot v + y_1 \cdot u_1 \cdot (p - x) + y_2 \cdot u_2 \cdot (g - x).$$

   This update uses a weighted sum of:

   - The previous velocity $v$
   - The difference between the current position and the best position the particle has seen $p - x$
   - The difference between the current position and the best position in the current neighborhood $g - x$
4 Update the position \( x = x + v \).
5 Enforce the bounds. If any component of \( x \) is outside a bound, set it equal to that bound. For those components that were just set to a bound, if the velocity \( v \) of that component points outside the bound, set that velocity component to zero.
6 Evaluate the objective function \( f = \text{fun}(x) \).
7 If \( f < \text{fun}(p) \), then set \( p = x \). This step ensures \( p \) has the best position the particle has seen.
8 The next steps of the algorithm apply to parameters of the entire swarm, not the individual particles. Consider the smallest \( f = \min(f(j)) \) among the particles \( j \) in the swarm.

If \( f < b \), then set \( b = f \) and \( d = x \). This step ensures \( b \) has the best objective function in the swarm, and \( d \) has the best location.
9 If, in the previous step, the best function value was lowered, then set \( \text{flag} = \text{true} \). Otherwise, \( \text{flag} = \text{false} \). The value of \( \text{flag} \) is used in the next step.
10 Update the neighborhood. If \( \text{flag} = \text{true} \):
   a Set \( c = \max(0, c-1) \).
   b Set \( N \) to \( \min\text{NeighborhoodSize} \).
   c If \( c < 2 \), then set \( W = 2*W \).
   d If \( c > 5 \), then set \( W = W/2 \).
   e Ensure that \( W \) is in the bounds of the \text{InertiaRange} option.

If \( \text{flag} = \text{false} \):
   a Set \( c = c+1 \).
   b Set \( N = \min(N + \min\text{NeighborhoodSize}, \text{SwarmSize}) \).

**Stopping Criteria**

\text{particleswarm} iterates until it reaches a stopping criterion.
If `particleswarm` stops with exit flag 1, it optionally calls a hybrid function after it exits.

## References


See Also

More About

• “What Is Particle Swarm Optimization?” on page 6-2
• “Optimize Using Particle Swarm” on page 6-3
Tune Particle Swarm Optimization Process

This example shows how to optimize using the `particleswarm` solver. The particle swarm algorithm moves a population of particles called a swarm toward a minimum of an objective function. The velocity of each particle in the swarm changes according to three factors:

- The effect of inertia (`InertiaRange` option)
- An attraction to the best location the particle has visited (`SelfAdjustmentWeight` option)
- An attraction to the best location among neighboring particles (`SocialAdjustmentWeight` option)

This example shows some effects of changing particle swarm options.

**When to Modify Options**

Often, `particleswarm` finds a good solution when using its default options. For example, it optimizes `rastriginsfcn` well with the default options. This function has many local minima, and a global minimum of 0 at the point `[0,0]`.

```matlab
rng default % for reproducibility
[x,fval,exitflag,output] = particleswarm(@rastriginsfcn,2);
```

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
formatstring = 'particleswarm reached the value %f using %d function evaluations.\n';
fprintf(formatstring,fval,output.funccount)
```

particleswarm reached the value 0.000000 using 2560 function evaluations.

For this function, you know the optimal objective value, so you know that the solver found it. But what if you do not know the solution? One way to evaluate the solution quality is to rerun the solver.

```matlab
[x,fval,exitflag,output] = particleswarm(@rastriginsfcn,2);
```

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
fprintf(formatstring,fval,output.funccount)
```

particleswarm reached the value 0.000000 using 1480 function evaluations.
Both the solution and the number of function evaluations are similar to the previous run. This suggests that the solver is not having difficulty arriving at a solution.

**Difficult Objective Function Using Default Parameters**

The Rosenbrock function is well known to be a difficult function to optimize. This example uses a multidimensional version of the Rosenbrock function. The function has a minimum value of 0 at the point \([1,1,1,...]\).

```matlab
rng default % for reproducibility
nvars = 6; % choose any even value for nvars
fun = @multirosenbrock;
[x,fval,exitflag,output] = particleswarm(fun,nvars);
```

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
fprintf(formatstring,fval,output.funccount)
particleswarm reached the value 3106.436648 using 12960 function evaluations.
```

The solver did not find a very good solution.

**Bound the Search Space**

Try bounding the space to help the solver locate a good point.

```matlab
lb = -10*ones(1,nvars);
ub = -lb;
[xbounded,fvalbounded,exitflagbounded,outputbounded] = particleswarm(fun,nvars,lb,ub);
```

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
fprintf(formatstring,fvalbounded,outputbounded.funccount)
particleswarm reached the value 0.000006 using 71160 function evaluations.
```

The solver found a much better solution. But it took a very large number of function evaluations to do so.

**Change Options**

Perhaps the solver would converge faster if it paid more attention to the best neighbor in the entire space, rather than some smaller neighborhood.
options = optimoptions('particleswarm','MinNeighborsFraction',1);
[xn,fvaln,exitflagn,outputn] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln,outputn.funccount)
particleswarm reached the value 0.000462 using 30180 function evaluations.

While the solver took fewer function evaluations, it is unclear if this was due to randomness or to a better option setting.

Perhaps you should raise the SelfAdjustmentWeight option.

options.SelfAdjustmentWeight = 1.9;
[xn2,fvaln2,exitflagn2,outputn2] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln2,outputn2.funccount)
particleswarm reached the value 0.000074 using 18780 function evaluations.

This time particleswarm took even fewer function evaluations. Is this improvement due to randomness, or are the option settings really worthwhile? Rerun the solver and look at the number of function evaluations.

[xn3,fvaln3,exitflagn3,outputn3] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln3,outputn3.funccount)
particleswarm reached the value 0.157026 using 53040 function evaluations.

This time the number of function evaluations increased. Apparently, this SelfAdjustmentWeight setting does not necessarily improve performance.

**Provide an Initial Point**

Perhaps particleswarm would do better if it started from a known point that is not too far from the solution. Try the origin. Give a few individuals at the same initial point. Their random velocities ensure that they do not remain together.
x0 = zeros(20,6); % set 20 individuals as row vectors
options.InitialSwarmMatrix = x0; % the rest of the swarm is random
[xn3,fvaln3,exitflagn3,outputn3] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln3,outputn3.funccount)

particleswarm reached the value 0.039015 using 32100 function evaluations.

The number of function evaluations decreased again.

Vectorize for Speed

The multirosenbrock function allows for vectorized function evaluation. This means
that it can simultaneously evaluate the objective function for all particles in the swarm.
This usually speeds up the solver considerably.

rng default % do a fair comparison
options.UseVectorized = true;
tic
[xv,fvalv,exitflagv,outputv] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.
toc

Elapsed time is 0.921974 seconds.

options.UseVectorized = false;
rng default
tic
[xnv,fvalnv,exitflagnv,outputnv] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.
toc

Elapsed time is 2.055635 seconds.

The vectorized calculation took about half the time of the serial calculation.
**Plot Function**

You can view the progress of the solver using a plot function.

```matlab
options = optimoptions(options,'PlotFcn',@pswplotbestf);
rng default
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);
```

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
fprintf(formatstring,fval,output.funccount)
```

particleswarm reached the value 0.079755 using 24960 function evaluations.
Use More Particles

Frequently, using more particles obtains a more accurate solution.

```matlab
rng default
options.SwarmSize = 200;
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);
```

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
fprintf(formatstring,fval,output.funccount)
particleswarm reached the value 0.000424 using 169400 function evaluations.
```
Hybrid Function

particleswarm can search through several basins of attraction to arrive at a good local solution. Sometimes, though, it does not arrive at a sufficiently accurate local minimum. Try improving the final answer by specifying a hybrid function that runs after the particle swarm algorithm stops. Reset the number of particles to their original value, 60, to see the difference the hybrid function makes.

```matlab
rng default
options.HybridFcn = @fmincon;
options.SwarmSize = 60;
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);
```
Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fval,output.funccount)

particleswarm reached the value 0.000000 using 25191 function evaluations.

While the hybrid function improved the result, the plot function shows the same final value as before. This is because the plot function shows only the particle swarm algorithm iterations, and not the hybrid function calculations. The hybrid function caused the final function value to be very close to the true minimum value of 0.

**See Also**

**More About**

- “Particle Swarm Options” on page 11-63
Surrogate Optimization
What Is Surrogate Optimization?

A surrogate is a function that approximates an objective function. The surrogate is useful because it takes little time to evaluate. So, for example, to search for a point that minimizes an objective function, simply evaluate the surrogate on thousands of points, and take the best value as an approximation to the minimizer of the objective function.

Surrogate optimization is best suited to time-consuming objective functions. The objective function need not be smooth, but the algorithm works best when the objective function is continuous.

Surrogate optimization attempts to find a global minimum of an objective function using few objective function evaluations. To do so, the algorithm tries to balance the optimization process between two goals: exploration and speed.

- Exploration to search for a global minimum.
- Speed to obtain a good solution in few objective function evaluations.

The algorithm has been proven to converge to a global solution for continuous objective functions on bounded domains. See Gutmann [1]. However, this convergence is not fast.

In general, there is no useful stopping criterion that stops the solver when it is near a global solution. Typically, you set a stopping criterion of a number of function evaluations or an amount of time, and take the best solution found within this computational budget.

For details of the surrogateopt algorithm, see “Surrogate Optimization Algorithm” on page 7-4.

References


See Also
surrogateopt
More About

- “Surrogate Optimization Algorithm” on page 7-4
- “Compare Surrogate Optimization with Other Solvers” on page 7-33
Surrogate Optimization Algorithm

Serial surrogateopt Algorithm

- “Serial surrogateopt Algorithm Overview” on page 7-4
- “Definitions for Surrogate Optimization” on page 7-5
- “Construct Surrogate Details” on page 7-5
- “Search for Minimum Details” on page 7-7
- “Merit Function Definition” on page 7-9

Serial surrogateopt Algorithm Overview

The surrogate optimization algorithm alternates between two phases.

- **Construct Surrogate** — Create `options.MinSurrogatePoints` random points within the bounds. Evaluate the (expensive) objective function at these points. Construct a surrogate of the objective function by interpolating a radial basis function through these points.

- **Search for Minimum** — Search for a minimum of the objective function by sampling several thousand random points within the bounds. Evaluate a merit function based on the surrogate value at these points and on the distances between them and points where the (expensive) objective function has been evaluated. Choose the best point as a candidate, as measured by the merit function. Evaluate the objective function at the best candidate point. This point is called an adaptive point. Update the surrogate using this value and search again.

During the Construct Surrogate phase, the algorithm constructs sample points from a quasirandom sequence. Constructing an interpolating radial basis function takes at least `nvars + 1` sample points, where `nvars` is the number of problem variables. The default value of `options.MinSurrogatePoints` is `2*nvars` or `20`, whichever is larger.

The algorithm stops the Search for Minimum phase when all the search points are too close (less than the option `MinSampleDistance`) to points where the objective function
was previously evaluated. See “Search for Minimum Details” on page 7-7. This switch from the Search for Minimum phase is called surrogate reset.

**Definitions for Surrogate Optimization**

The surrogate optimization algorithm description uses the following definitions.

- **Current** — The point where the objective function was evaluated most recently.
- **Incumbent** — The point with the smallest objective function value among all evaluated since the most recent surrogate reset.
- **Best** — The point with the smallest objective function value among all evaluated so far.
- **Initial** — The points, if any, that you pass to the solver in the `InitialPoints` option.
- **Random points** — Points in the Construct Surrogate phase where the solver evaluates the objective function. Generally, the solver takes these points from a quasirandom sequence, scaled and shifted to remain within the bounds. A quasirandom sequence is similar to a pseudorandom sequence such as `rand` returns, but is more evenly spaced. See https://en.wikipedia.org/wiki/Low-discrepancy_sequence. However, when the number of variables is above 500, the solver takes points from a Latin hypercube sequence. See https://en.wikipedia.org/wiki/Latin_hypercube_sampling.
- **Adaptive points** — Points in the Search for Minimum phase where the solver evaluates the objective function.
- **Merit function** — See “Merit Function Definition” on page 7-9.
- **Evaluated points** — All points at which the objective function value is known. These points include initial points, Construct Surrogate points, and Search for Minimum points at which the solver evaluates the objective function.
- **Sample points** — Pseudorandom points where the solver evaluates the merit function during the Search for Minimum phase. These points are not points at which the solver evaluates the objective function, except as described in “Search for Minimum Details” on page 7-7.

**Construct Surrogate Details**

To construct the surrogate, the algorithm chooses quasirandom points within the bounds. If you pass an initial set of points in the `InitialPoints` option, the algorithm uses those points and new quasirandom points (if necessary) to reach a total of `options.MinSurrogatePoints`. On subsequent Construct Surrogate phases, the algorithm uses `options.MinSurrogatePoints` quasirandom points. The algorithm evaluates the objective function at these points.
The algorithm constructs a surrogate as an interpolation of the objective function by using a radial basis function (RBF) interpolator. RBF interpolation has several convenient properties that make it suitable for constructing a surrogate:

- An RBF interpolator is defined using the same formula in any number of dimensions and with any number of points.
- An RBF interpolator takes the prescribed values at the evaluated points.
- Evaluating an RBF interpolator takes little time.
- Adding a point to an existing interpolation takes relatively little time.
- Constructing an RBF interpolator involves solving an N-by-N linear system of equations, where N is the number of surrogate points. As Powell [1] showed, this system has a unique solution for many RBFs.
- `surrogateopt` uses a cubic RBF with a linear tail. This RBF minimizes a measure of bumpiness. See Gutmann [4].

### Create Surrogate

![Diagram showing the process of creating a surrogate.](image)

The algorithm uses only initial points and random points in the first Construct Surrogate phase, and uses only random points in subsequent Construct Surrogate phases. In particular, the algorithm does not use any adaptive points from the Search for Minimum phase in this surrogate.
Search for Minimum Details

The solver searches for a minimum of the objective function by following a procedure that is related to local search. The solver initializes a scale for the search with the value 0.2. The scale is like a search region radius or the mesh size in a pattern search. The solver starts from the incumbent point, which is the point with the smallest objective function value since the last surrogate reset. The solver searches for a minimum of a merit function that relates to both the surrogate and to a distance from existing search points, to try to balance minimizing the surrogate and searching the space. See “Merit Function Definition” on page 7-9.

The solver adds hundreds or thousands of pseudorandom vectors with scaled length to the incumbent point to obtain sample points. These vectors have normal distributions, shifted and scaled by the bounds in each dimension, and multiplied by the scale. If necessary, the solver alters the sample points so that they stay within the bounds. The solver evaluates the merit function at the sample points, but not at any point within options.MinSampleDistance of a previously evaluated point. The point with the lowest merit function value is called the adaptive point. The solver evaluates the objective function value at the adaptive point, and updates the surrogate with this value. If the objective function value at the adaptive point is sufficiently lower than the incumbent value, then the solver deems the search successful and sets the adaptive point as the incumbent. Otherwise, the solver deems the search unsuccessful and does not change the incumbent.
Search for Minimum

The solver changes the scale when the first of these conditions is met:

- Three successful searches occur since the last scale change. In this case, the scale is doubled, up to a maximum scale length of 0.8 times the size of the box specified by the bounds.
- \(\max(5, nvar)\) unsuccessful searches occur since the last scale change, where \(nvar\) is the number of problem variables. In this case, the scale is halved, down to a minimum scale length of \(1e-5\) times the size of the box specified by the bounds.

In this way, the random search eventually concentrates near an incumbent point that has a small objective function value. Then the solver geometrically reduces the scale toward the minimum scale length.
The solver does not evaluate the merit function at points within `options.MinSampleDistance` of an evaluated point (see “Definitions for Surrogate Optimization” on page 7-5). The solver switches from the Search for Minimum phase to a Construct Surrogate phase (in other words, performs a surrogate reset) when all sample points are within `MinSampleDistance` of evaluated points. Generally, this reset occurs after the solver reduces the scale so that all sample points are tightly clustered around the incumbent.

**Merit Function Definition**

The merit function $f_{\text{merit}}(x)$ is a weighted combination of two terms:

- **Scaled surrogate.** Define $s_{\text{min}}$ as the minimum surrogate value among the sample points, $s_{\text{max}}$ as the maximum, and $s(x)$ as the surrogate value at the point $x$. Then the scaled surrogate $S(x)$ is

  $$S(x) = \frac{s(x) - s_{\text{min}}}{s_{\text{max}} - s_{\text{min}}}.$$

  $s(x)$ is nonnegative and is zero at points $x$ that have minimal surrogate value among sample points.

- **Scaled distance.** Define $x_j, j = 1, \ldots, k$ as the $k$ evaluated points. Define $d_{ij}$ as the distance from sample point $i$ to evaluated point $k$. Set $d_{\text{min}} = \min(d_{ij})$ and $d_{\text{max}} = \max(d_{ij})$, where the minimum and maximum are taken over all $i$ and $j$. The scaled distance $D(x)$ is

  $$D(x) = \frac{d_{\text{max}} - d(x)}{d_{\text{max}} - d_{\text{min}}},$$

  where $d(x)$ is the minimum distance of the point $x$ to an evaluated point. $D(x)$ is nonnegative and is zero at points $x$ that are maximally far from evaluated points. So, minimizing $D(x)$ leads the algorithm to points that are far from evaluated points.

The merit function is a convex combination of the scaled surrogate and scaled distance. For a weight $w$ with $0 < w < 1$, the merit function is

$$f_{\text{merit}}(x) = wS(x) + (1 - w)D(x).$$

A large value of $w$ gives importance to the surrogate values, causing the search to minimize the surrogate. A small value of $w$ gives importance to points that are far from evaluated points, leading the search to new regions. During the Search for Minimum
phase, the weight \( w \) cycles through these four values, as suggested by Regis and Shoemaker [2]: 0.3, 0.5, 0.7, and 0.95.

**Parallel surrogateopt Algorithm**

The parallel `surrogateopt` algorithm differs from the serial algorithm as follows:

- The parallel algorithm maintains a queue of points on which to evaluate the objective function. This queue is 30% larger than the number of parallel workers, rounded up. The queue is larger than the number of workers to minimize the chance that a worker is idle because no point is available to evaluate.
- The scheduler takes points from the queue in a FIFO fashion and assigns them to workers as they become idle, asynchronously.
- When the algorithm switches between phases (Search for Minimum and Construct Surrogate), the existing points being evaluated remain in service, and any other points in the queue are flushed (discarded from the queue). So, generally, the number of random points that the algorithm creates for the Construct Surrogate phase is at most `options.MinSurrogatePoints + PoolSize`, where `PoolSize` is the number of parallel workers. Similarly, after a surrogate reset, the algorithm still has `PoolSize - 1` adaptive points that its workers are evaluating.

**Note** Currently, parallel surrogate optimization does not necessarily give reproducible results, due to the nonreproducibility of parallel timing, which can lead to different execution paths.

**References**


**See Also**
surrogateopt

**More About**
- “Interpret surrogateoptplot” on page 7-28
- “Surrogate Optimization”

**External Websites**
Surrogate Optimization of Multidimensional Function

This example shows the behavior of three recommended solvers on a minimization problem. The objective function is the `multirosenbrock` function:

```matlab
type multirosenbrock

function F = multirosenbrock(x)
% This function is a multidimensional generalization of Rosenbrock's
% function. It operates in a vectorized manner, assuming that x is a matrix
% whose rows are the individuals.

% Copyright 2014 by The MathWorks, Inc.

N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
 error('Input rows must have an even number of elements')
end

odds = 1:2:N-1;
evens = 2:2:N;
F = zeros(size(x));
F(:,odds) = 1-x(:,odds);
F(:,evens) = 10*(x(:,evens)-x(:,odds).^2);
F = sum(F.^2,2);
```

The `multirosenbrock` function has a single local minimum of 0 at the point \([1,1,...,1]\). See how well the three best solvers for general nonlinear problems work on this function in 20 dimensions with a challenging maximum function count of only 200.

Set up the problem.

```matlab
N = 20; % any even number
mf = 200; % max fun evals
fun = @multirosenbrock;
lb = -3*ones(1,N);
ub = -lb;
rng default
x0 = -3*rand(1,N);
```

Set options for `surrogateopt` to use only 200 function evaluations, and then run the solver.
options = optimoptions('surrogateopt','MaxFunctionEvaluations',mf);
[xm,fvalm,~,~,pop] = surrogateopt(fun,lb,ub,options);

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

Set similar options for patternsearch, including a plot function to monitor the optimization.

psopts = optimoptions('patternsearch','PlotFcns','psplotbestf','MaxFunctionEvaluations',mf);
[psol,pfval] = patternsearch(fun,x0,[],[],[],[],lb,ub,[],psopts);
Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.

Set similar options for `fmincon`.

```matlab
opts = optimoptions('fmincon','PlotFcns', 'optimplotfval', 'MaxFunctionEvaluations', mf);
[fmsol, fmfval, eflag, fmoutput] = fmincon(fun, x0, [], [], [], [], [], [], [], opts);
```
Solver stopped prematurely.

`fmincon` stopped because it exceeded the function evaluation limit, `options.MaxFunctionEvaluations = 2.000000e+02`.

For this extremely restricted number of function evaluations, the `surrogateopt` solution is closest to the true minimum value of 0.

```matlab
table(fvalm,pfval,fmfval,'VariableNames',{'surrogateopt','patternsearch','fmincon'})
```

ans=1×3 table
surrogateopt patternsearch fmincon
____________________  _______________  __________
Allowing another 200 function evaluations shows that the other solvers rapidly approach the true solution, while surrogateopt does not improve significantly. Restart the solvers from their previous solutions, which adds 200 function evaluations to each optimization.

```matlab
options = optimoptions(options,'InitialPoints',pop);
[xm,fvalm,~,~,pop] = surrogateopt(fun,lb,ub,options);
```

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

```matlab
[psol,pfval] = patternsearch(fun,psol,[],[],[],[],lb,ub,[],psopts);
```
Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.

\[
\text{[fmsol,fmfval,eflag,fmoutput] = fmincon(fun,fmsol,[],[],[],[],lb,ub,[],opts);}
\]
Solver stopped prematurely.

fmincon stopped because it exceeded the function evaluation limit, options.MaxFunctionEvaluations = 2.000000e+02.

\begin{verbatim}
    table(fvalm,pfval,fmfval,'VariableNames',{'surrogateopt','patternsearch','fmincon'})
\end{verbatim}

\begin{verbatim}
    ans=1x3 table
    surrogateopt patternsearch  fmincon
        9.7502       407.88       8.5989
\end{verbatim}
See Also
surrogateopt

More About
• “Surrogate Optimization”
Modify surrogateopt Options

This example shows how to search for a global minimum by running surrogateopt on a two-dimensional problem that has six local minima. The example then shows how to modify some options to search more effectively.

Define the objective function sixmin as follows.

```matlab
sixmin = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ... + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
```

Plot the function.

```matlab
[X,Y] = meshgrid(linspace(-2.1,2.1),linspace(-1.2,1.2));
Z = sixmin([X(:),Y(:)]);
Z = reshape(Z,size(X));
surf(X,Y,Z,'EdgeColor','none')
view(-139,31)
```
The function has six local minima and two global minima.

Run `surrogateopt` on the problem using the `'surrogateoptplot'` plot function in the region bounded in each direction by `-2.1, 2.1`. To understand the `'surrogateoptplot'` plot, see “Interpret surrogateoptplot” on page 7-28.

```matlab
rng default
lb = [-2.1,-2.1];
ub = -lb;
opts = optimoptions('surrogateopt','PlotFcn','surrogateoptplot');
[xs,fvals,eflags,outputs] = surrogateopt(sixmin,lb,ub,opts);
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

Set a smaller value for the MinSurrogatePoints option to see whether the change helps the solver reach the global minimum faster.

```matlab
opts.MinSurrogatePoints = 4;
[xs2,fvals2,eflags2,outputs2] = surrogateopt(sixmin,lb,ub,opts);
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

The smaller MinSurrogatePoints option does not noticeably change the solver behavior.

Try setting a larger value of the MinSampleDistance option.

```matlab
opts.MinSampleDistance = 0.05;
[xs3,fvals3,eflags3,outputs3] = surrogateopt(sixmin,lb,ub,opts);
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

Changing the MinSampleDistance option has a small effect on the solver. This setting causes the surrogate to reset more often, and causes the best objective function to be slightly higher (worse) than before.

Try using parallel processing. Time the execution both with and without parallel processing on the camelback function, which is a variant of the sixmin function. To simulate a time-consuming function, the camelback function has an added pause of one second for each function evaluation.

type camelback
function y = camelback(x)

y = (4\times(1)^2 - 2.1\times(1)^4 + x(1)^6/3 ... 
    + x(1)\times x(2) - 4\times x(2)^2 + 4\times x(2)^4);

pause(1)

 tic
 opts = optimoptions('surrogateopt','UseParallel',true,'PlotFcns','surrogateoptplot');
 [xs4,fvals4,eflags4,outputs4] = surrogateopt(@camelback,lb,ub,opts);

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

toc
Elapsed time is 43.466489 seconds.

Time the solver when run on the same problem in serial.

opts.UseParallel = false;
tic
[xs5,fvals5,eflags5,outputs5] = surrogateopt(@camelback,lb,ub,opts);

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.
toc

Elapsed time is 238.951879 seconds.
For time-consuming objective functions, parallel processing significantly improves the speed, without overly affecting the results.

See Also
surrogateopt

More About
- “Surrogate Optimization”
Interpret surrogateoptplot

The `surrogateoptplot` plot function provides a good deal of information about the surrogate optimization steps. For example, consider the plot of the steps `surrogateopt` takes on the built-in test function `rastriginsfcn`. This function has a global minimum value of 0 at the point [0,0]. By giving asymmetric bounds, you encourage `surrogateopt` to search away from the global minimum.

Create a surface plot of `rastriginsfcn`.

```matlab
ezsurf(@(x,y)rastriginsfcn([x(:),y(:)]));
```
Set asymmetric bounds of \([-3, -3]\) and \([9, 10]\). Set options to use the surrogateoptplot plot function, and then call surrogateopt.

```matlab
lb = [-3, -3];
ub = [9,10];
options = optimoptions('surrogateopt','PlotFcn','surrogateoptplot');
rng default
[x,fval] = surrogateopt(@rastriginsfcn,lb,ub,options);
```

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

Begin interpreting the plot from its left side. For details of the algorithm steps, see “Surrogate Optimization Algorithm” on page 7-4.
• The first points are light blue triangles, indicating quasirandom samples of the function within the problem bounds. These points come from the Construct Surrogate phase.

• Next are black dots indicating the adaptive points, the points created in the Search for Minimum phase.

• The thick green line represents the best (lowest) objective function value found. Shortly after evaluation number 30, surrogateopt is stuck in a local minimum with an objective function value near 5. Zoom in to see this behavior more clearly.

```matlab
xlim([20 100])
ylim([0 10])
```
• Near evaluation number 115, a vertical line indicates a surrogate reset. At this point, the algorithm returns to the Construct Surrogate phase.

• The dark blue x points represent the incumbent, which is the best point found since the previous surrogate reset.

• Near evaluation number 150, the incumbent improves on the previous best point by attaining a value less than 1. After this evaluation number, the best point slowly drops in value to nearly zero. Zoom in to see this behavior more clearly.

\[
\text{xlim}([140 \ 200]) \\
\text{ylim}([0 \ 6])
\]

• After evaluation number 180 or so, most adaptive points are near the incumbent, indicating that the scale of the search shrinks.
• The optimization halts at evaluation number 200 because it is the default function evaluation limit for a 2-D problem.

See Also
surrogateopt

More About
• “Surrogate Optimization Algorithm” on page 7-4
• “Surrogate Optimization”
Compare Surrogate Optimization with Other Solvers

This example compares surrogateopt to two other solvers: fmincon, the recommended solver for smooth problems, and patternsearch, the recommended solver for nonsmooth problems. The example uses a nonsmooth function on a two-dimensional region.

type nonSmoothFcn

function [f, g] = nonSmoothFcn(x)
%NONSMOOTHFCN is a non-smooth objective function
%
% Copyright 2005 The MathWorks, Inc.

for i = 1:size(x,1)
    if x(i,1) < -7
        f(i) = (x(i,1))^2 + (x(i,2))^2 ;
    elseif x(i,1) < -3
        f(i) = -2*sin(x(i,1)) - (x(i,1)*x(i,2)^2)/10 + 15 ;
    elseif x(i,1) < 0
        f(i) = 0.5*x(i,1)^2 + 20 + abs(x(i,2)) + patho(x(i,:));
    elseif x(i,1) >= 0
        f(i) = .3*sqrt(x(i,1)) + 25 +abs(x(i,2)) + patho(x(i,:));
    end
end

%Calculate gradient
g = NaN;
if x(i,1) < -7
    g = 2*[x(i,1); x(i,2)];
elseif x(i,1) < -3
    g = [-2*cos(x(i,1))-(x(i,2)^2)/10; -x(i,1)*x(i,2)/5];
elseif x(i,1) < 0
    [fp,gp] = patho(x(i,:));
    if x(i,2) > 0
        g = [x(i,1)+gp(1); 1+gp(2)];
    elseif x(i,2) < 0
        g = [x(i,1)+gp(1); -1+gp(2)];
    end
else
    [fp,gp] = patho(x(i,:));
    if x(i,2) > 0
        g = [.15/sqrt(x(i,1))+gp(1); 1+ gp(2)];
    elseif x(i,2) < 0
        g = [.15/sqrt(x(i,1))+gp(1); -1+ gp(2)];
    end
end
function [f,g] = patho(x)
Max = 500;
f = zeros(size(x,1),1);
g = zeros(size(x));
for k = 1:Max  %k
    arg = sin(pi*k^2*x)/(pi*k^2);
    f = f + sum(arg,2);
    g = g + cos(pi*k^2*x);
end

mplier = 0.1; % Scale the control variable
Objfcn = @(x)nonSmoothFcn(mplier*x); % Handle to the objective function
range = [-6 6; -6 6]/mplier; % Range used to plot the objective function
rng default % Reset the global random number generator
showNonSmoothFcn(Objfcn,range);
title('Nonsmooth Objective Function')
view(-151,44)
See how well `surrogateopt` does in locating the global minimum within the default number of iterations.

```matlab
lb = -6*ones(1,2)/mplier;
ub = -lb;
[xs,fvals,eflags,outputs] = surrogateopt(Objfcn,lb,ub);
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

fprintf("Lowest found value = %g.\r",fvals)

Lowest found value = 13.

figure
showNonSmoothFcn(Objfcn,range);
view(-151,44)
hold on
p1 = plot3(xs(1),xs(2),fvals,'om','MarkerSize',15,'MarkerFaceColor','m');
legend(p1,'Solution')
hold off
Compare with patternsearch

Set `patternsearch` options to use the same number of function evaluations, starting from a random point within the bounds.

```matlab
rng default
x0 = lb + rand(size(lb)).*(ub - lb);
optsps = optimoptions('patternsearch','MaxFunctionEvaluations',200,'PlotFcn','psplotbestf');
[xps,fvalps,eflagsps,outputps] = patternsearch(Objfcn,x0,[],[],[],[],lb,ub,[],optsps);
```
Optimization terminated: mesh size less than options.MeshTolerance.

figure
showNonSmoothFcn(Objfcn,range);
view(-151,44)
hold on
p1 = plot3(x0(1),x0(2),Objfcn(x0),'ob','MarkerSize',12,'MarkerFaceColor','b');
p2 = plot3(xps(1),xps(2),fvalps,'om','MarkerSize',15,'MarkerFaceColor','m');
legend([p1,p2],{'Start Point','Solution'})
hold off
patternsearch found the same solution as surrogateopt.

Restrict the number of function evaluations and try again.

```matlab
optsurr = optimoptions('surrogateopt','MaxFunctionEvaluations',40);
[xs,fvals,eflags,outputs] = surrogateopt(Objfcn,lb,ub,optsurr);
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

optsps.MaxFunctionEvaluations = 40;
[xps,fvalps,eflagps,outputps] = patternsearch(Objfcn,x0,[],[],[],[],lb,ub,[],optsps);
Again, both solvers found the global solution quickly.

**Compare with `fmincon`**

`fmincon` is efficient at finding a local solution near the start point. However, it can easily get stuck far from the global solution in a nonconvex or nonsmooth problem.

Set `fmincon` options to use a plot function, the same number of function evaluations as the previous solvers, and the same start point as `patternsearch`.

```matlab
opts = optimoptions('fmincon','PlotFcns','optimplotfval','MaxFunctionEvaluations',200);
[fmsol,fmfval,eflag,fmoutput] = fmincon(Objfcn,x0,[],[],[],[],lb,ub,[],opts);
```
Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.

figure
showNonSmoothFcn(Objfcn,range);
view(-151,44)
hold on
p1 = plot3(x0(1),x0(2),Objfcn(x0),'ob','MarkerSize',12,'MarkerFaceColor','b');
p2 = plot3(fmsol(1),fmsol(2),fmfval,'om','MarkerSize',15,'MarkerFaceColor','m');
legend([p1,p2],{'Start Point','Solution'})
hold off
fmincon is stuck in a local minimum near the start point.

See Also
fmincon | patternsearch | surrogateopt

More About
- “Modify surrogateopt Options” on page 7-20
- “Surrogate Optimization of Multidimensional Function” on page 7-12
Surrogate Optimization with Nonlinear Constraint

This example shows how to include nonlinear inequality constraints in a surrogate optimization by using a penalty function. This technique enables solvers that do not normally accept nonlinear constraints to attempt to solve a nonlinearly constrained problem. The example also shows how to protect against errors in the execution of an objective function by using try/catch statements. This particular example solves an ODE with a nonlinear constraint. The example “Optimize an ODE in Parallel” on page 4-116 shows how to solve the same problem using other solvers that accept nonlinear constraints.

For a video overview of this example, see Surrogate Optimization.

Problem Description

The problem is to change the position and angle of a cannon to fire a projectile as far as possible beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is too close to the wall, it fires at too steep an angle, and the projectile does not travel far enough. If the cannon is too far from the wall, the projectile does not travel far enough.

Nonlinear air resistance slows the projectile. The resisting force is proportional to the square of velocity, with proportionality constant 0.02. Gravity acts on the projectile, accelerating it downward with constant 9.81 m/s^2. Therefore, the equations of motion for the trajectory x(t) are

\[
\frac{d^2 x(t)}{dt^2} = -0.02 \|v(t)\|v(t) - (0, 9.81),
\]

where \(v(t) = dx(t)/dt\).

The initial position \(x0\) and initial velocity \(xp0\) are 2-D vectors. However, the initial height \(x0(2)\) is 0, so the initial position is given by the scalar \(x0(1)\). The initial velocity has magnitude 300 (the muzzle velocity) and, therefore, depends only on the initial angle, which is a scalar. For an initial angle \(th\), the initial velocity is \(xp0 = 300*(\cos(th), \sin(th))\). Therefore, the optimization problem depends only on two scalars, making it a 2-D problem. Use the horizontal distance and initial angle as the decision variables.
Formulate ODE Model

ODE solvers require you to formulate your model as a first-order system. Augment the trajectory vector \((x_1(t), x_2(t))\) with its time derivative \((x_1'(t), x_2'(t))\) to form a 4-D trajectory vector. In terms of this augmented vector, the differential equation becomes

\[
\frac{d}{dt}x(t) = \begin{bmatrix} x_3(t) \\ x_4(t) \\ -0.02 \| (x_3(t), x_4(t)) \| x_3(t) \\ -0.02 \| (x_3(t), x_4(t)) \| x_4(t) - 9.81 \end{bmatrix}.
\]

The cannonshot file implements this differential equation.

```matlab
type cannonshot
function f = cannonshot(~,x)

f = [x(3);x(4);x(3);x(4)]; % initial, gets f(1) and f(2) correct
nrm = norm(x(3:4)) .* .02; % norm of the velocity times constant
f(3) = -x(3)*nrm; % horizontal acceleration
f(4) = -x(4)*nrm - 9.81; % vertical acceleration

Visualize the solution of this ODE starting 30 m from the wall with an initial angle of \(\pi/3\). The plotcannonsolution function uses ode45 to solve the differential equation.

type plotcannonsolution
function dist = plotcannonsolution(x)
% Change initial 2-D point x to 4-D x0
x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
sol = ode45(@cannonshot,[0,15],x0);
% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % interpolated x values
ys = deval(sol,t,2); % interpolated y values
plot(xs,ys)
hold on
plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
ylim([0 100])
legend('Trajectory','Wall','Location','NW')
```

Surrogate Optimization with Nonlinear Constraint
dist = xs(end);
title(sprintf('Distance %f', dist))
hold off

plotcannonsolution uses fzero to find the time when the projectile lands, meaning its height is 0. The projectile lands before time 15 s, so plotcannonsolution uses 15 as the amount of time for the ODE solution.

x0 = [-30; pi/3];
dist = plotcannonsolution(x0);
**Prepare Optimization**

To optimize the initial position and angle, write a function similar to the previous plotting routine. Calculate the trajectory starting from an arbitrary horizontal position and initial angle.

Include sensible bound constraints. The horizontal position cannot be greater than 0. Set an upper bound of –1. Similarly, the horizontal position cannot be below –200, so set a lower bound of –200. The initial angle must be positive, so set its lower bound to 0.05. The initial angle should not exceed \(\pi/2\); set its upper bound to \(\pi/2 - 0.05\).

\[
\begin{align*}
lb &= [-200;0.05]; \\
ub &= [-1;\pi/2-.05];
\end{align*}
\]

You already calculated one feasible initial trajectory. Include that value in a structure that gives both the initial position and angle, and specifies the negative of the resulting distance. Give the negative of the distance because you want to maximize distance, which means minimize the negative of the distance.

\[
x0 = \text{struct('X',[-30,\pi/3],'Fval',-dist)};
\]

Write an objective function that returns the negative of the resulting distance from the wall, given an initial position and angle. Be careful when using the `fzero` function, because if you start the ODE at a very negative distance or a very shallow angle, the trajectory might never cross the wall. Furthermore, if the trajectory crosses the wall at a height of less than 20, the trajectory is infeasible.

To account for this infeasibility, set the objective function for an infeasible trajectory to a high value. Typically, a feasible solution will have a negative value. So an objective function value of 0 represents a bad solution.

The `cannonobjconstraint` function implements the objective function calculation, taking into account the nonlinear constraint by setting the objective function to zero at infeasible points. The function accounts for the possibility of failure in the `fzero` function by using `try/catch` statements.

```matlab
type cannonobjconstraint
function f = cannonobjconstraint(x)
 % Change initial 2-D point x to 4-D x0
 x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
 % Solve for trajectory
 sol = ode45(@cannonshot,[0,15],x0);
```

7-47
% Find time t when trajectory height = 0
try
    zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
catch
    zerofnd = 0;
end
% Find the horizontal position at that time
f = deval(sol,zerofnd,1);
% What is the height when the projectile crosses the wall at x = 0?
try
    wallfnd = fzero(@(r)deval(sol,r,1),[sol.x(1),sol.x(end)]);
catch
    wallfnd = 0;
end
height = deval(sol,wallfnd,2);
if height < 20
    f = 0; % Objective for hitting wall
end
% Take negative of distance for maximization
f = -f;
end

**Solve Optimization Using surrogateopt**

Set surrogateopt options to use the initial point. For reproducibility, set the random number generator to default. Use the 'surrogateoptplot' plot function. Run the optimization. To understand the 'surrogateoptplot' plot, see "Interpret surrogateoptplot" on page 7-28.

opts = optimoptions('surrogateopt','InitialPoints',x0,'PlotFcns','surrogateoptplot');
rng default
[xsolution,distance,exitflag,output] = surrogateopt(@cannonobjconstraint,lb,ub,opts)
SurrogateOpt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

xsolution = 1x2
[-26.6884 0.6455]

distance = -125.8115

exitflag = 0

output = struct with fields:
    rngstate: [1x1 struct]
    funccount: 200
elapsedtime: 29.0432
message: 'Surrogateopt stopped because it exceeded the function evaluation limit.'

Plot the final trajectory.

```matlab
figure
dist = plotcannonsolution(xsolution);
```
The `patternsearch` solution in “Optimize an ODE in Parallel” on page 4-116 shows a final distance of 125.9880, which is almost the same as this `surrogateopt` solution.

**See Also**

- `surrogateopt`

**More About**

- “Optimize an ODE in Parallel” on page 4-116
- Surrogate Optimization
This example shows how to optimize an antenna design using the surrogate optimization solver. The radiation patterns of antennas depend sensitively on the parameters that define the antenna shapes. Typically, the features of a radiation pattern have multiple local optima. To calculate a radiation pattern, this example uses Antenna Toolbox™ functions.

A Yagi-Uda antenna is a widely used radiating structure for a variety of applications in commercial and military sectors. This antenna can receive TV signals in the VHF-UHF range of frequencies [1]. The Yagi-Uda is a directional traveling-wave antenna with a single driven element, usually a folded dipole or a standard dipole, which is surrounded by several passive dipoles. The passive elements form the reflector and director. These names identify the positions relative to the driven element. The reflector dipole is behind the driven element, in the direction of the back lobe of the antenna radiation. The director dipole is in front of the driven element, in the direction where a main beam forms.

**Design Parameters**

Specify the initial design parameters in the center of the VHF band [2].

\[
\begin{align*}
\text{freq} &= 165\times 10^6; \\
\text{wirediameter} &= 19\times 10^{-3}; \\
\text{c} &= \text{physconst}('\text{lightspeed}') ; \\
\text{lambda} &= \frac{\text{c}}{\text{freq}};
\end{align*}
\]

**Create Yagi-Uda Antenna**

The driven element for the Yagi-Uda antenna is a folded dipole, a standard exciter for this type of antenna. Adjust the length and width parameters of the folded dipole. Because cylindrical structures are modeled as equivalent metal strips, calculate the width using the `cylinder2strip` utility function available in the Antenna Toolbox™. The length is \(\lambda/2\) at the design frequency.

\[
\begin{align*}
d &= \text{dipoleFolded}; \\
d.\text{Length} &= \text{lambda}/2; \\
d.\text{Width} &= \text{cylinder2strip}(\text{wirediameter}/2); \\
d.\text{Spacing} &= d.\text{Length}/60;
\end{align*}
\]

Create a Yagi-Uda antenna with the exciter as the folded dipole. Set the lengths of the reflector and director elements to be \(\lambda/2\). Set the number of directors to four. Specify the
reflector and director spacing as $0.3\lambda$ and $0.25\lambda$, respectively. These settings provide an initial guess and serve as a starting point for the optimization procedure. Show the initial design.

```matlab
Numdirs = 4;
refLength = 0.5;
dirLength = 0.5*ones(1,Numdirs);
refSpacing = 0.3;
dirSpacing = 0.25*ones(1,Numdirs);
initialdesign = [refLength dirLength refSpacing dirSpacing].*lambda;
yagidesign = yagiUda;
yagidesign.Exciter = d;
yagidesign.NumDirectors = Numdirs;
yagidesign.ReflectorLength = refLength.*lambda;
yagidesign.DirectorLength = dirLength.*lambda;
yagidesign.ReflectorSpacing = refSpacing.*lambda;
yagidesign.DirectorSpacing = dirSpacing.*lambda;
show(yagidesign)
```
Plot Radiation Pattern at Design Frequency

Prior to executing the optimization process, plot the radiation pattern for the initial guess in 3-D.

```matlab
fig1 = figure;
pattern(yagidesign,freq);
```
This antenna does not have a higher directivity in the preferred direction, at zenith (elevation = 90 deg). This initial Yagi-Uda antenna design is a poorly designed radiator.

**Set Up Optimization**

Use the following variables as control variables for the optimization:

- Reflector length (1 variable)
- Director lengths (4 variables)
- Reflector spacing (1 variable)
- Director spacings (4 variables)

In terms of a single vector parameter parasiticVals, use these settings:
• Reflector length = parasiticVals(1)
• Director lengths = parasiticVals(2:5)
• Reflector spacing = parasiticVals(6)
• Director spacings = parasiticVals(7:10)

In terms of parasiticVals, set an objective function that aims to have a large value in the 90-degree direction, a small value in the 270-degree direction, and a large value of maximum power between the elevation beamwidth angle bounds.

type yagi_objective_function2.m

function objectivevalue = yagi_objective_function2(y,parasiticVals,freq,elang)

% YAGI_OBJECTIVE_FUNCTION2 returns the obbjective for a 6-element Yagi
% OBJECTIVE_VALUE = YAGI_OBJECTIVE_FUNCTION(Y,PARASITICVALS,FREQ,ELANG),
% assigns the appropriate parasitic dimensions, PARASITICVALS, to the Yagi
% antenna Y, and uses the frequency FREQ and angle pair ELANG to calculate
% the objective function value.

% The YAGI_OBJECTIVE_FUNCTION2 function is used for an internal example.
% Its behavior may change in subsequent releases, so it should not be
% relied upon for programming purposes.

% Copyright 2014-2018 The MathWorks, Inc.

bw1 = elang(1);
bw2 = elang(2);
y.ReflectorLength = parasiticVals(1);
y.DirectorLength = parasiticVals(2:y.NumDirectors+1);
y.ReflectorSpacing = parasiticVals(y.NumDirectors+2);
y.DirectorSpacing = parasiticVals(y.NumDirectors+3:end);
output = calculate_objectives(y,freq,bw1,bw2);
output = output.MaxDirectivity + output.FB;
objectivevalue = -output;                % We intend to maximize
end

function output = calculate_objectives(y,freq,bw1,bw2)

%CALCULATE_OBJECTIVES calculate the objective function
% OUTPUT = CALCULATE_OBJECTIVES(Y,FREQ,BW1,BW2) Calculate the directivity
% in az = 90 plane that covers the main beam, sidelobe and backlobe.
% Calculate the maximum directivity, side lobelevel and backlobe and store
% in fields of the output variable structure.
[es,~,el] = pattern(y,freq,90,0:1:270);
el1 = el < bw1;


el2 = el > bw2;
el3 = el>bw1&el<bw2;
emainlobe = es(el3);
esidelobes =([es(el1);es(el2)]);
Dmax = max(emainlobe);
SLLmax = max(esidelobes);
Backlobe = es(end);
F = es(91);
B = es(end);
F_by_B = F-B;
output.MaxDirectivity= Dmax;
output.MaxSLL = SLLmax;
output.BackLobeLevel = Backlobe;
output.FB = F_by_B;
end

Set bounds on the control variables.

refLengthBounds = [0.4;
  0.6];
dirLengthBounds = [0.35 0.35 0.35 0.35; % lower bound on director length
  0.495 0.495 0.495 0.495]; % upper bound on director length
refSpacingBounds = [0.05; % lower bound on reflector spacing
  0.30]; % upper bound on reflector spacing
dirSpacingBounds = [0.05 0.05 0.05 0.05; % lower bound on director spacing
  0.23 0.23 0.23 0.23]; % upper bound on director spacing

LB = [refLengthBounds(1) dirLengthBounds(1,:) refSpacingBounds(1) dirSpacingBounds(1,:)]
UB = [refLengthBounds(2) dirLengthBounds(2,:) refSpacingBounds(2) dirSpacingBounds(2,:)]

Set the initial point for the optimization, and set the elevation beamwidth angle bounds.

parasitic_values = [ yagidesign.ReflectorLength, ...
yagidesign.DirectorLength, ...
yagidesign.ReflectorSpacing ...
yagidesign.DirectorSpacing];
elang = [60 120]; % elevation beamwidth angles at az = 90

**Surrogate Optimization**

To search for a global optimum of the objective function, use surrogatopt as the solver. Set options to allow 500 function evaluations, include the initial point, use parallel computation, and use the 'surrogatoptplot' plot function. To understand the 'surrogatoptplot' plot, see “Interpret surrogatoptplot” on page 7-28..
surrogateoptions = optimoptions('surrogateopt','MaxFunctionEvaluations',500,...
'InitialPoints',parasitic_values,'UseParallel',true,'PlotFcn','surrogateoptplot');

rng(4) % For reproducibility
optimdesign = surrogateopt(@(x) yagi_objective_function2(yagidesign,x,freq,elang),...
LB,UB,surrogateoptions);

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

**surrogateopt** found a point giving an objective function value of -70. Investigate the
effect of the optimized parameters on the radiation pattern of the antenna.
Plot Optimized Pattern

Plot the optimized antenna pattern at the design frequency.

```matlab
yagidesign.ReflectorLength = optimdesign(1);
yagidesign.DirectorLength = optimdesign(2:5);
yagidesign.ReflectorSpacing = optimdesign(6);
yagidesign.DirectorSpacing = optimdesign(7:10);
fig2 = figure;
pattern(yagidesign,freq)
```

Apparently, the antenna now radiates significantly more power at zenith.
**E-Plane and H-Plane Cuts of Pattern**

To obtain a better insight into the behavior in two orthogonal planes, plot the normalized magnitude of the electric field in the E-plane and H-plane, that is, azimuth = 0 and 90 deg, respectively.

```matlab
fig3 = figure;
pattern(yagidesign,freq,0,0:1:359);
```

```
fig4 = figure;
pattern(yagidesign,freq,90,0:1:359);
```
The optimized design shows a significant improvement in the radiation pattern. Higher directivity is achieved in the desired direction toward zenith. The back lobe is small, resulting in a good front-to-back ratio for this antenna. Calculate the directivity at zenith, front-to-back ratio, and beamwidth in the E-plane and H-plane.

\[
\text{D}_{\text{max}} = \text{pattern(yagidesign,freq,0,90)}
\]

\[
\text{D}_{\text{max}} = 10.2466
\]

\[
\text{D}_{\text{back}} = \text{pattern(yagidesign,freq,0,-90)}
\]

\[
\text{D}_{\text{back}} = -49.4292
\]

\[
\text{F}_{\text{B ratio}} = \text{D}_{\text{max}} - \text{D}_{\text{back}}
\]
F_B_ratio = 59.6757

Eplane_beamwidth = beamwidth(yagidesign,freq,0,1:1:360)
Eplane_beamwidth = 54

Hplane_beamwidth = beamwidth(yagidesign,freq,90,1:1:360)
Hplane_beamwidth = 68

**Comparison with Manufacturer Datasheet**

The optimized Yagi-Uda antenna achieves a forward directivity of 10.2 dBi, which translates to 8.1 dBi (relative to a dipole). This result is a bit less than the gain value reported by the datasheet in reference [2] (8.5 dBi). The front-to-back ratio is 60 dB; this is part of the quantity that the optimizer maximizes. The optimized Yagi-Uda antenna has an E-plane beamwidth of 54 deg, whereas the datasheet lists the E-plane beamwidth as 56 deg. The H-plane beamwidth of the optimized Yagi-Uda antenna is 68 deg, whereas the value on the datasheet is 63 deg. The example does not address impedance matching over the band.

**Tabulating Initial and Optimized Design**

Tabulate the initial design guesses and the final optimized design values.

```matlab
yagiparam = {'Reflector Length'; 'Director Length - 1'; 'Director Length - 2'; 'Director Length - 3'; 'Director Length - 4'; 'Reflector Spacing'; 'Director Spacing - 1'; 'Director Spacing - 2'; 'Director Spacing - 3'; 'Director Spacing - 4'};
initialdesign = initialdesign';
optimdesign = optimdesign';
T = table(initialdesign,optimdesign,'RowNames',yagiparam)
```

T = 10×2 table

<table>
<thead>
<tr>
<th></th>
<th>initialdesign</th>
<th>optimdesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector Length</td>
<td>0.90846</td>
<td>0.94828</td>
</tr>
<tr>
<td>Director Length - 1</td>
<td>0.90846</td>
<td>0.7754</td>
</tr>
<tr>
<td>Director Length - 2</td>
<td>0.90846</td>
<td>0.74557</td>
</tr>
<tr>
<td>Director Length - 3</td>
<td>0.90846</td>
<td>0.74142</td>
</tr>
<tr>
<td>Director Length - 4</td>
<td>0.90846</td>
<td>0.6885</td>
</tr>
<tr>
<td>Reflector Spacing</td>
<td>0.54508</td>
<td>0.25828</td>
</tr>
</tbody>
</table>
Reference


See Also

surrogateopt

More About

- “Surrogate Optimization”
Work with Checkpoint Files

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Checkpoint for Restarting” on page 7-64</td>
</tr>
<tr>
<td>“Change Options to Extend or Monitor Optimization” on page 7-68</td>
</tr>
<tr>
<td>“Code for Robust Surrogate Optimization” on page 7-71</td>
</tr>
</tbody>
</table>

Checkpoint for Restarting

A checkpoint file contains data about the optimization process. To obtain a checkpoint file, use the CheckpointFile option.

One basic use of a checkpoint file is to resume an optimization when it stops prematurely. The cause of the premature stopping can be events such as a power failure or a crash, or when you press the Stop button in a plot function window.

Whatever the reason for the premature stopping, the restart procedure is simply to call surrogateopt with the checkpoint file name.

For example, suppose that you run an optimization with the 'check1' checkpoint file, and then click the Stop button soon after the optimization starts.

```matlab
options = optimoptions('surrogateopt','CheckpointFile','check1');
lb = [-6,-8];
ub = -lb;
fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
[x,fval,exitflag,output] = surrogateopt(fun,lb,ub,options)
```

Optimization stopped by a plot function or output function.

```matlab
x =
 0 0

fval =
 1

exitflag =
```

7-64
output =

struct with fields:
  rngstate: [1x1 struct]
  funccount: 27
  elapsedtime: 56.0377
  message: 'Optimization stopped by a plot function or output function.'
Note Checkpointing takes time. This overhead is especially noticeable for functions that otherwise take little time to evaluate.

To resume the optimization, call `surrogateopt` with the 'check1' argument.

```matlab
[x,fval,exitflag,output] = surrogateopt('check1')
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

x =

    1.0009    1.0010

fval =

    4.8378e-05

exitflag =

    0

output =

    struct with fields:
            rngstate: [1x1 struct]
      funcCount: 200
       elapsedtime: 487.7058
           message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by'
Change Options to Extend or Monitor Optimization

You can extend an optimization, whether it stops due to an unforeseen event or not, by changing the stopping criteria in the options. You can also monitor the optimization by displaying information at each iteration.
Note surrogateopt allows you to change only a limited set of options. For reliability, update the original options structure instead of creating new options.

For a list of the options you can change when restarting, see opts.

For example, suppose that you want to extend the previous optimization to run for a total of 400 function evaluations. Additionally, you want to monitor the optimization using the 'surrogateoptplot' plot function.

```matlab
opts = optimoptions(options,'MaxFunctionEvaluations',400,...
 'PlotFcn','surrogateoptplot');
[x,fval,exitflag,output] = surrogateopt('check1',opts)
```

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

```matlab
x =
 1.0009 1.0010

fval =
 4.8378e-05

exitflag =
 0

output =
 struct with fields:
 rngstate: [1×1 struct]
 funccount: 400
 elapsedtime: 1.1340e+03
 message: 'Surrogateopt stopped because it exceeded the function evaluation limit.'
```
The new plot function plots from the beginning of the optimization, even though you started the plot function only after the solver stopped at function evaluation number 200. The `surrogateoptplot` plot function also shows the evaluation numbers where the optimization stopped and where it restarted from the checkpoint file.
Code for Robust Surrogate Optimization

To restart a surrogate optimization from a checkpoint file only if the file exists, use the following code logic. In this way, you can write scripts to keep an optimization going, even after a crash or other unexpected event.

```matlab
% Assume that myfun, lb, and ub exist
if isfile('saveddata.mat')
 [x,fval,exitflag,output] = surrogateopt('saveddata');
else
 options = optimoptions('surrogateopt','CheckpointFile','saveddata');
 [x,fval,exitflag,output] = surrogateopt(myfun,lb,ub,options);
end
```

See Also
- surrogateopt

More About
- “Surrogate Optimization”
- “Surrogate Optimization Options” on page 11-71
Using Simulated Annealing

- “What Is Simulated Annealing?” on page 8-2
- “Minimize Function with Many Local Minima” on page 8-3
- “Simulated Annealing Terminology” on page 8-8
- “How Simulated Annealing Works” on page 8-10
- “Reproduce Your Results” on page 8-14
- “Minimization Using Simulated Annealing Algorithm” on page 8-16
- “Simulated Annealing Options” on page 8-20
- “Multiprocessor Scheduling using Simulated Annealing with a Custom Data Type” on page 8-28
What Is Simulated Annealing?

Simulated annealing is a method for solving unconstrained and bound-constrained optimization problems. The method models the physical process of heating a material and then slowly lowering the temperature to decrease defects, thus minimizing the system energy.

At each iteration of the simulated annealing algorithm, a new point is randomly generated. The distance of the new point from the current point, or the extent of the search, is based on a probability distribution with a scale proportional to the temperature. The algorithm accepts all new points that lower the objective, but also, with a certain probability, points that raise the objective. By accepting points that raise the objective, the algorithm avoids being trapped in local minima, and is able to explore globally for more possible solutions. An annealing schedule is selected to systematically decrease the temperature as the algorithm proceeds. As the temperature decreases, the algorithm reduces the extent of its search to converge to a minimum.

See Also

More About

• “Simulated Annealing Terminology” on page 8-8
• “How Simulated Annealing Works” on page 8-10
• “Minimize Function with Many Local Minima” on page 8-3
• “Minimization Using Simulated Annealing Algorithm” on page 8-16
Minimize Function with Many Local Minima

In this section...

“Description” on page 8-3
“Minimize at the Command Line” on page 8-5
“Minimize Using the Optimization App” on page 8-5

Description

This section presents an example that shows how to find a local minimum of a function using simulated annealing.

De Jong's fifth function is a two-dimensional function with many (25) local minima:

dejong5fcn
Many standard optimization algorithms get stuck in local minima. Because the simulated annealing algorithm performs a wide random search, the chance of being trapped in local minima is decreased.

**Note** Because simulated annealing uses random number generators, each time you run this algorithm you can get different results. See “Reproduce Your Results” on page 8-14 for more information.
Minimize at the Command Line

To run the simulated annealing algorithm without constraints, call `simulannealbnd` at the command line using the objective function in `dejong5fcn.m`, referenced by anonymous function pointer:

```matlab
rng(10,'twister') % for reproducibility
fun = @dejong5fcn;
[x,fval] = simulannealbnd(fun,[0 0])
```

This returns:

Optimization terminated: change in best function value less than options.FunctionTolerance.

```matlab
x =
 -16.1292 -15.8214

fval =
 6.9034
```

where

- `x` is the final point returned by the algorithm.
- `fval` is the objective function value at the final point.

Minimize Using the Optimization App

To run the minimization using the Optimization app,

1. Set up your problem as pictured in the Optimization app
2 Click **Start** under **Run solver and view results:**

Your results can differ from the pictured ones, because `simulannealbnd` uses a random number stream.
See Also

More About

- “Minimization Using Simulated Annealing Algorithm” on page 8-16
Simulated Annealing Terminology

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Objective Function” on page 8-8</td>
</tr>
<tr>
<td>“Temperature” on page 8-8</td>
</tr>
<tr>
<td>“Annealing Parameter” on page 8-9</td>
</tr>
<tr>
<td>“Reannealing” on page 8-9</td>
</tr>
</tbody>
</table>

**Objective Function**

The *objective function* is the function you want to optimize. Global Optimization Toolbox algorithms attempt to find the minimum of the objective function. Write the objective function as a file or anonymous function, and pass it to the solver as a function handle. For more information, see “Compute Objective Functions” on page 2-2 and “Create Function Handle” (MATLAB).

**Temperature**

The *temperature* is a parameter in simulated annealing that affects two aspects of the algorithm:

- The distance of a trial point from the current point (See “Outline of the Algorithm” on page 8-10, Step 1.)
- The probability of accepting a trial point with higher objective function value (See “Outline of the Algorithm” on page 8-10, Step 2.)

Temperature can be a vector with different values for each component of the current point. Typically, the initial temperature is a scalar.

Temperature decreases gradually as the algorithm proceeds. You can specify the initial temperature as a positive scalar or vector in the `InitialTemperature` option. You can specify the temperature as a function of iteration number as a function handle in the `TemperatureFcn` option. The temperature is a function of the “Annealing Parameter” on page 8-9, which is a proxy for the iteration number. The slower the rate of temperature decrease, the better the chances are of finding an optimal solution, but the longer the run time. For a list of built-in temperature functions and the syntax of a custom temperature function, see “Temperature Options” on page 11-80.
Annealing Parameter

The annealing parameter is a proxy for the iteration number. The algorithm can raise temperature by setting the annealing parameter to a lower value than the current iteration. (See “Reannealing” on page 8-9.) You can specify the temperature schedule as a function handle with the TemperatureFcn option.

Reannealing

Annealing is the technique of closely controlling the temperature when cooling a material to ensure that it reaches an optimal state. Reannealing raises the temperature after the algorithm accepts a certain number of new points, and starts the search again at the higher temperature. Reannealing avoids the algorithm getting caught at local minima. Specify the reannealing schedule with the ReannealInterval option.

See Also

More About

• “What Is Simulated Annealing?” on page 8-2
• “How Simulated Annealing Works” on page 8-10
How Simulated Annealing Works

Outline of the Algorithm

The simulated annealing algorithm performs the following steps:

1. The algorithm generates a random trial point. The algorithm chooses the distance of the trial point from the current point by a probability distribution with a scale depending on the current temperature. You set the trial point distance distribution as a function with the `AnnealingFcn` option. Choices:

   - `@annealingfast` (default) — Step length equals the current temperature, and direction is uniformly random.
   - `@annealingboltz` — Step length equals the square root of temperature, and direction is uniformly random.
   - `@myfun` — Custom annealing algorithm, `myfun`. For custom annealing function syntax, see “Algorithm Settings” on page 11-81.

   After generating the trial point, the algorithm shifts it, if necessary, to stay within bounds. The algorithm shifts each infeasible component of the trial point to a value chosen uniformly at random between the violated bound and the (feasible) value at the previous iteration.

2. The algorithm determines whether the new point is better or worse than the current point. If the new point is better than the current point, it becomes the next point. If the new point is worse than the current point, the algorithm can still make it the next point. The algorithm accepts a worse point based on an acceptance function. Choose the acceptance function with the `AcceptanceFcn` option. Choices:

   - `@acceptancesa` (default) — Simulated annealing acceptance function. The probability of acceptance is

     \[
     \frac{1}{1 + \exp\left(\frac{-\Delta}{\max(T)}\right)}
     \]
where

\[ \Delta = \text{new objective} - \text{old objective}. \]
\[ T_0 = \text{initial temperature of component } i \]
\[ T = \text{the current temperature}. \]

Since both \( \Delta \) and \( T \) are positive, the probability of acceptance is between 0 and 1/2. Smaller temperature leads to smaller acceptance probability. Also, larger \( \Delta \) leads to smaller acceptance probability.

- @myfun — Custom acceptance function, myfun. For custom acceptance function syntax, see “Algorithm Settings” on page 11-81.

3 The algorithm systematically lowers the temperature, storing the best point found so far. The TemperatureFcn option specifies the function the algorithm uses to update the temperature. Let \( k \) denote the annealing parameter. (The annealing parameter is the same as the iteration number until reannealing.) Options:

- @temperatureexp (default) — \( T = T_0 \times 0.95^k \).
- @temperaturefast — \( T = T_0 / k \).
- @temperatureboltz — \( T = T_0 / \log(k) \).
- @myfun — Custom temperature function, myfun. For custom temperature function syntax, see “Temperature Options” on page 11-80.

4 simulannealbnd reanneals after it accepts ReannealInterval points. Reannealing sets the annealing parameters to lower values than the iteration number, thus raising the temperature in each dimension. The annealing parameters depend on the values of estimated gradients of the objective function in each dimension. The basic formula is

\[ k_i = \log \left( \frac{T_0}{T_i} \frac{\max(s_j)}{s_i} \right), \]

where

\[ k_i = \text{annealing parameter for component } i. \]
\[ T_0 = \text{initial temperature of component } i. \]
\[ T_i = \text{current temperature of component } i. \]
\[ s_i = \text{gradient of objective in direction } i \text{ times difference of bounds in direction } i. \]
simulannealbnd safeguards the annealing parameter values against Inf and other improper values.

5 The algorithm stops when the average change in the objective function is small relative to FunctionTolerance, or when it reaches any other stopping criterion. See “Stopping Conditions for the Algorithm” on page 8-12.

For more information on the algorithm, see Ingber [1].

### Stopping Conditions for the Algorithm

The simulated annealing algorithm uses the following conditions to determine when to stop:

- **FunctionTolerance** — The algorithm runs until the average change in value of the objective function in StallIterLim iterations is less than the value of FunctionTolerance. The default value is 1e-6.
- **MaxIterations** — The algorithm stops when the number of iterations exceeds this maximum number of iterations. You can specify the maximum number of iterations as a positive integer or Inf. The default value is Inf.
- **MaxFunctionEvaluations** specifies the maximum number of evaluations of the objective function. The algorithm stops if the number of function evaluations exceeds the value of MaxFunctionEvaluations. The default value is 3000*numberofvariables.
- **MaxTime** specifies the maximum time in seconds the algorithm runs before stopping. The default value is Inf.
- **ObjectiveLimit** — The algorithm stops when the best objective function value is less than or equal to the value of ObjectiveLimit. The default value is -Inf.

### Bibliography

See Also

More About

- “What Is Simulated Annealing?” on page 8-2
- “Simulated Annealing Terminology” on page 8-8
- “Minimize Function with Many Local Minima” on page 8-3
- “Minimization Using Simulated Annealing Algorithm” on page 8-16
Reproduce Your Results

Because the simulated annealing algorithm is stochastic—that is, it makes random choices—you get slightly different results each time you run it. The algorithm uses the default MATLAB pseudorandom number stream. For more information about random number streams, see RandStream. Each time the algorithm calls the stream, its state changes. So the next time the algorithm calls the stream, it returns a different random number.

If you need to reproduce your results exactly, call simulannealbnd with the output argument. The output structure contains the current random number generator state in the output.rngstate field. Reset the state before running the function again.

For example, to reproduce the output of simulannealbnd applied to De Jong's fifth function, call simulannealbnd with the syntax

```matlab
rng(10,'twister') % for reproducibility
[x,fval,exitflag,output] = simulannealbnd(@dejong5fcn,[0 0]);
```

Suppose the results are

```matlab
x,fval
```

```matlab
x =
 -16.1292 -15.8214
```

```matlab
fval =
 6.9034
```

The state of the random number generator, rngstate, is stored in output.rngstate. Reset the stream by entering

```matlab
stream = RandStream.getGlobalStream;
stream.State = output.rngstate.State;
```

If you now run simulannealbnd a second time, you get the same results.

You can reproduce your run in the Optimization app by checking the box Use random states from previous run in the Run solver and view results section.
**Note** If you do not need to reproduce your results, it is better not to set the states of `RandStream`, so that you get the benefit of the randomness in these algorithms.

**See Also**

**More About**

- “Simulated Annealing”
Minimization Using Simulated Annealing Algorithm

This example shows how to create and minimize an objective function using the simulated annealing algorithm (`simulannealbnd` function) in Global Optimization Toolbox. For algorithmic details, see “How Simulated Annealing Works” on page 8-10.

**Simple Objective Function**

The objective function to minimize is a simple function of two variables:

\[
\min f(x) = (4 - 2.1x_1^2 + x_1^4/3)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2;
\]

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

To implement the objective function calculation, the MATLAB file `simple_objective.m` has the following code:

```matlab
type simple_objective

function y = simple_objective(x)
%SIMPLE_OBJECTIVE Objective function for PATTERNSEARCH solver
% Copyright 2004 The MathWorks, Inc.

x1 = x(1);
x2 = x(2);
y = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2;
```

All Global Optimization Toolbox solvers assume that the objective has one input \( x \), where \( x \) has as many elements as the number of variables in the problem. The objective function computes the scalar value of the objective function and returns it in its single output argument \( y \).

**Minimize Using simulannealbnd**

To minimize the objective function using `simulannealbnd`, pass in a function handle to the objective function and a starting point \( x_0 \) as the second argument. For reproducibility, set the random number stream.

```matlab
ObjectiveFunction = @simple_objective;
x0 = [0.5 0.5]; % Starting point
rng default % For reproducibility
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,x0)
```
Optimization terminated: change in best function value less than options.FunctionTolerance.
x = 1×2

-0.0896  0.7130

fval = -1.0316
exitFlag = 1

output = struct with fields:
    iterations: 2948
    funccount: 2971
    message: 'Optimization terminated: change in best function value less than options.FunctionTolerance.'
    rngstate: [1x1 struct]
    problemtype: 'unconstrained'
    temperature: [2x1 double]
    totaltime: 2.1458

`simulannealbnd` returns four output arguments:

- **x** — Best point found
- **fval** — Function value at the best point
- **exitFlag** — Integer corresponding to the reason the function stopped
- **output** — Information about the optimization steps

### Bound Constrained Minimization

You can use `simulannealbnd` to solve problems with bound constraints. Pass lower and upper bounds as vectors. For each coordinate $i$, the solver ensures that $lb(i) \leq x(i) \leq ub(i)$. Impose the bounds $-64 \leq x(i) \leq 64$.

```matlab
lb = [-64 -64];
ub = [64 64];
```

Run the solver with the lower and upper bound arguments.

```matlab
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,x0,lb,ub);
```

Optimization terminated: change in best function value less than options.FunctionTolerance.

```matlab
fprintf('The number of iterations was : %d
', output.iterations);
```
The number of iterations was: 2428

fprintf('The number of function evaluations was: %d\n', output.funccount);

The number of function evaluations was: 2447

fprintf('The best function value found was: %g\n', fval);

The best function value found was: -1.03163

The solver finds essentially the same solution as before.

**Minimize Using Additional Arguments**

Sometimes you want an objective function to be parameterized by extra arguments that act as constants during the optimization. For example, in the previous objective function, you might want to replace the constants 4, 2.1, and 4 with parameters that you can change to create a family of objective functions. For more information, see “Passing Extra Parameters” (Optimization Toolbox).

Rewrite the objective function to take three additional parameters in a new minimization problem.

\[
\min f(x) = (a - b \cdot x_1^2 + x_1^4/3) \cdot x_1^2 + x_1 \cdot x_2 + (-c + c \cdot x_2^2) \cdot x_2^2;
\]

\(x\)

\(a\), \(b\), and \(c\) are parameters to the objective function that act as constants during the optimization (they are not varied as part of the minimization). To implement the objective function calculation, the MATLAB file `parameterized_objective.m` contains the following code:

```matlab
type parameterized_objective

function y = parameterized_objective(x,p1,p2,p3)
%PARAMETERIZED_OBJECTIVE Objective function for PATTERNSEARCH solver
% Copyright 2004 The MathWorks, Inc.

x1 = x(1);
x2 = x(2);
y = (p1-p2.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-p3+p3.*x2.^2).*x2.^2;

end
```

Again, you need to pass in a function handle to the objective function as well as a starting point as the second argument.
simulannealbnd calls the objective function with just one argument \( x \), but the objective function has four arguments: \( x \), \( a \), \( b \), and \( c \). To indicate which variable is the argument, use an anonymous function to capture the values of the additional arguments (the constants \( a \), \( b \), and \( c \)). Create a function handle `ObjectiveFunction` to an anonymous function that takes one input \( x \), but calls `parameterized_objective` with \( x \), \( a \), \( b \) and \( c \). When you create the function handle `ObjectiveFunction`, the variables \( a \), \( b \), and \( c \) have values that are stored in the anonymous function.

```matlab
a = 4; b = 2.1; c = 4; % Define constant values
ObjectiveFunction = @(x) parameterized_objective(x,a,b,c);
x0 = [0.5 0.5];
[x,fval] = simulannealbnd(ObjectiveFunction,x0)
```

Optimization terminated: change in best function value less than options.FunctionTolerance.

\[
x = \begin{bmatrix} 0.0898 \\ -0.7127 \end{bmatrix}
\]

\( fval = -1.0316 \)

The solver finds essentially the same solution as before.

**References**


**See Also**

**More About**

- “Minimize Function with Many Local Minima” on page 8-3
- “What Is Simulated Annealing?” on page 8-2
- “Passing Extra Parameters” (Optimization Toolbox)
Simulated Annealing Options

This example shows how to create and manage options for the simulated annealing function `simulannealbnd` using `optimoptions` in the Global Optimization Toolbox.

**Optimization Problem Setup**

`simulannealbnd` searches for a minimum of a function using simulated annealing. For this example we use `simulannealbnd` to minimize the objective function `dejong5fcn`. This function is a real valued function of two variables and has many local minima making it difficult to optimize. There is only one global minimum at \( x = (-32, -32) \), where \( f(x) = 0.998 \). To define our problem, we must define the objective function, start point, and bounds specified by the range \(-64 \leq x(i) \leq 64\) for each \( x(i) \).

```matlab
ObjectiveFunction = @dejong5fcn;
startingPoint = [-30 0];
lb = [-64 -64];
ub = [64 64];
```

The function `plotobjective` in the toolbox plots the objective function over the range \(-64 \leq x1 \leq 64, -64 \leq x2 \leq 64\).

```matlab
plotobjective(ObjectiveFunction,[-64 64; -64 64]);
view(-15,150);
```
Now, we can run the `simulannealbnd` solver to minimize our objective function.

```matlab
rng default % For reproducibility
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub);
```

Optimization terminated: change in best function value less than `options.FunctionTolerance`.

```matlab
fprintf('The number of iterations was : %d\n', output.iterations);
The number of iterations was : 1095
```

```matlab
fprintf('The number of function evaluations was : %d\n', output.funccount);
The number of function evaluations was : 1104
```
fprintf('The best function value found was : %g\n', fval);

The best function value found was : 2.98211

Note that when you run this example, your results may be different from the results shown above because simulated annealing algorithm uses random numbers to generate points.

**Adding Visualization**

`simulannealbnd` can accept one or more plot functions through an 'options' argument. This feature is useful for visualizing the performance of the solver at run time. Plot functions are selected using `optimoptions`. The toolbox contains a set of plot functions to choose from, or you can provide your own custom plot functions.

To select multiple plot functions, set the `PlotFcn` option via the `optimoptions` function. For this example, we select `saplotbestf`, which plots the best function value every iteration, `saplottemperature`, which shows the current temperature in each dimension at every iteration, `saplotf`, which shows the current function value (remember that the current value is not necessarily the best one), and `saplotstopping`, which plots the percentage of stopping criteria satisfied every ten iterations.

```matlab
options = optimoptions(@simulannealbnd, ...
 'PlotFcn',{@saplotbestf,@saplottemperature,@saplotf,@saplotstopping});
```

Run the solver.

```matlab
simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);
```
Specifying Temperature Options

The temperature parameter used in simulated annealing controls the overall search results. The temperature for each dimension is used to limit the extent of search in that dimension. The toolbox lets you specify initial temperature as well as ways to update temperature during the solution process. The two temperature-related options are the InitialTemperature and the TemperatureFcn.

Specifying initial temperature

The default initial temperature is set to 100 for each dimension. If you want the initial temperature to be different in different dimensions then you must specify a vector of
temperatures. This may be necessary in cases when problem is scaled differently in each dimensions. For example,

```matlab
options = optimoptions(@simulannealbnd,'InitialTemperature',[300 50]);
```

*InitialTemperature* can be set to a vector of length less than the number of variables (dimension); the solver expands the vector to the remaining dimensions by taking the last element of the initial temperature vector. Here we want the initial temperature to be the same in all dimensions so we need only specify the single temperature.

```matlab
options.InitialTemperature = 100;
```

**Specifying a temperature function**

The default temperature function used by *simulannealbnd* is called *temperatureexp*. In the temperatureexp schedule, the temperature at any given step is .95 times the temperature at the previous step. This causes the temperature to go down slowly at first but ultimately get cooler faster than other schemes. If another scheme is desired, e.g. Boltzmann schedule or "Fast" schedule annealing, then *temperatureboltz* or *temperaturefast* can be used respectively. To select the fast temperature schedule, we can update our previously created options, changing *TemperatureFcn* directly.

```matlab
options.TemperatureFcn = @temperaturefast;
```

**Specifying reannealing**

Reannealing is a part of annealing process. After a certain number of new points are accepted, the temperature is raised to a higher value in hope to restart the search and move out of a local minima. Performing reannealing too soon may not help the solver identify a minimum, so a relatively high interval is a good choice. The interval at which reannealing happens can be set using the *ReannealInterval* option. Here, we reduce the default reannealing interval to 50 because the function seems to be flat in many regions and solver might get stuck rapidly.

```matlab
options.ReannealInterval = 50;
```

Now that we have setup the new temperature options we run the solver again

```matlab
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);
```

Optimization terminated: change in best function value less than options.FunctionTolerance.

```matlab
fprintf('The number of iterations was : %d\n', output.iterations);
```
The number of iterations was : 1306
fprintf('The number of function evaluations was : %d\n', output.funccount);
The number of function evaluations was : 1321
fprintf('The best function value found was : %g\n', fval);
The best function value found was : 16.4409

**Reproducing Results**

`simulannealbnd` is a nondeterministic algorithm. This means that running the solver more than once without changing any settings may give different results. This is because `simulannealbnd` utilizes MATLAB® random number generators when it generates subsequent points and also when it determines whether or not to accept new points. Every time a random number is generated the state of the random number generators change.

To see this, two runs of `simulannealbnd` solver yields:

```
[x,fval] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);
Optimization terminated: change in best function value less than options.FunctionTolerance.
fprintf('The best function value found was : %g\n', fval);
The best function value found was : 1.99203
```

And,

```
[x,fval] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);
Optimization terminated: change in best function value less than options.FunctionTolerance.
fprintf('The best function value found was : %g\n', fval);
The best function value found was : 10.7632
```

In the previous two runs `simulannealbnd` gives different results.

We can reproduce our results if we reset the states of the random number generators between runs of the solver by using information returned by `simulannealbnd`. `simulannealbnd` returns the states of the random number generators at the time it is called in the output argument. This information can be used to reset
the states. Here we reset the states between runs using this output information so the results of the next two runs are the same.

\[ x, fval, exitFlag, output \] = simulannealbnd(ObjectiveFunction, startingPoint, lb, ub, options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The best function value found was : %g
', fval);

The best function value found was : 20.1535

We reset the state of the random number generator.

strm = RandStream.getGlobalStream;
strm.State = output.rngstate.State;

Now, let's run simulannealbnd again.

\[ x, fval \] = simulannealbnd(ObjectiveFunction, startingPoint, lb, ub, options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The best function value found was : %g
', fval);

The best function value found was : 20.1535

**Modifying the Stopping Criteria**

`simulannealbnd` uses six different criteria to determine when to stop the solver. `simulannealbnd` stops when the maximum number of iterations or function evaluation is exceeded; by default the maximum number of iterations is set to `Inf` and the maximum number of function evaluations is `3000*numberOfVariables`. `simulannealbnd` keeps track of the average change in the function value for `MaxStallIterations` iterations. If the average change is smaller than the function tolerance, `FunctionTolerance`, then the algorithm will stop. The solver will also stop when the objective function value reaches `ObjectiveLimit`. Finally the solver will stop after running for `MaxTime` seconds. Here we set the `FunctionTolerance` to `1e-5`.

options.FunctionTolerance = 1e-5;

Run the `simulannealbnd` solver.

\[ x, fval, exitFlag, output \] = simulannealbnd(ObjectiveFunction, startingPoint, lb, ub, options);

Optimization terminated: change in best function value less than options.FunctionTolerance.
fprintf('The number of iterations was : %d\n', output.iterations);
The number of iterations was : 1843
fprintf('The number of function evaluations was : %d\n', output.funccount);
The number of function evaluations was : 1864
fprintf('The best function value found was : %g\n', fval);
The best function value found was : 6.90334

See Also

More About
- “Simulated Annealing Options” on page 11-78
- “How Simulated Annealing Works” on page 8-10
Multiprocessor Scheduling using Simulated Annealing with a Custom Data Type

This example shows how to use simulated annealing to minimize a function using a custom data type. Here simulated annealing is customized to solve the multiprocessor scheduling problem.

Multiprocessor Scheduling Problem

The multiprocessor scheduling problem consists of finding an optimal distribution of tasks on a set of processors. The number of processors and number of tasks are given. Time taken to complete a task by a processor is also provided as data. Each processor runs independently, but each can only run one job at a time. We call an assignment of all jobs to available processors a "schedule". The goal of the problem is to determine the shortest schedule for the given set of tasks.

First we determine how to express this problem in terms of a custom data type optimization problem that simulannealbnd function can solve. We come up with the following scheme: first, let each task be represented by an integer between 1 and the total number of tasks. Similarly, each processor is represented by an integer between 1 and the number of processors. Now we can store the amount of time a given job will take on a given processor in a matrix called "lengths". The amount of time "t" that the processor "i" takes to complete the task "j" will be stored in lengths(i,j).

We can represent a schedule in a similar manner. In a given schedule, the rows (integer between 1 to number of processors) will represent the processors and the columns (integer between 1 to number of tasks) will represent the tasks. For example, the schedule [1 2 3;4 5 0;6 0 0] would be tasks 1, 2, and 3 performed on processor 1, tasks 4 and 5 performed on processor 2, and task 6 performed on processor 3.

Here we define our number of tasks, number of processors, and lengths array. The different coefficients for the various rows represent the fact that different processors work with different speeds. We also define a "sampleSchedule" which will be our starting point input to simulannealbnd.

```matlab
rng default % for reproducibility
numberOfProcessors = 11;
numberOfTasks = 40;
lengths = [10*rand(1,numberOfTasks);
 7*rand(1,numberOfTasks);
 2*rand(1,numberOfTasks);
```

8-28
```matlab
5*rand(1,numberOfTasks);
3*rand(1,numberOfTasks);
4*rand(1,numberOfTasks);
1*rand(1,numberOfTasks);
6*rand(1,numberOfTasks);
4*rand(1,numberOfTasks);
3*rand(1,numberOfTasks);
1*rand(1,numberOfTasks));

% Random distribution of task on processors (starting point)
sampleSchedule = zeros(numberOfProcessors,numberOfTasks);
for task = 1:numberOfTasks
 processorID = 1 + floor(rand*(numberOfProcessors));
 index = find(sampleSchedule(processorID,:)==0);
 sampleSchedule(processorID,index(1)) = task;
end

Simulated Annealing For a Custom Data Type

By default, the simulated annealing algorithm solves optimization problems assuming that the decision variables are double data types. Therefore, the annealing function for generating subsequent points assumes that the current point is a vector of type double. However, if the `DataType` option is set to 'custom' the simulated annealing solver can also work on optimization problems involving arbitrary data types. You can use any valid MATLAB® data structure you like as decision variable. For example, if we want `simulannealbnd` to use "sampleSchedule" as decision variable, a custom data type can be specified using a matrix of integers. In addition to setting the `DataType` option to 'custom' we also need to provide a custom annealing function via the `AnnealingFcn` option that can generate new points.

Custom Annealing Functions

This section shows how to create and use the required custom annealing function. A trial point for the multiprocessor scheduling problem is a matrix of processor (rows) and tasks (columns) as discussed before. The custom annealing function for the multiprocessor scheduling problem will take a job schedule as input. The annealing function will then modify this schedule and return a new schedule that has been changed by an amount proportional to the temperature (as is customary with simulated annealing). Here we display our custom annealing function.

type mulprocpermute.m

function schedule = mulprocpermute(optimValues,problemData)
% MULPROCPERMUTE Moves one random task to a different processor.
% NEWX = MULPROCPERMUTE(optimValues,problemData) generate a point based
% on the current point and the current temperature

% Copyright 2006 The MathWorks, Inc.

schedule = optimValues.x;
% This loop will generate a neighbor of "distance" equal to
% optimValues.temperature. It does this by generating a neighbor to the
% current schedule, and then generating a neighbor to that neighbor, and so
% on until it has generated enough neighbors.
for i = 1:floor(optimValues.temperature)+1
 [nrows ncols] = size(schedule);
 schedule = neighbor(schedule, nrows, ncols);
end

%===%
function schedule = neighbor(schedule, nrows, ncols)
% NEIGHBOR generates a single neighbor to the given schedule. It does so
% by moving one random task to a different processor. The rest of the code
% is to ensure that the format of the schedule remains the same.

row1 = randinteger(1,1,nrows)+1;
col = randinteger(1,1,ncols)+1;
while schedule(row1, col)==0
 row1 = randinteger(1,1,nrows)+1;
col = randinteger(1,1,ncols)+1;
end
row2 = randinteger(1,1,nrows)+1;
while row1==row2
 row2 = randinteger(1,1,nrows)+1;
end
for j = 1:ncols
 if schedule(row2,j)==0
 schedule(row2,j) = schedule(row1,col);
 break
 end
end

schedule(row1, col) = 0;
for j = col:ncols-1
 schedule(row1,j) = schedule(row1,j+1);
end
schedule(row1,ncols) = 0;
%==%
function out = randinteger(m,n,range)
%RANDINTEGER generate integer random numbers (m-by-n) in range

len_range = size(range,1) * size(range,2);
% If the IRANGE is specified as a scalar.
if len_range < 2
 if range < 0
 range = [range+1, 0];
 elseif range > 0
 range = [0, range-1];
 else
 range = [0, 0]; % Special case of zero range.
 end
end
% Make sure RANGE is ordered properly.
range = sort(range);

% Calculate the range the distance for the random number generator.
distance = range(2) - range(1);
% Generate the random numbers.
r = floor(rand(m, n) * (distance+1));

% Offset the numbers to the specified value.
out = ones(m,n)*range(1);
out = out + r;

Objective Function

We need an objective function for the multiprocessor scheduling problem. The objective function returns the total time required for a given schedule (which is the maximum of the times that each processor is spending on its tasks). As such, the objective function also needs the lengths matrix to be able to calculate the total times. We are going to attempt to minimize this total time. Here we display our objective function

type mulprocfitness.m

function timeToComplete = mulprocfitness(schedule, lengths)
%MULPROCFITNESS determines the "fitness" of the given schedule.
% In other words, it tells us how long the given schedule will take using the
% knowledge given by "lengths"

% Copyright 2006 The MathWorks, Inc.
[nrows ncols] = size(schedule);
timeToComplete = zeros(1,nrows);
for i = 1:nrows
 timeToComplete(i) = 0;
 for j = 1:ncols
 if schedule(i,j)~=0
 timeToComplete(i) = timeToComplete(i)+lengths(i,schedule(i,j));
 else
 break
 end
 end
end
timeToComplete = max(timeToComplete);

Simulannealbnd will call our objective function with just one argument x, but our fitness function has two arguments: x and "lengths". We can use an anonymous function to capture the values of the additional argument, the lengths matrix. We create a function handle 'ObjectiveFcn' to an anonymous function that takes one input x, but calls 'mulprocfitness' with x and "lengths". The variable "lengths" has a value when the function handle 'FitnessFcn' is created so these values are captured by the anonymous function.

% lengths was defined earlier
fitnessfcn = @(x) mulprocfitness(x,lengths);

We can add a custom plot function to plot the length of time that the tasks are taking on each processor. Each bar represents a processor, and the different colored chunks of each bar are the different tasks.

type mulprocplot.m

function stop = mulprocplot(~,optimvalues,flag,lengths)
%MULPROC PLOT PlotFcn used for SAMULTIPROCESSORDEM0
% STOP = MULPROC PLOT(OPTIONS,OPTIMVALUES,FLAG) where OPTIMVALUES is a
% structure with the following fields:
% x: current point
% fval: function value at x
% bestx: best point found so far
% bestfval: function value at bestx
% temperature: current temperature
% iteration: current iteration
% funccount: number of function evaluations
t0: start time
k: annealing parameter 'k'

FLAG: Current state in which PlotFcn is called. Possible values are:
 init: initialization state
 iter: iteration state
 done: final state

STOP: A boolean to stop the algorithm.

Copyright 2006-2015 The MathWorks, Inc.

persistent thisTitle

stop = false;
switch flag
 case 'init'
 set(gca,'xlimmode','manual','zlimmode','manual', ...
 'alimmode','manual')
 titleStr = sprintf('Current Point - Iteration %d', optimvalues.iteration);
 thisTitle = title(titleStr,'interp','none');
 toplot = i_generatePlotData(optimvalues, lengths);
 ylabel('Time','interp','none');
 bar(toplot, 'stacked','edgecolor','none');
 Xlength = size(toplot,1);
 set(gca,'xlim',[0,1 + Xlength])
 case 'iter'
 if ~rem(optimvalues.iteration, 100)
 toplot = i_generatePlotData(optimvalues, lengths);
 bar(toplot, 'stacked','edgecolor','none');
 titleStr = sprintf('Current Point - Iteration %d', optimvalues.iteration);
 thisTitle = title(titleStr,'interp','none');
 end
end

function toplot = i_generatePlotData(optimvalues, lengths)

schedule = optimvalues.x;
nrows = size(schedule,1);
% Remove zero columns (all processes are idle)
maxlen = 0;
for i = 1:nrows
 if max(nnz(schedule(i,:))) > maxlen
maxlen = max(nnz(schedule(i,:)));
end
end
schedule = schedule(:,1:maxlen);

toplot = zeros(size(schedule));
[nrows, ncols] = size(schedule);
for i = 1:nrows
 for j = 1:ncols
 if schedule(i,j)==0 % idle process
 toplot(i,j) = 0;
 else
 toplot(i,j) = lengths(i,schedule(i,j));
 end
 end
end

But remember, in simulated annealing the current schedule is not necessarily the best schedule found so far. We create a second custom plot function that will display to us the best schedule that has been discovered so far.

type mulprocplotbest.m

function stop = mulprocplotbest(~,optimvalues,flag,lengths)
%MULPROCPLTBEST PlotFcn used for SAMULTIPROCESSORDEMO
% STOP = MULPROCPLTBEST(OPTIONS,OPTIMVALUES,FLAG) where OPTIMVALUES is a
% structure with the following fields:
% x: current point
% fval: function value at x
% bestx: best point found so far
% bestfval: function value at bestx
% temperature: current temperature
% iteration: current iteration
% funccount: number of function evaluations
% t0: start time
% k: annealing parameter 'k'
%
% FLAG: Current state in which PlotFcn is called. Possible values are:
% init: initialization state
% iter: iteration state
% done: final state
%
% STOP: A boolean to stop the algorithm.
persistent thisTitle

stop = false;
switch flag
 case 'init'
 set(gca,'xlimmode','manual','zlimmode','manual', ...
 'alimmode','manual')
 titleStr = sprintf('Current Point - Iteration %d', optimvalues.iteration);
 thisTitle = title(titleStr,'interp','none');
 toplot = i_generatePlotData(optimvalues, lengths);
 Xlength = size(toplot,1);
 ylabel('Time','interp','none');
 bar(toplot, 'stacked','edgecolor','none');
 set(gca,'xlim',[0,1 + Xlength])
 case 'iter'
 if ~rem(optimvalues.iteration, 100)
 toplot = i_generatePlotData(optimvalues, lengths);
 bar(toplot, 'stacked','edgecolor','none');
 titleStr = sprintf('Best Point - Iteration %d', optimvalues.iteration);
 thisTitle = title(titleStr,'interp','none');
 end
end

function toplot = i_generatePlotData(optimvalues, lengths)

schedule = optimvalues.bestx;
nrows = size(schedule,1);
% Remove zero columns (all processes are idle)
maxlen = 0;
for i = 1:nrows
 if max(nnz(schedule(i,:))) > maxlen
 maxlen = max(nnz(schedule(i,:)));
 end
end
schedule = schedule(:,1:maxlen);

toplot = zeros(size(schedule));
[nrows, ncols] = size(schedule);
for i = 1:nrows
 for j = 1:ncols
if schedule(i,j)==0
toplot(i,j) = 0;
else
toplot(i,j) = lengths(i,schedule(i,j));
end
end

Simulated Annealing Options Setup

We choose the custom annealing and plot functions that we have created, as well as change some of the default options. ReannealInterval is set to 800 because lower values for ReannealInterval seem to raise the temperature when the solver was beginning to make a lot of local progress. We also decrease the StallIterLimit to 800 because the default value makes the solver too slow. Finally, we must set the DataType to 'custom'.

options = optimoptions(@simulannealbnd,'DataType', 'custom', ...
 'AnnealingFcn', @mulprocpermute, 'MaxStallIterations',800, 'ReannealInterval', 800, ...
 'PlotFcn', {{@mulprocplot, lengths},{@mulprocplotbest, lengths},@saplotf,@saplotbest});

Finally, we call simulated annealing with our problem information.

schedule = simulannealbnd(fitnessfcn,sampleSchedule,[],[],options);
% Remove zero columns (all processes are idle)
maxlen = 0;
for i = 1:size(schedule,1)
 if max(nnz(schedule(i,:)))>maxlen
 maxlen = max(nnz(schedule(i,:)));
 end
end
% Display the schedule
schedule = schedule(:,1:maxlen)

Optimization terminated: change in best function value less than options.FunctionTolerance.

schedule =

22 34 32 0 0 0 0 0
5 0 0 0 0 0 0 0
19 6 12 11 39 35 0 0
7 20 0 0 0 0 0 0
30 15 10 3 0 0 0 0
18 28 0 0 0 0 0 0
31 33 29 4 21 9 25 40
<table>
<thead>
<tr>
<th>24</th>
<th>26</th>
<th>14</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>16</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>36</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>37</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

See Also

More About

- “Algorithm Settings” on page 11-81
• “How Simulated Annealing Works” on page 8-10
Multiobjective Optimization

- “gamultiobj Algorithm” on page 9-5
- “paretosearch Algorithm” on page 9-10
- “gamultiobj Options and Syntax: Differences from ga” on page 9-21
- “Pareto Front for Two Objectives” on page 9-22
- “Compare paretosearch and gamultiobj” on page 9-29
- “Plot 3-D Pareto Front” on page 9-45
- “Performing a Multiobjective Optimization Using the Genetic Algorithm” on page 9-51
- “Multiobjective Genetic Algorithm Options” on page 9-57
- “Design Optimization of a Welded Beam” on page 9-70
What Is Multiobjective Optimization?

You might need to formulate problems with more than one objective, since a single objective with several constraints may not adequately represent the problem being faced. If so, there is a vector of objectives,

\[F(x) = [F_1(x), F_2(x), \ldots, F_m(x)], \]

that must be traded off in some way. The relative importance of these objectives is not generally known until the system’s best capabilities are determined and tradeoffs between the objectives fully understood. As the number of objectives increases, tradeoffs are likely to become complex and less easily quantified. The designer must rely on his or her intuition and ability to express preferences throughout the optimization cycle. Thus, requirements for a multiobjective design strategy must enable a natural problem formulation to be expressed, and be able to solve the problem and enter preferences into a numerically tractable and realistic design problem.

Multiobjective optimization is concerned with the minimization of a vector of objectives \(F(x) \) that can be the subject of a number of constraints or bounds:

\[
\begin{align*}
\min & \quad F(x), \\
\text{subject to} & \quad x \in \mathbb{R}^n \\
& \quad G_i(x) = 0, \quad i = 1, \ldots, k_e; \\
& \quad G_i(x) \leq 0, \quad i = k_e + 1, \ldots, k; \\
& \quad l \leq x \leq u.
\end{align*}
\]

Note that because \(F(x) \) is a vector, if any of the components of \(F(x) \) are competing, there is no unique solution to this problem. Instead, the concept of noninferiority in Zadeh [4] (also called Pareto optimality in Censor [1] and Da Cunha and Polak [2]) must be used to characterize the objectives. A noninferior solution is one in which an improvement in one objective requires a degradation of another. To define this concept more precisely, consider a feasible region, \(\Omega \), in the parameter space. \(x \) is an element of the \(n \)-dimensional real numbers \(x \in \mathbb{R}^n \) that satisfies all the constraints, that is,

\[\Omega = \{ x \in \mathbb{R}^n \}, \]

subject to

\[
\begin{align*}
& \quad G_i(x) = 0, \quad i = 1, \ldots, k_e, \\
& \quad G_i(x) \leq 0, \quad i = k_e + 1, \ldots, k, \\
& \quad l \leq x \leq u.
\end{align*}
\]
This allows definition of the corresponding feasible region for the objective function space Λ:

$$\Lambda = \{ y \in \mathbb{R}^m : y = F(x), x \in \Omega \}.$$

The performance vector $F(x)$ maps parameter space into objective function space, as represented in two dimensions in the figure “Figure 9-1, Mapping from Parameter Space into Objective Function Space” on page 9-3.

Figure 9-1, Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.

Definition: Point $x^* \in \Omega$ is a noninferior solution if for some neighborhood of x^* there does not exist a Δx such that $(x^* + \Delta x) \in \Omega$ and

$$F_i(x^* + \Delta x) \leq F_i(x^*), \quad i = 1, \ldots, m, \quad \text{and}$$

$$F_j(x^* + \Delta x) < F_j(x^*) \text{ for at least one } j.$$

In the two-dimensional representation of the figure “Figure 9-2, Set of Noninferior Solutions” on page 9-4, the set of noninferior solutions lies on the curve between C and D. Points A and B represent specific noninferior points.
Figure 9-2, Set of Noninferior Solutions

A and B are clearly noninferior solution points because an improvement in one objective, F_1, requires a degradation in the other objective, F_2, that is, $F_{1B} < F_{1A}, F_{2B} > F_{2A}$.

Since any point in Ω that is an inferior point represents a point in which improvement can be attained in all the objectives, it is clear that such a point is of no value. Multiobjective optimization is, therefore, concerned with the generation and selection of noninferior solution points.

Noninferior solutions are also called Pareto optima. A general goal in multiobjective optimization is constructing the Pareto optima.

See Also

More About

- “gamultiobj Algorithm” on page 9-5
- “paretosearch Algorithm” on page 9-10
- “Pareto Front for Two Objectives” on page 9-22
gamultiobj Algorithm

In this section...

| "Introduction" on page 9-5 |
| "Multiobjective Terminology" on page 9-5 |
| "Initialization" on page 9-7 |
| "Iterations" on page 9-8 |
| "Stopping Conditions" on page 9-8 |
| "Bibliography" on page 9-9 |

Introduction

This section describes the algorithm that gamultiobj uses to create a set of points on the Pareto front. gamultiobj uses a controlled, elitist genetic algorithm (a variant of NSGA-II [3]). An elitist GA always favors individuals with better fitness value (rank). A controlled elitist GA also favors individuals that can help increase the diversity of the population even if they have a lower fitness value.

Multiobjective Terminology

Most of the terminology for the gamultiobj algorithm is the same as “Genetic Algorithm Terminology” on page 5-15. However, there are some additional terms, described in this section. For more details about the terminology and the algorithm, see Deb [3].

- Dominance — A point \(x \) dominates a point \(y \) for a vector-valued objective function \(f \) when:
 \[
 f_i(x) \leq f_i(y) \quad \text{for all } \quad i.
 \]
 \[
 f_j(x) < f_j(y) \quad \text{for some } \quad j.
 \]

 The term "dominate" is equivalent to the term "inferior." \(x \) dominates \(y \) exactly when \(y \) is inferior to \(x \).

 A nondominated set among a set of points \(P \) is the set of points \(Q \) in \(P \) that are not dominated by any point in \(P \).

- Rank — For feasible individuals, there is an iterative definition of the rank of an individual. Rank 1 individuals are not dominated by any other individuals. Rank 2
Individuals are dominated only by rank 1 individuals. In general, rank k individuals are dominated only by individuals in rank k - 1 or lower.

Individuals with a lower rank have a higher chance of selection (lower rank is better).

All infeasible individuals have a worse rank than any feasible individual. Within the infeasible population, the rank is the order by sorted infeasibility measure, plus the highest rank for feasible members.

`gamultiobj` uses rank to select parents.

- **Crowding Distance** — The crowding distance is a measure of the closeness of an individual to its nearest neighbors. The `gamultiobj` algorithm measures distance among individuals of the same rank. By default, the algorithm measures distance in objective function space. However, you can measure the distance in decision variable space (also termed design variable space) by setting the `DistanceMeasureFcn` option to `{@distancecrowding,'genotype'}`.

The algorithm sets the distance of individuals at the extreme positions to Inf. For the remaining individuals, the algorithm calculates distance as a sum over the dimensions of the normalized absolute distances between the individual's sorted neighbors. In other words, for dimension m and sorted, scaled individual i:

\[
 \text{distance}(i) = \sum_m (x(m,i+1) - x(m,i-1)).
\]

The algorithm sorts each dimension separately, so the term neighbors means neighbors in each dimension.
Individuals of the same rank with a higher distance have a higher chance of selection (higher distance is better).

You can choose a different crowding distance measure than the default @distancecrowding function. See “Multiobjective Options” on page 11-54.

Crowding distance is one factor in the calculation of the spread, which is part of a stopping criterion. Crowding distance is also used as a tie-breaker in tournament selection, when two selected individuals have the same rank.

- **Spread** — The spread is a measure of the movement of the Pareto set. To calculate the spread, the gamultiobj algorithm first evaluates σ, the standard deviation of the crowding distance measure of points that are on the Pareto front with finite distance. The algorithm then evaluates μ, the sum over the k objective function indices of the norm of the difference between the current minimum-value Pareto point for that index and the minimum point for that index in the previous iteration. The spread is then

$$\text{spread} = \frac{(\mu + \sigma)}{(\mu + k\sigma)}.$$

The spread is small when the extreme objective function values do not change much between iterations (that is, μ is small) and when the points on the Pareto front are spread evenly (that is, σ is small).

gamultiobj uses the spread in a stopping condition. Iterations halt when the spread does not change much, and the final spread is less than an average of recent spreads. See “Stopping Conditions” on page 9-8.

Initialization

The first step in the gamultiobj algorithm is creating an initial population. The algorithm creates the population, or you can give an initial population or a partial initial population by using the InitialPopulationMatrix option (see “Population Options” on page 11-38). The number of individuals in the population is set to the value of the PopulationSize option. By default, gamultiobj creates a population that is feasible with respect to bounds and linear constraints, but is not necessarily feasible with respect to nonlinear constraints. The default creation algorithm is @gacreationuniform when there are no constraints or only bound constraints, and @gacreationlinearfeasible when there are linear or nonlinear constraints.

gamultiobj evaluates the objective function and constraints for the population, and uses those values to create scores for the population.
Iterations

The main iteration of the `gamultiobj` algorithm proceeds as follows.

1. Select parents for the next generation using the selection function on the current population. The only built-in selection function available for `gamultiobj` is binary tournament. You can also use a custom selection function.

2. Create children from the selected parents by mutation and crossover.

3. Score the children by calculating their objective function values and feasibility.

4. Combine the current population and the children into one matrix, the extended population.

5. Compute the rank and crowding distance for all individuals in the extended population.

6. Trim the extended population to have `PopulationSize` individuals by retaining the appropriate number of individuals of each rank.

Stopping Conditions

The following stopping conditions apply. Each stopping condition is associated with an exit flag.

<table>
<thead>
<tr>
<th>exitflag Value</th>
<th>Stopping Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geometric average of the relative change in value of the spread over <code>options.MaxStallGenerations</code> generations is less than <code>options.FunctionTolerance</code>, and the final spread is less than the mean spread over the past <code>options.MaxStallGenerations</code> generations</td>
</tr>
<tr>
<td>0</td>
<td>Maximum number of generations exceeded</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization terminated by an output function or plot function</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point found</td>
</tr>
<tr>
<td>-5</td>
<td>Time limit exceeded</td>
</tr>
</tbody>
</table>

For exit flag 1, the geometric average of the relative change in spread has multiplier $\frac{1}{2^k}$ for the relative change in the kth previous generation.
Bibliography

See Also

gamultiobj

More About

• “What Is Multiobjective Optimization?” on page 9-2
• “Genetic Algorithm Options” on page 11-33
• “gamultiobj Options and Syntax: Differences from ga” on page 9-21
paretosearch Algorithm

paretosearch Algorithm Overview

The paretosearch algorithm uses pattern search on a set of points to search iteratively for nondominated points. See “Multiobjective Terminology” on page 9-5. The pattern search satisfies all bounds and linear constraints at each iteration.

Theoretically, the algorithm converges to points near the true Pareto front. For a discussion and proof of convergence, see Custòdio et al. [1], whose proof applies to problems with Lipschitz continuous objectives and constraints.

Definitions for paretosearch Algorithm

paretosearch uses a number of intermediate quantities and tolerances in its algorithm.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>The rank of a point has an iterative definition.</td>
</tr>
<tr>
<td></td>
<td>• Nondominated points have rank 1.</td>
</tr>
<tr>
<td></td>
<td>• For any integer k > 1, a point has rank k when the only points that dominate it have rank strictly less than k.</td>
</tr>
</tbody>
</table>

![Diagram showing points in different ranks](image)
Quantity | Definition
---|---
Volume | Hypervolume of the set of points p in objective function space that satisfy the inequality, for every index j,
$$f_i(j) < p_i < M_i,$$
where $f_i(j)$ is the ith component of the jth objective function value in the Pareto set, and M_i is an upper bound for the ith component for all points in the Pareto set. In this figure, M is called the Reference Point. The shades of gray in the figure denote portions of the volume that some calculation algorithms use as part of an inclusion-exclusion calculation.

For details, see Fleischer [3].

`paretosearch` calculates the volume only when the number of nondominated points exceeds the number of objectives. `paretosearch` uses the reference point $M = \max(\text{pts}, [1], 1) + 1$. Here, `pts` is a matrix whose rows are the points.

Volume change is one factor in stopping the algorithm. For details, see “Stopping Conditions” on page 9-17.
Distance is a measure of the closeness of an individual to its nearest neighbors. The `paretosearch` algorithm measures distance among individuals of the same rank. The algorithm measures distance in objective function space.

The algorithm sets the distance of individuals at the extreme positions to `Inf`. For the remaining individuals, the algorithm calculates distance as a sum over the dimensions of the normalized absolute distances between the individual's sorted neighbors. In other words, for dimension `m` and sorted, scaled individual `i`:

\[\text{distance}(i) = \sum_m (x(m,i+1) - x(m,i-1)). \]

The algorithm sorts each dimension separately, so the term neighbors means neighbors in each dimension.

Individuals of the same rank with a higher distance have a higher chance of selection (higher distance is better).

Distance is one factor in the calculation of the spread, which is part of a stopping criterion. For details, see “Stopping Conditions” on page 9-17.
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread</td>
<td>Spread is a measure of the movement of the Pareto set. To calculate the spread, the <code>paretosearch</code> algorithm first evaluates σ, the standard deviation of the crowding distance measure of points on the Pareto front with finite distance. The algorithm then evaluates μ, the sum over the k objective function indices of the norm of the difference between the current minimum-value Pareto point for that index and the minimum point for that index in the previous iteration. The spread is then $spread = (\mu + \sigma)/(\mu + k*\sigma)$. The spread is small when the extreme objective function values do not change much between iterations (that is, μ is small) and when the points on the Pareto front are spread evenly (that is, σ is small). <code>paretosearch</code> uses the spread in a stopping condition. Iterations halt when the spread does not change much. For details, see “Stopping Conditions” on page 9-17.</td>
</tr>
<tr>
<td>ParetoSetChangeTolerance</td>
<td>Stopping condition for the search. <code>paretosearch</code> stops when the volume, spread, or distance does not change by more than <code>ParetoSetChangeTolerance</code> over a window of iterations. For details, see “Stopping Conditions” on page 9-17.</td>
</tr>
<tr>
<td>MinPollFraction</td>
<td>Minimum fraction of locations to poll during an iteration. <code>paretosearch</code> polls at least <code>MinPollFraction</code>*(number of points in pattern) locations. If the number of polled points gives a nondominated point, the poll is considered a success. Otherwise, <code>paretosearch</code> continues to poll until it either finds a nondominated point or runs out of points in the pattern. This option does not apply when the <code>UseVectorized</code> option is true. In that case, <code>paretosearch</code> polls all pattern points.</td>
</tr>
</tbody>
</table>
Sketch of paretosearch Algorithm

Initial Population

Move to Satisfy Linear Constraints

Separate Nonlinearly Infeasible Points

Iterate the following steps:

Poll, Maintaining Linear Feasibility

Evaluate Objectives, Nondominance

Opportunistically Extend

Remove Dominated Points
Population Ready for Polling

Legend
- Bounds
- Sample Points
- Linearly Infeasible Region
- Nonlinearly Feasible Region
- Nondominated Point
Initialize Search

To create the initial set of points, paretosearch generates options.ParetoSetSize points from a quasirandom sample based on the problem bounds, by default. For details, see Bratley and Fox [2]. When the problem has over 500 dimensions, paretosearch uses Latin hypercube sampling to generate the initial points.

If a component has no bounds, paretosearch uses an artificial lower bound of -10 and an artificial upper bound of 10.

If a component has only one bound, paretosearch uses that bound as an endpoint of an interval of width 20 + 2*abs(bound). For example, if there is no upper bound for a component and there is a lower bound of 15, paretosearch uses an interval width of 20 + 2*15 = 55, so uses an artificial upper bound of 15 + 55 = 70.

If you pass some initial points in options.InitialPoints, then paretosearch uses those points as the initial points. paretosearch generates more points, if necessary, to obtain at least options.ParetoSetSize initial points.

paretosearch then checks the initial points to ensure that they are feasible with respect to the bounds and linear constraints. If necessary, paretosearch projects the initial points onto the linear subspace of linearly feasible points by solving a linear programming problem. This process can cause some points to coincide, in which case paretosearch removes any duplicate points. paretosearch does not alter initial points for artificial bounds, only for specified bounds and linear constraints.

After moving the points to satisfy linear constraints, if necessary, paretosearch checks whether the points satisfy the nonlinear constraints. paretosearch gives a penalty value of Inf to any point that does not satisfy all nonlinear constraints. Then paretosearch calculates any missing objective function values of the remaining feasible points.

Note Currently, paretosearch does not support nonlinear equality constraints \(\text{ceq}(x) = 0 \).

Create Archive and Incumbents

paretosearch maintains two sets of points:

- **archive** — A structure that contains nondominated points associated with a mesh size below options.MeshTolerance and satisfying all constraints to within
options.ConstraintTolerance. The archive structure contains no more than
2*options.ParetoSetSize points and is initially empty. Each point in archive
contains an associated mesh size, which is the mesh size at which the point was
generated.

• iterates — A structure containing nondominated points and possibly some
dominated points associated with larger mesh sizes or infeasibility. Each point in
iterates contains an associated mesh size. iterates contains no more than
options.ParetoSetSize points.

Poll to Find Better Points

paretosearch polls points from iterates, with the polled points inheriting the
associated mesh size from the point in iterates. The paretosearch algorithm uses a
poll that maintains feasibility with respect to bounds and all linear constraints.

If the problem has nonlinear constraints, paretosearch computes the feasibility of each
poll point. paretosearch keeps the score of infeasible points separately from the score
of feasible points. The score of a feasible point is the vector of objective function values of
that point. The score of an infeasible point is the sum of the nonlinear infeasibilities.

paretosearch polls at least MinPollFraction*(number of points in pattern) locations
for each point in iterates. If the polled points give at least one nondominated point with
respect to the incumbent (original) point, the poll is considered a success. Otherwise,
paretosearch continues to poll until it either finds a nondominated point or runs out of
points in the pattern. If paretosearch runs out of points and does not produce a
nondominated point, paretosearch declares the poll unsuccessful and halves the mesh
size.

If the poll finds nondominated points, paretosearch extends the poll in the successful
directions repeatedly, doubling the mesh size each time, until the extension produces a
dominated point. During this extension, if the mesh size exceeds options.MaxMeshSize
(default value: Inf), the poll stops. If the objective function values decrease to -Inf,
paretosearch declares the problem unbounded and stops.

Update archive and iterates Structures

After polling all the points in iterates, the algorithm examines the new points together
with the points in the iterates and archive structures. paretosearch computes the
rank, or Pareto front number, of each point and then does the following.
• Mark for removal all points that do not have rank 1 in archive.
• Mark new rank 1 points for insertion into iterates.
• Mark feasible points in iterates whose associated mesh size is less than options.MeshTolerance for transfer to archive.
• Mark dominated points in iterates for removal only if they prevent new nondominated points from being added to iterates.

paretosearch then computes the volume and distance measures for each point. If archive will overflow as a result of marked points being included, then the points with the largest volume occupy archive, and the others leave. Similarly, the new points marked for addition to iterates enter iterates in order of their volumes.

If iterates is full and has no dominated points, then paretosearch adds no points to iterates and declares the iteration to be unsuccessful. paretosearch multiplies the mesh sizes in iterates by 1/2.

Stopping Conditions

For three or fewer objective functions, paretosearch uses volume and spread as stopping measures. For four or more objectives, paretosearch uses distance and spread as stopping measures. In the remainder of this discussion, the two measures that paretosearch uses are denoted the applicable measures.

The algorithm maintains vectors of the last eight values of the applicable measures. After eight iterations, the algorithm checks the values of the two applicable measures at the beginning of each iteration, where tol = options.ParetoSetChangeTolerance:

- spreadConverged = abs(spread(end - 1) - spread(end)) <= tol*max(1,spread(end - 1));
- volumeConverged = abs(volume(end - 1) - volume(end)) <= tol*max(1,volume(end - 1));
- distanceConverged = abs(distance(end - 1) - distance(end)) <= tol*max(1,distance(end - 1));

If either applicable test is true, the algorithm stops. Otherwise, the algorithm computes the max of squared terms of the Fourier transforms of the applicable measures minus the first term. The algorithm then compares the maxima to their deleted terms (the DC components of the transforms). If either deleted term is larger than 100*tol*(max of all other terms), then the algorithm stops. This test essentially determines that the sequence of measures is not fluctuating, and therefore has converged.
Additionally, a plot function or output function can stop the algorithm, or the algorithm can stop because it exceeds a time limit or function evaluation limit.

Returned Values

The algorithm returns the points on the Pareto front as follows.

- `paretosearch` combines the points in `archive` and `iterates` into one set.
- When there are three or fewer objective functions, `paretosearch` returns the points from the largest volume to the smallest, up to at most `ParetoSetSize` points.
- When there are four or more objective functions, `paretosearch` returns the points from the largest distance to the smallest, up to at most `ParetoSetSize` points.

Modifications for Parallel Computation and Vectorized Function Evaluation

When `paretosearch` computes objective function values in parallel or in a vectorized fashion (`UseParallel` is true or `UseVectorized` is true), there are some changes to the algorithm.

- When `UseVectorized` is true, `paretosearch` ignores the `MinPollFraction` option and evaluates all poll points in the pattern.
- When computing in parallel, `paretosearch` sequentially examines each point in `iterates` and performs a parallel poll from each point. After returning `MinPollFraction` fraction of the poll points, `paretosearch` determines if any poll points dominate the base point. If so, the poll is deemed successful, and any other parallel evaluations halt. If not, polling continues until a dominating point appears or the poll is done.
- `paretosearch` performs objective function evaluations either on workers or in a vectorized fashion, but not both. If you set both `UseParallel` and `UseVectorized` to true, `paretosearch` calculates objective function values in parallel on workers, but not in a vectorized fashion. In this case, `paretosearch` ignores the `MinPollFraction` option and evaluates all poll points in the pattern.

Run paretosearch Quickly

The fastest way to run `paretosearch` depends on several factors.
• If objective function evaluations are slow, then it is usually fastest to use parallel computing. The overhead in parallel computing can be substantial when objective function evaluations are fast, but when they are slow, it is usually best to use more computing power.

Note Parallel computing requires a Parallel Computing Toolbox license.

• If objective function evaluations are not very time consuming, then it is usually fastest to use vectorized evaluation. However, this is not always the case, because vectorized computations evaluate an entire pattern, whereas serial evaluations can take just a small fraction of a pattern. In high dimensions especially, this reduction in evaluations can cause serial evaluation to be faster for some problems.

• To use vectorized computing, your objective function must accept a matrix with an arbitrary number of rows. Each row represents one point to evaluate. The objective function must return a matrix of objective function values with the same number of rows as it accepts, with one column for each objective function. For a single-objective discussion, see “Vectorize the Fitness Function” on page 5-139 (ga) or “Vectorized Objective Function” on page 4-111 (patternsearch).

References

See Also

paretosearch
More About

- “Multiobjective Optimization”
gamultiobj Options and Syntax: Differences from ga

The syntax and options for gamultiobj are similar to those for ga, with the following differences:

- **gamultiobj** uses only the 'penalty' algorithm for nonlinear constraints. See “Nonlinear Constraint Solver Algorithms” on page 5-72.
- **gamultiobj** takes an option `DistanceMeasureFcn`, a function that assigns a distance measure to each individual with respect to its neighbors.
- **gamultiobj** takes an option `ParetoFraction`, a number between 0 and 1 that specifies the fraction of the population on the best Pareto frontier to be kept during the optimization. (If there are too few individuals of other ranks in step 6 of “Iterations” on page 9-8, then the fraction of the population on the best Pareto frontier can exceed `ParetoFraction`.)
- **gamultiobj** uses only the Tournament selection function.
- **gamultiobj** uses elite individuals differently than ga. It sorts noninferior individuals above inferior ones, so it uses elite individuals automatically.
- **gamultiobj** has only one hybrid function, `fgoalattain`.
- **gamultiobj** does not have a stall time limit.
- **gamultiobj** has different plot functions available.
- **gamultiobj** does not have a choice of scaling function.

See Also

More About

- “gamultiobj Algorithm” on page 9-5
- “Genetic Algorithm Options” on page 11-33
Pareto Front for Two Objectives

In this section…

“Multiobjective Optimization with Two Objectives“ on page 9-22
“Performing the Optimization with Optimization App” on page 9-22
“Performing the Optimization at the Command Line” on page 9-26
“Alternate Views” on page 9-26

Multiobjective Optimization with Two Objectives

This example has a two-objective fitness function \(f(x) \), where \(x \) is also two-dimensional:

```matlab
function f = mymulti1(x)
    f(1) = x(1)^4 - 10*x(1)^2 + x(1)*x(2) + x(2)^4 - (x(1)^2)*(x(2)^2);
    f(2) = x(2)^4 - (x(1)^2)*(x(2)^2) + x(1)^4 + x(1)*x(2);
```

Create this function file before proceeding, and store it as `mymulti1.m` on your MATLAB path.

Performing the Optimization with Optimization App

1. To define the optimization problem, start the Optimization app, and set it as pictured.

 ![Optimization App Screenshot](image_url)
2 Set the options for the problem as pictured.

3 Run the optimization by clicking Start under Run solver and view results.
A plot appears in a figure window.
This plot shows the tradeoff between the two components of \(f \). It is plotted in objective function space; see the figure “Figure 9-2, Set of Noninferior Solutions” on page 9-4.

The results of the optimization appear in the following table containing both objective function values and the value of the variables.
You can sort the table by clicking a heading. Click the heading again to sort it in the reverse order. The following figures show the result of clicking the heading f_1.
Performing the Optimization at the Command Line

To perform the same optimization at the command line:

1. Set the options:

   ```matlab
   options = optimoptions('gamultiobj','PopulationSize',60,...
   'ParetoFraction',0.7,'PlotFcn',@gaplotpareto);
   ```

2. Run the optimization using the options:

   ```matlab
   [x,fval,flag,output,population] = gamultiobj(@mymulti1,2,...
   [],[],[],[-5,-5],[5,5],options);
   ```

Alternate Views

There are other ways of regarding the problem. The following figure contains a plot of the level curves of the two objective functions, the Pareto frontier calculated by `gamultiobj` (boxes), and the x-values of the true Pareto frontier (diamonds connected by a nearly-straight line). The true Pareto frontier points are where the level curves of the objective functions are parallel. They were calculated by finding where the gradients of the objective functions are parallel. The figure is plotted in parameter space; see the figure “Figure 9-1, Mapping from Parameter Space into Objective Function Space” on page 9-3.
Contours of objective functions, and Pareto frontier

`gamultiobj` found the ends of the line segment, meaning it found the full extent of the Pareto frontier.
See Also

gamultiobj | paretosearch

More About

• “Multiobjective Optimization”
Compare paretosearch and gamultiobj

This example shows how to create a set of points on the Pareto front using both paretosearch and gamultiobj. The objective function has two objectives and a two-dimensional control variable \(x \). The objective function \texttt{mymulti3} is available in your MATLAB® session when you click the button to edit or try this example. Alternatively, copy the \texttt{mymulti3} code to your session. For speed of calculation, the function is vectorized.

\begin{verbatim}
type mymulti3
function f = mymulti3(x)
 f(:,1) = x(:,1).^4 + x(:,2).^4 + x(:,1).*x(:,2) - (x(:,1).^2).*(x(:,2).^2) - 9*x(:,1).^2;
 f(:,2) = x(:,2).^4 + x(:,1).^4 + x(:,1).*x(:,2) - (x(:,1).^2).*(x(:,2).^2) + 3*x(:,2).^3;
\end{verbatim}

\section*{Basic Example and Plots}

Find Pareto sets for the objective functions using paretosearch and gamultiobj. Set the UseVectorized option to true for added speed. Include a plot function to visualize the Pareto set.

\begin{verbatim}
rng default
nvars = 2;
opts = optimoptions(@gamultiobj,'UseVectorized',true,'PlotFcn','gaplotpareto');
[xga,fvalga,~,gaoutput] = gamultiobj(@(x)mymulti3(x),nvars,[],[],[],[],[],[],opts);
\end{verbatim}
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

optsp = optimoptions('paretosearch','UseVectorized',true,'PlotFcn',
{ 'psplotparetof' 'psplotparetox');
[xp,fvalp,~,psoutput] = paretosearch(@(x)mymulti3(x),nvars,[],[],[],[],[],[],optsp);
Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Compute theoretically exact points on the Pareto front by using `mymulti4`. The `mymulti4` function is available in your MATLAB® session when you click the button to edit or try this example.

```
type mymulti4
```

```
function mout = mymulti4(x)
  %
```
gg = [4*x(1)^3+x(2)-2*x(1)*(x(2)^2) - 18*x(1);
 x(1)+4*x(2)^3-2*(x(1)^2)*x(2)];
gf = gg + [18*x(1);9*x(2)^2];
mout = gf(1)*gg(2) - gf(2)*gg(1);

The mymulti4 function evaluates the gradients of the two objective functions. Next, for a range of values of x(2), use fzero to locate the point where the gradients are exactly parallel, which is where the output mout = 0.

a = [fzero(@(t)mymulti4([t,-3.15]),[2,3]),-3.15];
for jj = linspace(-3.125,-1.89,50)
 a = [a;[fzero(@(t)mymulti4([t,jj]),[2,3]),jj]];
end
figure
plot(fvalp(:,1),fvalp(:,2),'bo');
hold on
fs = mymulti3(a);
plot(fvalga(:,1),fvalga(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.'
legend('Paretosearch','Gamultiobj','True')
xlabel('Objective 1')
ylabel('Objective 2')
hold off
gamultiobj finds points with a slightly wider spread in objective function space. Plot the solutions in decision variable space, along with the theoretical optimal Pareto curve and a contour plot of the two objective functions.

\[
[x, y] = \text{meshgrid}(1.9:.01:3.1, -3.2:.01:-1.8);
\]
\[
\text{mydata} = \text{mymulti3}([x(:), y(:)]);
\]
\[
\text{myff} = \sqrt{\text{mydata}(:, 1) + 39}; \quad \% \text{Spaces the contours better}
\]
\[
\text{mygg} = \sqrt{\text{mydata}(:, 2) + 28}; \quad \% \text{Spaces the contours better}
\]
\[
\text{myff} = \text{reshape}(\text{myff}, \text{size}(x));
\]
\[
\text{mygg} = \text{reshape}(\text{mygg}, \text{size}(x));
\]

\[
\text{figure;}
\]
\[
\text{hold on}
\]
\[
\text{contour}(x, y, \text{mygg}, 50)
\]
Unlike the `paretosearch` solution, the `gamultiobj` solution has points at the extreme ends of the range in objective function space. However, the `paretosearch` solution has more points that are closer to the true solution in both objective function space and decision variable space. The number of points on the Pareto front is different for each solver when you use the default options.
Shifted Problem

What happens if the solution to your problem has control variables that are large? Examine this case by shifting the problem variables. For an unconstrained problem, `gamultiobj` can fail, while `paretosearch` is more robust to such shifts.

For easier comparison, specify 35 points on the Pareto front for each solver.

```matlab
shift = [20,-30];
fun = @(x)mymulti3(x+shift);
opts.PopulationSize = 100; % opts.ParetoFraction = 35
[xgash,fvalgash,~,gashoutput] = gamultiobj(fun,nvars,[],[],[],[],[],opts);
```

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
gamultiobj fails to find a useful Pareto set.

```matlab
optsp.PlotFcns = []; optsp.ParetoSetSize = 35; [xpsh,fvalpsh,~,pshoutput] = paretosearch(fun,nvars,[],[],[],[],[],[],optsp);
```

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

```matlab
figure plot(fvalpsh(:,1),fvalpsh(:,2),'bo'); hold on plot(fs(:,1),fs(:,2),'k.') legend('Paretosearch','True') xlabel('Objective 1') ylabel('Objective 2') hold off
```
paretosearch finds solution points spread evenly over nearly the entire possible range.

Adding bounds, even fairly loose ones, helps both gamultiobj and paretosearch to find appropriate solutions. Set lower bounds of -50 in each component, and upper bounds of 50.

opts.PlotFcnc = [];
optsp.PlotFcnc = [];
lb = [-50,-50];
ub = -lb;
[xgash,fvalgash,~,gashoutput] = gamultiobj(fun,nvars,[],[],[],[],lb,ub,opts);
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

[xpsh2,fvalpsh2,~,pshoutput2] = paretosearch(fun,nvars,[],[],[],[],lb,ub,[],optsp);
Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

figure
plot(fvalpsh2(:,1),fvalpsh2(:,2),'bo');
hold on
plot(fvalgash(:,1),fvalgash(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.'
legend('Paretosearch','Gamultiobj','True')
xlabel('Objective 1')
ylabel('Objective 2')
hold off
In this case, both solvers find good solutions.

Start paretosearch from gamultiobj Solution

Obtain a similar range of solutions from the solvers by starting paretosearch from the gamultiobj solution.

```matlab
optsp.InitialPoints = xgash;
[xpsh3,fvalpsh3,~,pshoutput3] = paretosearch(fun,nvars,[],[],[],[],lb,ub,[],optsp);
```

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

figure
plot(fvalpsh3(:,1),fvalpsh3(:,2),'bo');
hold on
plot(fvalgash(:,1),fvalgash(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.')
legend('Paretosearch','Gamultiobj','True')
xlabel('Objective 1')
ylabel('Objective 2')
hold off

Now the paretosearch solution is similar to the gamultiobj solution, although some of the solution points differ.
Start from Single-Objective Solutions

Another way of obtaining a good solution is to start from the points that minimize each objective function separately.

From the multiobjective function, create a single-objective function that chooses each objective in turn. Use the shifted function from the previous section. Because you are giving good start points to the solvers, you do not need to specify bounds.

```matlab
nobj = 2; % Number of objectives
x0 = -shift; % Initial point for single-objective minimization
uncmin = cell(nobj,1); % Cell array to hold the single-objective minima
allfuns = zeros(nobj,2); % Hold the objective function values
eflag = zeros(nobj,1);
fopts = optimoptions('patternsearch','Display','off'); % Use an appropriate solver here
for i = 1:nobj
    indi = zeros(nobj,1); % Choose the objective to minimize
    indi(i) = 1;
    funi = @(x)dot(fun(x),indi);
    [uncmin{i},~,eflag(i)] = patternsearch(funi,x0,[],[],[],[],[],[],[],fopts); % Minimize objective i
    allfuns(i,:) = fun(uncmin{i});
end
uncmin = cell2mat(uncmin); % Matrix of start points
```

Start `paretosearch` from the single-objective minimum points and note that it has a full range in its solutions. `paretosearch` adds random initial points to the supplied ones in order to have a population of at least `options.ParetoSetSize` individuals. Similarly, `gamultiobj` adds random points to the supplied ones to obtain a population of at least `(options.PopulationSize)*(options.ParetoFraction)` individuals.

```matlab
optsp = optimoptions(optsp,'InitialPoints',uncmin);
[xpinit,fvalpinit,~,outputpinit] = paretosearch(fun,nvars,[],[],[],[],[],[],optsp);
```

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Now solve the problem using `gamultiobj` starting from the initial points.

```matlab
opts = optimoptions(opts,'InitialPopulationMatrix',uncmin);
[xgash2,fvalgash2,~,gashoutput2] = gamultiobj(fun,nvars,[],[],[],[],[],[],opts);
```

9-41
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

figure
plot(fvalpinit(:,1),fvalpinit(:,2),'bo');
hold on
plot(fvalgash2(:,1),fvalgash2(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.'
plot(allfuns(:,1),allfuns(:,2),'gs','MarkerSize',12)
legend('Paretosearch','Gamultiobj','True','Start Points')
xlabel('Objective 1')
ylabel('Objective 2')
hold off
Both solvers fill in the Pareto front between the extreme points, with reasonably accurate and well-spaced solutions.

View the final points in decision variable space.

```matlab
figure;
hold on
xx = x - shift(1);
yy = y - shift(2);
contour(xx,yy,mygg,50)
contour(xx,yy,myff,50)
plot(xpinit(:,1),xpinit(:,2),'bo')
plot(xgash2(:,1),xgash2(:,2),'r*')
ashift = a - shift;
plot(ashift(:,1),ashift(:,2),'-k')
plot(uncmin(:,1),uncmin(:,2),'gs','MarkerSize',12);
xlabel('x(1)')
ylabel('x(2)')
hold off
```
See Also

gamultiobj | paretosearch

More About

• “Multiobjective Optimization”
This example shows how to plot a Pareto front for three objectives. Each objective function is the squared distance from a particular 3-D point. For speed of calculation, write each objective function in vectorized fashion as a dot product. To obtain a dense solution set, use 200 points on the Pareto front.

```matlab
fun = @(x)[dot(x - [1,2,3],x - [1,2,3],2), ...
    dot(x - [-1,3,-2],x - [-1,3,-2],2), ...
    dot(x - [0,-1,1],x - [0,-1,1],2)];
options = optimoptions('paretosearch','UseVectorized',true,'ParetoSetSize',200);
lb = -5*ones(1,3);
ub = -lb;
rng default % For reproducibility
[x,f] = paretosearch(fun,3,[],[],[],[],lb,ub,[],options);
```

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Create 3-D Scatter Plot

Plot points on the Pareto front by using `scatter3`.

```matlab
figure
subplot(2,2,1)
scatter3(f(:,1),f(:,2),f(:,3),'k.');
subplot(2,2,2)
scatter3(f(:,1),f(:,2),f(:,3),'k.');
view(-148,8)
subplot(2,2,3)
scatter3(f(:,1),f(:,2),f(:,3),'k.');
view(-180,8)
subplot(2,2,4)
scatter3(f(:,1),f(:,2),f(:,3),'k.');
view(-300,8)
```
By rotating the plot interactively, you get a better view of its structure.

Interpolated Surface Plot

To see the Pareto front as a surface, create a scattered interpolant.

```matlab
figure
F = scatteredInterpolant(f(:,1),f(:,2),f(:,3),'linear','none');
```

To plot the resulting surface, create a mesh in x-y space from the smallest to the largest values. Then plot the interpolated surface.

```matlab
sgr = linspace(min(f(:,1)),max(f(:,1)));  
ygr = linspace(min(f(:,2)),max(f(:,2)));  
```
[XX, YY] = meshgrid(sgr, ygr);
ZZ = F(XX, YY);

Plot the Pareto points and surface together.

figure
subplot(2,2,1)
surf(XX, YY, ZZ, 'LineStyle', 'none')
hold on
scatter3(f(:,1), f(:,2), f(:,3), 'k.'); hold off
subplot(2,2,2)
surf(XX, YY, ZZ, 'LineStyle', 'none')
hold on
scatter3(f(:,1), f(:,2), f(:,3), 'k.'); hold off
view(-148, 8)
subplot(2,2,3)
surf(XX, YY, ZZ, 'LineStyle', 'none')
hold on
scatter3(f(:,1), f(:,2), f(:,3), 'k.'); hold off
view(-180, 8)
subplot(2,2,4)
surf(XX, YY, ZZ, 'LineStyle', 'none')
hold on
scatter3(f(:,1), f(:,2), f(:,3), 'k.'); hold off
view(-300, 8)
By rotating the plot interactively, you get a better view of its structure.

Plot Pareto Set in Control Variable Space

Create a scatter plot of the x-values in the Pareto set.

```matlab
figure
subplot(2,2,1)
scatter3(x(:,1),x(:,2),x(:,3),'k.');
subplot(2,2,2)
scatter3(x(:,1),x(:,2),x(:,3),'k.');
view(-148,8)
subplot(2,2,3)
scatter3(x(:,1),x(:,2),x(:,3),'k.');</code>
view(-180,8)
subplot(2,2,4)
scatter3(x(:,1),x(:,2),x(:,3),'k.);
view(-300,8)

This set does not have a clear surface. By rotating the plot interactively, you get a better view of its structure.

See Also
gamultiobj | paretosearch
More About

- “Multiobjective Optimization”
Performing a Multiobjective Optimization Using the Genetic Algorithm

This example shows how to perform a multiobjective optimization using multiobjective genetic algorithm function `gamultiobj` in Global Optimization Toolbox.

**Simple Multiobjective Optimization Problem**

gamultiobj can be used to solve multiobjective optimization problem in several variables. Here we want to minimize two objectives, each having one decision variable.

\[
\min F(x) = [\text{objective1}(x); \text{objective2}(x)]
\]

\[
x
\]

where, \( \text{objective1}(x) = (x+2)^2 - 10 \), and \( \text{objective2}(x) = (x-2)^2 + 20 \)

% Plot two objective functions on the same axis
x = -10:0.5:10;
f1 = (x+2).^2 - 10;
f2 = (x-2).^2 + 20;
plot(x,f1);
hold on;
plot(x,f2,'r');
grid on;
title('Plot of objectives ''(x+2)^2 - 10'' and ''(x-2)^2 + 20''');
The two objectives have their minima at $x = -2$ and $x = +2$ respectively. However, in a multiobjective problem, $x = -2$, $x = 2$, and any solution in the range $-2 \leq x \leq 2$ is equally optimal. There is no single solution to this multiobjective problem. The goal of the multiobjective genetic algorithm is to find a set of solutions in that range (ideally with a good spread). The set of solutions is also known as a Pareto front. All solutions on the Pareto front are optimal.

**Coding the Fitness Function**

We create a MATLAB file named `simple_multiobjective.m`:

```matlab
function y = simple_multiobjective(x)
 y(1) = (x+2)^2 - 10;
 y(2) = (x-2)^2 + 20;
```
The Genetic Algorithm solver assumes the fitness function will take one input \( x \), where \( x \) is a row vector with as many elements as the number of variables in the problem. The fitness function computes the value of each objective function and returns these values in a single vector output \( y \).

**Minimizing Using `gamultiobj`**

To use the `gamultiobj` function, we need to provide at least two input arguments, a fitness function, and the number of variables in the problem. The first two output arguments returned by `gamultiobj` are \( X \), the points on Pareto front, and \( FVAL \), the objective function values at the values \( X \). A third output argument, `exitFlag`, tells you the reason why `gamultiobj` stopped. A fourth argument, `OUTPUT`, contains information about the performance of the solver. `gamultiobj` can also return a fifth argument, `POPULATION`, that contains the population when `gamultiobj` terminated and a sixth argument, `SCORE`, that contains the function values of all objectives for `POPULATION` when `gamultiobj` terminated.

```matlab
FitnessFunction = @simple_multiobjective;
numberOfVariables = 1;
[x,fval] = gamultiobj(FitnessFunction,numberOfVariables);
```

Optimization terminated: maximum number of generations exceeded.

The \( X \) returned by the solver is a matrix in which each row is the point on the Pareto front for the objective functions. The \( FVAL \) is a matrix in which each row contains the value of the objective functions evaluated at the corresponding point in \( X \).

```matlab
size(x)
size(fval)
```

```
an =
 18 1
```

```
an =
 18 2
```
Constrained Multiobjective Optimization Problem

gamultiobj can handle optimization problems with linear inequality, equality, and simple bound constraints. Here we want to add bound constraints on simple multiobjective problem solved previously.

\[
\begin{align*}
\text{min } F(x) &= \{\text{objective}_1(x); \text{objective}_2(x)\} \\
\text{x} & \text{ subject to } -1.5 \leq x \leq 0 \text{ (bound constraints)} \\
\text{where, } \text{objective}_1(x) & = (x+2)^2 - 10, \text{ and} \\
\text{objective}_2(x) & = (x-2)^2 + 20
\end{align*}
\]

gamultiobj accepts linear inequality constraints in the form \( A^*x \leq b \) and linear equality constraints in the form \( Aeq^*x = beq \) and bound constraints in the form \( lb \leq x \leq ub \). We pass \( A \) and \( Aeq \) as matrices and \( b, beq, lb, \) and \( ub \) as vectors. Since we have no linear constraints in this example, we pass [], for those inputs.

\[
\begin{align*}
A &= []; b = []; \\
Aeq &= []; beq = []; \\
lb &= -1.5; \\
ub &= 0; \\
x &= \text{gamultiobj(FitnessFunction,numberOfVariables,A,b,Aeq,beq,lb,ub)};
\end{align*}
\]

Optimization terminated: maximum number of generations exceeded.

All solutions in \( X \) (each row) will satisfy all linear and bound constraints within the tolerance specified in \( \text{options.ConstraintTolerance} \). However, if you use your own crossover or mutation function, ensure that the new individuals are feasible with respect to linear and simple bound constraints.

Adding Visualization

gamultiobj can accept one or more plot functions through the options argument. This feature is useful for visualizing the performance of the solver at run time. Plot functions can be selected using \( \text{optimoptions} \).

Here we use \( \text{optimoptions} \) to select two plot functions. The first plot function is \( \text{gaplotpareto} \), which plots the Pareto front (limited to any three objectives) at every generation. The second plot function is \( \text{gaplotscorediversity} \), which plots the score diversity for each objective. The options are passed as the last argument to the solver.
options = optimoptions(@gamultiobj,'PlotFcns',{@gaplotpareto,@gaplotscorediversity});
gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub,options);

Optimization terminated: maximum number of generations exceeded.

Vectorizing Your Fitness Function

Consider the previous fitness functions again:

\[
\text{objective1}(x) = (x+2)^2 - 10, \quad \text{and} \\
\text{objective2}(x) = (x-2)^2 + 20
\]

By default, the gamultiobj solver only passes in one point at a time to the fitness function. However, if the fitness function is vectorized to accept a set of points and returns a set of function values you can speed up your solution.
For example, if the solver needs to evaluate five points in one call to this fitness function, then it will call the function with a matrix of size 5-by-1, i.e., 5 rows and 1 column (recall that 1 is the number of variables).

Create a MATLAB file called `vectorized_multiobjective.m`:

```matlab
function scores = vectorized_multiobjective(pop)
 popSize = size(pop,1); % Population size
 numObj = 2; % Number of objectives
 % initialize scores
 scores = zeros(popSize, numObj);
 % Compute first objective
 scores(:,1) = (pop + 2).^2 - 10;
 % Compute second objective
 scores(:,2) = (pop - 2).^2 + 20;
```

This vectorized version of the fitness function takes a matrix `pop` with an arbitrary number of points, the rows of `pop`, and returns a matrix of size `populationSize`-by-`numberOfObjectives`.

We need to specify that the fitness function is vectorized using the options created using `optimoptions`. The options are passed in as the ninth argument.

```matlab
FitnessFunction = @(x) vectorized_multiobjective(x);
options = optimoptions(@gamultiobj,'UseVectorized',true);
gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub,options);
```

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

### See Also

### More About

- “Vectorize the Fitness Function” on page 5-139
- “Genetic Algorithm Options” on page 11-33
Multiobjective Genetic Algorithm Options

This example shows how to create and manage options for the multiobjective genetic algorithm function `gamultiobj` using `optimoptions` in Global Optimization Toolbox.

Setting Up a Problem for `gamultiobj`

`gamultiobj` finds a local Pareto front for multiple objective functions using the genetic algorithm. For this example, we will use `gamultiobj` to obtain a Pareto front for two objective functions described in the MATLAB file `kur_multiobjective.m`. It is a real-valued function that consists of two objectives, each of three decision variables. We also impose bound constraints on the decision variables -5 <= x(i) <= 5, i = 1,2,3.

```matlab
type kur_multiobjective.m
```

```matlab
function y = kur_multiobjective(x)
%KUR_MULTIOBJECTIVE Objective function for a multiobjective problem.
% The Pareto-optimal set for this two-objective problem is nonconvex as
% well as disconnected. The function KUR_MULTIOBJECTIVE computes two
% objectives and returns a vector y of size 2-by-1.
%
% Reference: Kalyanmoy Deb, "Multi-Objective Optimization using
% Evolutionary Algorithms", John Wiley & Sons ISBN 047187339
%
% Copyright 2007 The MathWorks, Inc.

% Initialize for two objectives
y = zeros(2,1);

% Compute first objective
for i = 1:2
 y(1) = y(1) - 10*exp(-0.2*sqrt(x(i)^2 + x(i+1)^2));
end

% Compute second objective
for i = 1:3
 y(2) = y(2) + abs(x(i))^0.8 + 5*sin(x(i)^3);
end
```

We need to provide a fitness function, the number of variables, and bound constraints in the problem to `gamultiobj` function. Refer to the help for the `gamultiobj` function for the syntax. Here we also want to plot the Pareto front in every generation using the plot function `@gaplotpareto`. We use `optimoptions` function to specify this plot function.
FitnessFunction = @kur_multiobjective; % Function handle to the fitness function
numberOfVariables = 3; % Number of decision variables
lb = [-5 -5 -5]; % Lower bound
ub = [5 5 5]; % Upper bound
A = []; % No linear inequality constraints
b = []; % No linear inequality constraints
Aeq = []; % No linear equality constraints
beq = []; % No linear equality constraints
options = optimoptions(@gamultiobj,'PlotFcns',@gaplotpareto);

Run the gaMultiobj solver and display the number of solutions found on the Pareto front and the number of generations.

[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ... b,Aeq,beq,lb,ub,options);
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d
', size(x,1));
The number of points on the Pareto front was: 18
fprintf('The number of generations was : %d
', Output.generations);
The number of generations was : 317

The Pareto plot displays two competing objectives. For this problem, the Pareto front is known to be disconnected. The solution from gamultiobj can capture the Pareto front even if it is disconnected. Note that when you run this example, your result may be different from the results shown because gamultiobj uses random number generators.
Elitist Multiobjective Genetic Algorithm

The multiobjective genetic algorithm (gamultiobj) works on a population using a set of operators that are applied to the population. A population is a set of points in the design space. The initial population is generated randomly by default. The next generation of the population is computed using the non-dominated rank and a distance measure of the individuals in the current generation.

A non-dominated rank is assigned to each individual using the relative fitness. Individual 'p' dominates 'q' ('p' has a lower rank than 'q') if 'p' is strictly better than 'q' in at least one objective and 'p' is no worse than 'q' in all objectives. This is same as saying 'q' is dominated by 'p' or 'p' is non-inferior to 'q'. Two individuals 'p' and 'q' are considered to have equal ranks if neither dominates the other. The distance measure of an individual is used to compare individuals with equal rank. It is a measure of how far an individual is from the other individuals with the same rank.

The multiobjective GA function gamultiobj uses a controlled elitist genetic algorithm (a variant of NSGA-II [1]). An elitist GA always favors individuals with better fitness value (rank) whereas, a controlled elitist GA also favors individuals that can help increase the diversity of the population even if they have a lower fitness value. It is very important to maintain the diversity of population for convergence to an optimal Pareto front. This is done by controlling the elite members of the population as the algorithm progresses. Two options 'ParetoFraction' and 'DistanceFcn' are used to control the elitism. The Pareto fraction option limits the number of individuals on the Pareto front (elite members) and the distance function helps to maintain diversity on a front by favoring individuals that are relatively far away on the front.

Specifying Multiobjective GA Options

We can chose the default distance measure function, distancecrowding, that is provided in the toolbox or write our own function to calculate the distance measure of an individual. The crowding distance measure function in the toolbox takes an optional argument to calculate distance either in function space (phenotype) or design space (genotype). If 'genotype' is chosen, then the diversity on a Pareto front is based on the design space. The default choice is 'phenotype' and, in that case, the diversity is based on the function space. Here we choose 'genotype' for our distance function. We will directly modify the value of the parameter DistanceMeasureFcn.

options.DistanceMeasureFcn = {@distancecrowding,'genotype'};
The Pareto fraction has a default value of 0.35 i.e., the solver will try to limit the number of individuals in the current population that are on the Pareto front to 35 percent of the population size. Here we set the Pareto fraction to 0.5.

```matlab
options = optimoptions(options,'ParetoFraction',0.5);
```

Run the `gamultiobj` solver and display the number of solutions found on the Pareto front and the average distance measure of solutions.

```matlab
[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ... b,Aeq,beq,lb,ub,options);
```

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
fprintf('The number of points on the Pareto front was: %d\n', size(x,1));
The number of points on the Pareto front was: 25

fprintf('The average distance measure of the solutions on the Pareto front was: %g\n', Output.averagedistance);
The average distance measure of the solutions on the Pareto front was: 0.051005

fprintf('The spread measure of the Pareto front was: %g\n', Output.spread);
The spread measure of the Pareto front was: 0.181192

A smaller average distance measure indicates that the solutions on the Pareto front are evenly distributed. However, if the Pareto front is disconnected, then the distance measure will not indicate the true spread of solutions.

**Modifying the Stopping Criteria**

gamultiobj uses three different criteria to determine when to stop the solver. The solver stops when any one of the stopping criteria is met. It stops when the maximum number of generations is reached; by default this number is '200*numberOfVariables'.
gamultiobj also stops if the average change in the spread of the Pareto front over the MaxStallGenerations generations (default is 100) is less than tolerance specified in options.FunctionTolerance. The third criterion is the maximum time limit in seconds (default is Inf). Here we modify the stopping criteria to change the FunctionTolerance from 1e-4 to 1e-3 and increase MaxStallGenerations to 150.

options = optimoptions(options,'FunctionTolerance',1e-3,'MaxStallGenerations',150);

Run the gamultiobj solver and display the number of solutions found on the Pareto front and the number of generations.

[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ...
b,Aeq,beq,lb,ub,options);
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));
The number of points on the Pareto front was: 25

fprintf('The number of generations was : %d\n', Output.generations);
The number of generations was : 152

**Multiobjective GA Hybrid Function**

We will use a hybrid scheme to find an optimal Pareto front for our multiobjective problem. `gamultiobj` can reach the region near an optimal Pareto front relatively
quickly, but it can take many function evaluations to achieve convergence. A commonly used technique is to run `gamultiobj` for a small number of generations to get near an optimum front. Then the solution from `gamultiobj` is used as an initial point for another optimization solver that is faster and more efficient for a local search. We use `fgoalattain` as the hybrid solver with `gamultiobj`. `fgoalattain` solves the goal attainment problem, which is one formulation for minimizing a multiobjective optimization problem.

The hybrid functionality in multiobjective function `gamultiobj` is slightly different from that of the single objective function GA. In single objective GA the hybrid function starts at the best point returned by GA. However, in `gamultiobj` the hybrid solver will start at all the points on the Pareto front returned by `gamultiobj`. The new individuals returned by the hybrid solver are combined with the existing population and a new Pareto front is obtained. It may be useful to see the syntax of `fgoalattain` function to better understand how the output from `gamultiobj` is internally converted to the input of `fgoalattain` function. `gamultiobj` estimates the pseudo weights (required input for `fgoalattain`) for each point on the Pareto front and runs the hybrid solver starting from each point on the Pareto front. Another required input, goal, is a vector specifying the goal for each objective. `gamultiobj` provides this input as the extreme points from the Pareto front found so far.

Here we run `gamultiobj` without the hybrid function.

```matlab
[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ... b,Aeq,beq,lb,ub,options);
```
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));
The number of points on the Pareto front was: 25

fprintf('The average distance measure of the solutions on the Pareto front was: %g\n', Output.averagedistance);
The average distance measure of the solutions on the Pareto front was: 0.0434477

fprintf('The spread measure of the Pareto front was: %g\n', Output.spread);
The spread measure of the Pareto front was: 0.17833
Here we use `fgoalattain` as the hybrid function. We also reset the random number generators so that we can compare the results with the previous run (without the hybrid function).

```matlab
options = optimoptions(options,'HybridFcn',@fgoalattain);
```

Reset the random state (only to compare with previous run)

```matlab
strm = RandStream.getGlobalStream;
strm.State = Output.rngstate.State;
```

Run the GAMULTIOBJ solver with hybrid function.

```matlab
[x,Fval,exitFlag,Output,Population,Score] = gamultiobj(FitnessFunction,numberOfVariables,A, ... b,Aeq,beq,lb,ub,options);
```
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d
', size(x,1));
The number of points on the Pareto front was: 25

fprintf('The average distance measure of the solutions on the Pareto front was: %g
', Output.averagedistance);
The average distance measure of the solutions on the Pareto front was: 0.128391

fprintf('The spread measure of the Pareto front was: %g
', Output.spread);
The spread measure of the Pareto front was: 0.423028

If the Pareto fronts obtained by gamultiobj alone and by using the hybrid function are close, we can compare them using the spread and the average distance measures. The average distance of the solutions on the Pareto front can be improved by using a hybrid function. The spread is a measure of the change in two fronts and that can be higher when hybrid function is used. This indicates that the front has changed considerably from that obtained by gamultiobj with no hybrid function.

It is certain that using the hybrid function will result in a optimal Pareto front but we may lose the diversity of the solution (because fgoalattain does not try to preserve the diversity). This can be indicated by a higher value of the average distance measure and the spread of the front. We can further improve the average distance measure of the solutions and the spread of the Pareto front by running gamultiobj again with the final population returned in the last run. Here, we should remove the hybrid function.

options = optimoptions(options,'HybridFcn',[]); % No hybrid function
% Provide initial population and scores
options = optimoptions(options,'InitialPopulationMatrix',Population,'InitialScoresMatrix',Score);
% Run the GAMULTIOBJ solver with hybrid function.
[x,Fval,exitFlag,Output,Population,Score] = gamultiobj(FitnessFunction,numberOfVariables,A, ... b,Aeq,beq,lb,ub,options);
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));
The number of points on the Pareto front was: 25
fprintf('The average distance measure of the solutions on the Pareto front was: %g\n', Output.averagedistance);
The average distance measure of the solutions on the Pareto front was: 0.0352758
fprintf('The spread measure of the Pareto front was: %g\n', Output.spread);
The spread measure of the Pareto front was: 0.144154
References


See Also

More About

- “Genetic Algorithm Options” on page 11-33
- “Hybrid Scheme in the Genetic Algorithm” on page 5-130
**Design Optimization of a Welded Beam**

This example shows how to examine the tradeoff between the strength and cost of a beam. Several publications use this example as a test problem for various multiobjective algorithms, including Deb et al. [1] and Ray and Liew [2].

For a video overview of this example, see Pareto Sets for Multiobjective Optimization.

**Problem Description**

The following sketch is adapted from Ray and Liew [2].

![Sketch of a welded beam](image)

This sketch represents a beam welded onto a substrate. The beam supports a load $P$ at a distance $L$ from the substrate. The beam is welded onto the substrate with upper and lower welds, each of length $l$ and thickness $h$. The beam has a rectangular cross-section, width $b$, and height $t$. The material of the beam is steel.

The two objectives are the fabrication cost of the beam and the deflection of the end of the beam under the applied load $P$. The load $P$ is fixed at 6,000 lbs, and the distance $L$ is fixed at 14 in.

The design variables are:
• \( x(1) = h \), the thickness of the welds
• \( x(2) = l \), the length of the welds
• \( x(3) = t \), the height of the beam
• \( x(4) = b \), the width of the beam

The fabrication cost of the beam is proportional to the amount of material in the beam, \((l + L)tb\), plus the amount of material in the welds, \(lh^2\). Using the proportionality constants from the cited papers, the first objective is

\[
F_1(x) = 1.10471x_1^2x_2 + 0.04811x_3x_4(14 + x_2).
\]

The deflection of the beam is proportional to \(P\) and inversely proportional to \(bt^3\). Again, using the proportionality constants from the cited papers, the second objective is

\[
F_2(x) = \frac{P}{x_4^3x_3^3}C, \text{ where } C = \frac{4(14)^3}{30 \times 10^6} \approx 3.6587 \times 10^{-4} \text{ and } P = 6,000.
\]

The problem has several constraints.

• The weld thickness cannot exceed the beam width. In symbols, \(x(1) \leq x(4)\). In toolbox syntax:

\[
\text{Aineq} = [1, 0, 0, -1];
\]
\[
\text{bineq} = 0;
\]

• The shear stress \(\tau(x)\) on the welds cannot exceed 13,600 psi. To calculate the shear stress, first calculate preliminary expressions:

\[\tau_1 = \frac{1}{\sqrt{2x_1x_2}}\]

\[R = \sqrt{x_2^2 + (x_1 + x_3)^2}\]

\[\tau_2 = \frac{(L + x_2/2)R}{\sqrt{2x_1x_3(x_2^2/3 + (x_1 + x_3)^2}}\]

\[\tau(x) = P\sqrt{\tau_1^2 + \tau_2^2 + \frac{2\tau_1\tau_2x_2}{R}}.\]
In summary, the shear stress on the welds has the constraint \( \tau(x) \leq 13600 \).

- The normal stress \( \sigma(x) \) on the welds cannot exceed 30,000 psi. The normal stress is 
  \[
  P \frac{6L}{x_4^2 x_3^2} \leq 30 \times 10^3.
  \]

- The buckling load capacity in the vertical direction must exceed the applied load of 6,000 lbs. Using the values of Young's modulus \( E = 30 \times 10^6 \) psi and \( G = 12 \times 10^6 \) psi, the buckling load constraint is
  \[
  4.013 E x_3^3 x_4^3 \left( 1 - \frac{x_3}{2L} \sqrt{\frac{E}{4G}} \right) \geq 6000.
  \]
  Numerically, this becomes the inequality
  \[
  64,746.022 (1 - 0.0282346 x_3)x_3^3 x_4^3 \geq 6000.
  \]

- The bounds on the variables are \( 0.125 \leq x(1) \leq 5, \ 0.1 \leq x(2) \leq 10, \ 0.1 \leq x(3) \leq 10, \) and \( 0.125 \leq x(4) \leq 5. \) In toolbox syntax:
  \[
  \text{lb} = [0.125,0.1,0.1,0.125];
  \text{ub} = [5,10,10,5];
  \]

The objective functions appear at the end of this example in the function \text{objval}(x). The nonlinear constraints appear at the end of this example in the function \text{nonlcon}(x).

**Multiobjective Problem Formulation and \text{paretosearch} Solution**

You can optimize this problem in several ways:

- Set a maximum deflection, and find a single-objective minimal fabrication cost over designs that satisfy the maximum deflection constraint.
- Set a maximum fabrication cost, and find a single-objective minimal deflection over designs that satisfy the fabrication cost constraint.
- Solve a multiobjective problem, visualizing the tradeoff between the two objectives.

To use the multiobjective approach, which gives more information about the problem, set the objective function and nonlinear constraint function.

\[
\text{fun} = @\text{objval};
\]
\[
\text{nlcon} = @\text{nonlcon};
\]

Solve the problem using \text{paretosearch} with the 'psplotparetof' plot function. To reduce the amount of diagnostic display information, set the \text{Display} option to 'off'.

9-72
opts_ps = optimoptions('paretosearch','Display','off','PlotFcn','psplotparetof');
rng default % For reproducibility
[x_ps1,fval_ps1,~,psoutput1] = paretosearch(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ps);
disp("Total Function Count: " + psoutput1.funccount);
Total Function Count: 1320

For a smoother Pareto front, try using more points.

npts = 160; % The default is 60
opts_ps.ParetoSetSize = npts;
[x_ps2,fval_ps2,~,psoutput2] = paretosearch(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ps);
disp("Total Function Count: " + psoutput2.funccount);

Total Function Count: 4408

This solution looks like a smoother curve, but it has a smaller extent of Objective 2. The solver takes over three times as many function evaluations when using 160 Pareto points instead of 60.

**gamultiobj Solution**

To see if the solver makes a difference, try the gamultiobj solver on the problem. Set equivalent options as in the previous solution. Because the gamultiobj solver keeps fewer than half of its solutions on the best Pareto front, use two times as many points as before.
opts_ga = optimoptions('gamultiobj','Display','off','PlotFcn','gaplotpareto','PopulationSize',2*npts);

[x_ga1,fval_ga1,~,gaoutput1] = gamultiobj(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ga);

disp("Total Function Count: " + gaoutput1.funccount);

Total Function Count: 33921

gamultiobj takes tens of thousands of function evaluations, whereas paretosearch takes only thousands.

**Compare Solutions**

The gamultiobj solution seems to differ from the paretosearch solution, although it is difficult to tell because the plotted scales differ. Plot the two solutions on the same plot, using the same scale.
fps2 = sortrows(fval_ps2,1,'ascend');
figure
hold on
plot(fps2(:,1),fps2(:,2),'r-')
fga = sortrows(fval_ga1,1,'ascend');
plot(fga(:,1),fga(:,2),'b--')
xlim([0,40])
ylim([0,1e-2])
legend('paretosearch','gamultiobj')
xlabel 'Cost'
ylabel 'Deflection'
hold off
The `gamultiobj` solution is better in the rightmost portion of the plot, whereas the `paretosearch` solution is better in the leftmost portion. `paretosearch` uses many fewer function evaluations to obtain its solution.

Typically, when the problem has no nonlinear constraints, `paretosearch` is at least as accurate as `gamultiobj`. However, the resulting Pareto sets can have somewhat different ranges. In this case, the presence of a nonlinear constraint causes the `paretosearch` solution to be less accurate over part of the range.

One of the main advantages of `paretosearch` is that it usually takes many fewer function evaluations.

**Start from Single-Objective Solutions**

To help the solvers find better solutions, start them from points that are the solutions to minimizing the individual objective functions. The `pickindex` function returns a single objective from the `objval` function. Use `fmincon` to find single-objective optima. Then use those solutions as initial points for a multiobjective search.

```matlab
x0 = zeros(2,4);
x0f = (lb + ub)/2;
opts_fmc = optimoptions('fmincon','Display','off','MaxFunctionEvaluations',1e4);
x0(1,:) = fmincon(@(x)pickindex(x,1),x0f,Aineq,bineq,[][],[],lb,ub,@nonlcon,opts_fmc);
x0(2,:) = fmincon(@(x)pickindex(x,2),x0f,Aineq,bineq,[][],[],lb,ub,@nonlcon,opts_fmc);
```

Examine the single-objective optima.

```matlab
objval(x0(1,:))
ans = 1×2
 2.3810 0.0158

objval(x0(2,:))
ans = 1×2
 76.7253 0.0004
```

The minimum cost is 2.381, which gives a deflection of 0.158. The minimum deflection is 0.0004, which has a cost of 76.7253. The plotted curves are quite steep near the ends of their ranges, meaning you get much less deflection if you take a cost a bit above its minimum, or much less cost if you take a deflection a bit above its minimum.
Start `paretosearch` from the single-objective solutions. Because you will plot the solutions later on the same plot, remove the `paretosearch` plot function.

```matlab
opts_ps.InitialPoints = x0;
opts_ps.PlotFcn = [];
[x_ps,x0,fval_ps1x0,~,psoutput1x0] = paretosearch(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ps);
disp("Total Function Count: " + psoutput1x0.funccount);
```

Total Function Count: 5024

Start `ga` from the same initial points, and remove its plot function.

```matlab
opts_ga.InitialPopulationMatrix = x0;
opts_ga.PlotFcn = [];
[~,fval_ga,~,gaoutput] = gamultiobj(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ga);
disp("Total Function Count: " + gaoutput.funccount);
```

Total Function Count: 46721

Plot the solutions on the same axes.

```matlab
fps = sortrows(fval_ps1x0,1,'ascend');
figure
hold on
plot(fps(:,1),fps(:,2),'r-')
fga = sortrows(fval_ga,1,'ascend');
plot(fga(:,1),fga(:,2),'b--')
xlim([0,40])
ylim([0,1e-2])
legend('paretosearch','gamultiobj')
xlabel 'Cost'
ylabel 'Deflection'
hold off
```
By starting from the single-objective solutions, the `gamultiobj` solution is slightly better than the `paretosearch` solution throughout the plotted range. However, `gamultiobj` takes almost ten times as many function evaluations to reach its solution.

**Hybrid Function**

`gamultiobj` can call the hybrid function `fgoalattain` automatically to attempt to reach a more accurate solution. See whether the hybrid function improves the solution.

```matlab
opts_ga.HybridFcn = 'fgoalattain';
[xgah, fval_gah, ~, gaoutputh] = gamultiobj(fun, 4, Aineq, bineq, [], [], lb, ub, nlcon, opts_ga);
disp("Total Function Count: " + gaoutputh.funccount);
```

Total Function Count: 45512
fgah = sortrows(fval_gah,1,'ascend');
figure
hold on
plot(fps(:,1),fps(:,2),'r-')
plot(fga(:,1),fga(:,2),'b--')
plot(fgah(:,1),fgah(:,2),'g-')
xlim([0,40])
ylim([0,1e-2])
legend('paretosearch','gamultiobj','gamultiobj/fgoalattain')
xlabel 'Cost'
ylabel 'Deflection'
hold off
The hybrid function provides a slight improvement on the gamultiobj solution, mainly in the leftmost part of the plot.

**Run fgoalattain Manually from paretosearch Solution Points**

Although paretosearch has no built-in hybrid function, you can improve the paretosearch solution by running fgoalattain from the paretosearch solution points. Create a goal and weights for fgoalattain by using the same setup for fgoalattain as described in “gamultiobj Hybrid Function” on page 11-56.

```matlab
Fmax = max(fval_ps1x0); nobj = numel(Fmax); Fmin = min(fval_ps1x0); w = sum((Fmax - fval_ps1x0)./(1 + Fmax - Fmin),2); p = w.*((Fmax - fval_ps1x0)./(1 + Fmax - Fmin)); xnew = zeros(size(x_psx0)); nsol = size(xnew,1); fvalnew = zeros(nsol,nobj); opts_fg = optimoptions('fgoalattain','Display','off'); nfv = 0; for ii = 1:nsol [xnew(ii,:),fvalnew(ii,:),~,~,output] = fgoalattain(fun,x_psx0(ii,:),fval_ps1x0(ii,:),p(ii,:),... Aineq,bineq,[],[],lb,ub,nlcon,opts_fg); nfv = nfv + output.funcCount; end disp("fgoalattain Function Count: " + nfv)
```

```
fgoalattain Function Count: 13350
```

```matlab
fnew = sortrows(fvalnew,1,'ascend'); figure hold on plot(fps(:,1),fps(:,2),'r-') plot(fga(:,1),fga(:,2),'b--') plot(fgah(:,1),fgah(:,2),'g-') plot(fnew(:,1),fnew(:,2),'k.-') xlim([0,40]) ylim([0,1e-2]) legend('paretosearch','gamultiobj','gamultiobj/fgoalattain','paretosearch/fgoalattain') xlabel 'Cost' ylabel 'Deflection'
```
The combination of `paretosearch` and `fgoalattain` creates the most accurate Pareto front. Zoom in to see.

```matlab
xlim([3.64 13.69])
ylim([0.00121 0.00442])
hold off
```
Even with the extra fgoalattain computations, the total function count for the combination is less than half of the function count for the gamultiobj solution alone.

fprintf('Total function count for gamultiobj alone is %d.
For paretosearch and fgoalattain together it is %d.
', gaoutput.funccount, nfv + psoutput1x0.funccount)

Total function count for gamultiobj alone is 46721.
For paretosearch and fgoalattain together it is 18374.

**Find Good Parameters from Plot**

The plotted points show the best values in function space. To determine which parameters achieve these function values, find the size of the beam and size of the weld in order to
get a particular cost/deflection point. For example, the plot of paretosearch followed by fgoalattain shows points with a cost of about 6 and a deflection of about 3.5e-3. Determine the sizes of the beam and weld that achieve these points.

```matlab
whichgood = find(fvalnew(:,1) <= 6 & fvalnew(:,2) <= 3.5e-3);
goodpoints = table(xnew(whichgood,:),fvalnew(whichgood,:),'VariableNames',{'Parameters' 'Objectives'});
```

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63457</td>
<td>1.5187</td>
</tr>
<tr>
<td>0.61635</td>
<td>1.5708</td>
</tr>
<tr>
<td>0.63228</td>
<td>1.5251</td>
</tr>
<tr>
<td>0.65076</td>
<td>1.4751</td>
</tr>
</tbody>
</table>

Four sets of parameters achieve a cost of less than 6 and a deflection of less than 3.5e-3:

- Weld thickness slightly over 0.6
- Weld length about 1.5
- Beam height 10 (the upper bound)
- Beam width between 0.63 and 0.71

**Objective and Nonlinear Constraints**

```matlab
function [Cineq,Ceq] = nonlcon(x)
sigma = 5.04e5 ./ (x(:,3).^2 .* x(:,4));
P_c = 64746.022*(1 - 0.028236*x(:,3)).*x(:,3).*x(:,4).^3;
tp = 6e3./sqrt(2)./(x(:,1).*x(:,2));
tpp = 6e3./sqrt(2) .* (14+0.5*x(:,2)).*sqrt(0.25*(x(:,2).^2 + (x(:,1) + x(:,3)).^2)) ./ (x(:,1).*x(:,2).*(x(:,2).^2 / 12 + 0.25*(x(:,1) + x(:,3)).^2));
tau = sqrt(tp.^2 + tpp.^2 + (x(:,2).*tp.*tpp)./sqrt(0.25*(x(:,2).^2 + (x(:,1) + x(:,3)).^2)));
Cineq = [tau - 13600,sigma - 3e4,6e3 - P_c];
Ceq = [];
end

function F = objval(x)
f1 = 1.10471*x(:,1).^2.*x(:,2) + 0.04811*x(:,3).*x(:,4).*(14.0+x(:,2));
f2 = 2.1952./(x(:,3).^3 .* x(:,4));
F = [f1,f2];
end
```
function z = pickindex(x,k)
    z = objval(x); % evaluate both objectives
    z = z(k); % return objective k
end

References


See Also

More About

- “Multiobjective Optimization”
- Pareto Sets for Multiobjective Optimization
Parallel Processing

- “How Solvers Compute in Parallel” on page 10-2
- “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
- “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™” on page 10-23
How Solvers Compute in Parallel

In this section...

“Parallel Processing Types in Global Optimization Toolbox” on page 10-2
“How Toolbox Functions Distribute Processes” on page 10-3

Parallel Processing Types in Global Optimization Toolbox

Parallel processing is an attractive way to speed optimization algorithms. To use parallel processing, you must have a Parallel Computing Toolbox license, and have a parallel worker pool (parpool). For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

Global Optimization Toolbox solvers use parallel computing in various ways.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Parallel?</th>
<th>Parallel Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlobalSearch</td>
<td>×</td>
<td>No parallel functionality. However, fmincon can use parallel gradient estimation when run in GlobalSearch. See “Using Parallel Computing in Optimization Toolbox” (Optimization Toolbox).</td>
</tr>
<tr>
<td>MultiStart</td>
<td>✓</td>
<td>Start points distributed to multiple processors. From these points, local solvers run to completion. For more details, see “MultiStart” on page 10-6 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
</tr>
<tr>
<td>ga, gamultiobj</td>
<td>✓</td>
<td>Population evaluated in parallel, which occurs once per iteration. For more details, see “Genetic Algorithm” on page 10-9 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14. No vectorization of fitness or constraint functions.</td>
</tr>
<tr>
<td>particleswarm</td>
<td>✓</td>
<td>Population evaluated in parallel, which occurs once per iteration. For more details, see “Particle Swarm” on page 10-11 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
</tr>
<tr>
<td>Solver</td>
<td>Parallel?</td>
<td>Parallel Characteristics</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>patternsearch,</td>
<td>✓</td>
<td>Poll points evaluated in parallel, which occurs once per iteration. For more details, see</td>
</tr>
<tr>
<td>paretosearch</td>
<td></td>
<td>“Pattern Search” on page 10-7 and “How to Use Parallel Processing in Global Optimization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toolbox” on page 10-14.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No vectorization of objective or constraint functions.</td>
</tr>
<tr>
<td>simulannealbnd</td>
<td>×</td>
<td>No parallel functionality. However, simulannealbnd can use a hybrid function that runs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in parallel. See “Simulated Annealing” on page 10-12.</td>
</tr>
<tr>
<td>surrogateopt</td>
<td>✓</td>
<td>Search points evaluated in parallel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No vectorization of objective or constraint functions.</td>
</tr>
</tbody>
</table>

In addition, several solvers have hybrid functions that run after they finish. Some hybrid functions can run in parallel. Also, most patternsearch search methods can run in parallel. For more information, see “Parallel Search Functions or Hybrid Functions” on page 10-18.

**How Toolbox Functions Distribute Processes**

- “parfor Characteristics and Caveats” on page 10-4
- “MultiStart” on page 10-6
- “GlobalSearch” on page 10-7
- “Pattern Search” on page 10-7
- “Genetic Algorithm” on page 10-9
- “Parallel Computing with gamultiobj” on page 10-10
- “Particle Swarm” on page 10-11
- “Simulated Annealing” on page 10-12
- “Pareto Search” on page 10-12
- “Surrogate Optimization” on page 10-12
parfor Characteristics and Caveats

No Nested parfor Loops

Solvers employ the Parallel Computing Toolbox parfor function to perform parallel computations.

**Note** parfor does not work in parallel when called from within another parfor loop.

Suppose, for example, your objective function userfcn calls parfor, and you want to call fmincon using MultiStart and parallel processing. Suppose also that the conditions for parallel gradient evaluation of fmincon are satisfied, as given in “Parallel Optimization Functionality” (Optimization Toolbox). The figure “When parfor Runs In Parallel” on page 10-5 shows three cases:

1. The outermost loop is parallel MultiStart. Only that loop runs in parallel.
2. The outermost parfor loop is in fmincon. Only fmincon runs in parallel.
3. The outermost parfor loop is in userfcn. In this case, userfcn can use parfor in parallel.
When parfor Runs In Parallel

Parallel Random Numbers Are Not Reproducible

Random number sequences in MATLAB are pseudorandom, determined from a seed, or an initial setting. Parallel computations use seeds that are not necessarily controllable or reproducible. For example, each instance of MATLAB has a default global setting that determines the current seed for random sequences.

For `patternsearch`, if you select MADS as a poll or search method, parallel pattern search does not have reproducible runs. If you select the genetic algorithm or Latin hypercube as search methods, parallel pattern search does not have reproducible runs.

For `ga` and `gamultiobj`, parallel population generation gives nonreproducible results.

`MultiStart` is different. You can have reproducible runs from parallel `MultiStart`. Runs are reproducible because `MultiStart` generates pseudorandom start points locally, and then distributes the start points to parallel processors. Therefore, the parallel processors do not use random numbers. For more details, see “Parallel Processing and Random Number Streams” on page 3-77.
**Limitations and Performance Considerations**

More caveats related to `parfor` appear in “Parallel for-Loops (parfor)” (Parallel Computing Toolbox).

For information on factors that affect the speed of parallel computations, and factors that affect the results of parallel computations, see “Improving Performance with Parallel Computing” (Optimization Toolbox). The same considerations apply to parallel computing with Global Optimization Toolbox functions.

**MultiStart**

`MultiStart` can automatically distribute a problem and start points to multiple processes or processors. The problems run independently, and `MultiStart` combines the distinct local minima into a vector of `GlobalOptimSolution` objects. `MultiStart` uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with `parpool`, a Parallel Computing Toolbox function.
- Set the `UseParallel` property to `true` in the `MultiStart` object:

  ```matlab
 ms = MultiStart('UseParallel',true);
  ```

When these conditions hold, `MultiStart` distributes a problem and start points to processes or processors one at a time. The algorithm halts when it reaches a stopping condition or runs out of start points to distribute. If the `MultiStart Display` property is `'iter'`, then `MultiStart` displays:

```
Running the local solvers in parallel.
```

For an example of parallel `MultiStart`, see “Parallel MultiStart” on page 3-114.

**Implementation Issues in Parallel MultiStart**

`fmincon` cannot estimate gradients in parallel when used with parallel `MultiStart`. This lack of parallel gradient estimation is due to the limitation of `parfor` described in “No Nested parfor Loops” on page 10-4.

`fmincon` can take longer to estimate gradients in parallel rather than in serial. In this case, using `MultiStart` with parallel gradient estimation in `fmincon` amplifies the slowdown. For example, suppose the `ms` `MultiStart` object has `UseParallel` set to `false`. Suppose `fmincon` takes 1 s longer to solve problem with
problem.options.UseParallel set to true. Then run(ms,problem,200) takes 200s longer than the same run with problem.options.UseParallel set to false.

**Note** When executing serially, parfor loops run slower than for loops. Therefore, for best performance, set your local solver UseParallel option to false when the MultiStart UseParallel property is true.

**Note** Even when running in parallel, a solver occasionally calls the objective and nonlinear constraint functions serially on the host machine. Therefore, ensure that your functions have no assumptions about whether they are evaluated in serial and parallel.

**GlobalSearch**

GlobalSearch does not distribute a problem and start points to multiple processes or processors. However, when GlobalSearch runs the fmincon local solver, fmincon can estimate gradients by parallel finite differences. fmincon uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with parpool, a Parallel Computing Toolbox function.
- Set the UseParallel option to true with optimoptions. Set this option in the problem structure:

```matlab
opts = optimoptions(@fmincon,'UseParallel',true,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',@myobj,...
 'x0',startpt,'options',opts);
```

For more details, see “Using Parallel Computing in Optimization Toolbox” (Optimization Toolbox).

**Pattern Search**

patternsearch can automatically distribute the evaluation of objective and constraint functions associated with the points in a pattern to multiple processes or processors. patternsearch uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following options using `optimoptions` or the Optimization app:
  • `UseCompletePoll` is true.
  • `UseVectorized` is false (default).
  • `UseParallel` is true.

When these conditions hold, the solver computes the objective function and constraint values of the pattern search in parallel during a poll. Furthermore, `patternsearch` overrides the setting of the `Cache` option, and uses the default 'off' setting.

Beginning in R2019a, when you set the 'UseParallel' option to true, `patternsearch` internally overrides the 'UseCompletePoll' setting to true so it polls in parallel.

**Note** Even when running in parallel, `patternsearch` occasionally calls the objective and nonlinear constraint functions serially on the host machine. Therefore, ensure that your functions have no assumptions about whether they are evaluated in serial or parallel.

**Parallel Search Function**

`patternsearch` can optionally call a search function at each iteration. The search is parallel when you:

• Set `UseCompleteSearch` to true.
• Do not set the search method to `@searchneldermead` or `custom`.
• Set the search method to a `patternsearch` poll method or Latin hypercube search, and set `UseParallel` to true.
• Or, if you set the search method to `ga`, create a search method option with `UseParallel` set to true.

**Implementation Issues in Parallel Pattern Search**

The limitations on `patternsearch` options, listed in “Pattern Search” on page 10-7, arise partly from the limitations of `parfor`, and partly from the nature of parallel processing:

• Cache is overridden to be 'off' — `patternsearch` implements Cache as a persistent variable. `parfor` does not handle persistent variables, because the variable could have different settings at different processors.
• **UseCompletePoll** is true — **UseCompletePoll** determines whether a poll stops as soon as **patternsearch** finds a better point. When searching in parallel, **parfor** schedules all evaluations simultaneously, and **patternsearch** continues after all evaluations complete. **patternsearch** cannot halt evaluations after they start.

Beginning in R2019a, when you set the 'UseParallel' option to true, **patternsearch** internally overrides the 'UseCompletePoll' setting to true so it polls in parallel.

• **UseVectorized** is false — **UseVectorized** determines whether **patternsearch** evaluates all points in a pattern with one function call in a vectorized fashion. If **UseVectorized** is true, **patternsearch** does not distribute the evaluation of the function, so does not use **parfor**.

**Genetic Algorithm**

g**a** and **gamultiobj** can automatically distribute the evaluation of objective and nonlinear constraint functions associated with a population to multiple processors. **ga** uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with **parpool**, a Parallel Computing Toolbox function.
• Set the following options using **optimoptions** or the Optimization app:
  - **UseVectorized** is false (default).
  - **UseParallel** is true.

When these conditions hold, **ga** computes the objective function and nonlinear constraint values of the individuals in a population in parallel.

**Note** Even when running in parallel, **ga** occasionally calls the fitness and nonlinear constraint functions serially on the host machine. Therefore, ensure that your functions have no assumptions about whether they are evaluated in serial or parallel.

**Implementation Issues in Parallel Genetic Algorithm**

The limitations on options, listed in “Genetic Algorithm” on page 10-9, arise partly from limitations of **parfor**, and partly from the nature of parallel processing:
• **UseVectorized is false** — **UseVectorized** determines whether **ga** evaluates an entire population with one function call in a vectorized fashion. If **UseVectorized** is true, **ga** does not distribute the evaluation of the function, so does not use **parfor**.

**ga** can have a hybrid function that runs after it finishes; see “Hybrid Scheme in the Genetic Algorithm” on page 5-130. If you want the hybrid function to take advantage of parallel computation, set its options separately so that **UseParallel** is true. If the hybrid function is **patternsearch**, set **UseCompletePoll** to true so that **patternsearch** runs in parallel.

If the hybrid function is **fmincon**, set the following options with **optimoptions** to have parallel gradient estimation:

- **GradObj** must not be ‘on’ — it can be ‘off’ or [].
- Or, if there is a nonlinear constraint function, **GradConstr** must not be ‘on’ — it can be ‘off’ or [].

To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 10-20.

**Parallel Computing with gamultiobj**

Parallel computing with **gamultiobj** works almost the same as with **ga**. For detailed information, see “Genetic Algorithm” on page 10-9.

The difference between parallel computing with **gamultiobj** and **ga** has to do with the hybrid function. **gamultiobj** allows only one hybrid function, **fgoalattain**. This function optionally runs after **gamultiobj** finishes its run. Each individual in the calculated Pareto frontier, that is, the final population found by **gamultiobj**, becomes the starting point for an optimization using **fgoalattain**. These optimizations run in parallel. The number of processors performing these optimizations is the smaller of the number of individuals and the size of your **parpool**.

For **fgoalattain** to run in parallel, set its options correctly:

```matlab
fgoalopts = optimoptions(@fgoalattain,'UseParallel',true)
gaoptions = optimoptions('ga','HybridFcn',{@fgoalattain,fgoalopts});
```

Run **gamultiobj** with **gaoptions**, and **fgoalattain** runs in parallel. For more information about setting the hybrid function, see “Hybrid Function Options” on page 11-55.
gamultiobj calls fgoalattain using a parfor loop, so fgoalattain does not estimate gradients in parallel when used as a hybrid function with gamultiobj. For more information, see “No Nested parfor Loops” on page 10-4.

**Particle Swarm**

particleswarm can automatically distribute the evaluation of the objective function associated with a population to multiple processors. particleswarm uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with parpool, a Parallel Computing Toolbox function.
- Set the following options using optimoptions:
  - UseVectorized is false (default).
  - UseParallel is true.

When these conditions hold, particleswarm computes the objective function of the particles in a population in parallel.

**Note** Even when running in parallel, particleswarm occasionally calls the objective function serially on the host machine. Therefore, ensure that your objective function has no assumptions about whether it is evaluated in serial or parallel.

**Implementation Issues in Parallel Particle Swarm Optimization**

The limitations on options, listed in “Particle Swarm” on page 10-11, arise partly from limitations of parfor, and partly from the nature of parallel processing:

- UseVectorized is false — UseVectorized determines whether particleswarm evaluates an entire population with one function call in a vectorized fashion. If UseVectorized is true, particleswarm does not distribute the evaluation of the function, so does not use parfor.

particleswarm can have a hybrid function that runs after it finishes; see “Hybrid Scheme in the Genetic Algorithm” on page 5-130. If you want the hybrid function to take advantage of parallel computation, set its options separately so that UseParallel is true. If the hybrid function is patternsearch, set UseCompletePoll to true so that patternsearch runs in parallel.
If the hybrid function is `fmincon`, set the `GradObj` option to 'off' or [] with `optimoptions` to have parallel gradient estimation.

To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 10-20.

**Simulated Annealing**

`simulannealbnd` does not run in parallel automatically. However, it can call hybrid functions that take advantage of parallel computing. To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 10-20.

**Pareto Search**

`paretosearch` can automatically distribute the evaluation of the objective function associated with a population to multiple processors. `paretosearch` uses parallel computing when you:

- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with `parpool`, a Parallel Computing Toolbox function.
- Set the following option using `optimoptions`:
  - `UseParallel` is true.

When these conditions hold, `paretosearch` computes the objective function of the particles in a population in parallel.

**Note** Even when running in parallel, `paretosearch` occasionally calls the objective function serially on the host machine. Therefore, ensure that your objective function has no assumptions about whether it is evaluated in serial or parallel.

For algorithmic details, see “Modifications for Parallel Computation and Vectorized Function Evaluation” on page 9-18.

**Surrogate Optimization**

`surrogateopt` can automatically distribute the evaluation of the objective function associated with a population to multiple processors. `surrogateopt` uses parallel computing when you:
- Have a license for Parallel Computing Toolbox software.
- Enable parallel computing with `parpool`, a Parallel Computing Toolbox function.
- Set the following option using `optimoptions`:
  - `UseParallel` is `true`.

When these conditions hold, `surrogateopt` computes the objective function of the particles in a population in parallel.

**Note** Even when running in parallel, `surrogateopt` occasionally calls the objective function serially on the host machine. Therefore, ensure that your objective function has no assumptions about whether it is evaluated in serial or parallel.

For algorithmic details, see “Parallel surrogateopt Algorithm” on page 7-10.

**See Also**

**More About**
- “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
- “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™” on page 10-23
How to Use Parallel Processing in Global Optimization Toolbox

In this section...

“Multicore Processors” on page 10-14
“Processor Network” on page 10-16
“Parallel Search Functions or Hybrid Functions” on page 10-18
“Deploy Parallel Optimization” on page 10-21
“Testing Parallel Optimization” on page 10-22

Multicore Processors

If you have a multicore processor, you might see speedup using parallel processing. You can establish a parallel pool of several workers with a Parallel Computing Toolbox license. For a description of Parallel Computing Toolbox software, see “Getting Started with Parallel Computing Toolbox” (Parallel Computing Toolbox).

Suppose you have a dual-core processor, and want to use parallel computing:

• Enter

parpool

at the command line. MATLAB starts a pool of workers using the multicore processor. If you had previously set a nondefault cluster profile, you can enforce multicore (local) computing:

parpool('local')

Note Depending on your preferences, MATLAB can start a parallel pool automatically. To enable this feature, check Automatically create a parallel pool in Home > Parallel > Parallel Preferences.

• Set your solver to use parallel processing.
### How to Use Parallel Processing in Global Optimization Toolbox

<table>
<thead>
<tr>
<th>Solver</th>
<th>Command-Line Settings</th>
<th>Optimization App Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ga</td>
<td>options = optimoptions('ga', 'UseParallel', true, 'UseVectorized', false);</td>
<td>• Options &gt; User function evaluation &gt; Evaluate fitness and constraint functions &gt; in parallel</td>
</tr>
<tr>
<td>gamultiobj</td>
<td>options = optimoptions('gamultiobj', 'UseParallel', true, 'UseVectorized', false);</td>
<td>• Options &gt; User function evaluation &gt; Evaluate fitness and constraint functions &gt; in parallel</td>
</tr>
<tr>
<td>MultiStart</td>
<td>ms = MultiStart('UseParallel', true);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ms.UseParallel = true</td>
<td></td>
</tr>
<tr>
<td>paretosearch</td>
<td>options = optimoptions('paretosearch', 'UseParallel', true);</td>
<td></td>
</tr>
<tr>
<td>particleswarm</td>
<td>options = optimoptions('particleswarm', 'UseParallel', true, 'UseVectorized', false);</td>
<td></td>
</tr>
<tr>
<td>patternsearch</td>
<td>options = optimoptions('patternsearch', 'UseParallel', true, 'UseCompletePoll', true, 'UseVectorized', false);</td>
<td>• Options &gt; User function evaluation &gt; Evaluate objective and constraint functions &gt; in parallel</td>
</tr>
<tr>
<td></td>
<td>• Options &gt; Complete poll &gt; on</td>
<td></td>
</tr>
<tr>
<td>surrogateopt</td>
<td>options = optimoptions('surrogateopt', 'UseParallel', true);</td>
<td></td>
</tr>
</tbody>
</table>

Beginning in R2019a, when you set the 'UseParallel' option to true, patternsearch internally overrides the 'UseCompletePoll' setting to true so it polls in parallel.
When you run an applicable solver with options, applicable solvers automatically use parallel computing.

To stop computing optimizations in parallel, set `UseParallel` to `false`, or set the Optimization app not to compute in parallel. To halt all parallel computation, enter

delete(gcp)

**Processor Network**

If you have multiple processors on a network, use Parallel Computing Toolbox functions and MATLAB Parallel Server™ software to establish parallel computation. Here are the steps to take:

1. Make sure your system is configured properly for parallel computing. Check with your systems administrator, or refer to the Parallel Computing Toolbox documentation.

   To perform a basic check:

   a. At the command line, enter

      ```
 parpool(prof)
      ```

      where `prof` is your cluster profile.

   b. Workers must be able to access your objective function file and, if applicable, your nonlinear constraint function file. There are two ways of ensuring access:

      i. Distribute the files to the workers using the `parpool` `AttachedFiles` argument. For example, if `objfun.m` is your objective function file, and `constrfun.m` is your nonlinear constraint function file, enter

      ```
 parpool('AttachedFiles',{'objfun.m','constrfun.m'});
      ```

      Workers access their own copies of the files.

      ii. Give a network file path to your files. If `network_file_path` is the network path to your objective or constraint function files, enter

      ```
 pctRunOnAll('addpath network_file_path')
      ```

      Workers access the function files over the network.
Check whether a file is on the path of every worker by entering
\[ \text{pctRunOnAll('which filename')} \]
If any worker does not have a path to the file, it reports

\[ \text{filename not found.} \]

2. Set your solver to use parallel processing.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Command-Line Settings</th>
<th>Optimization App Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ga</td>
<td>options = optimoptions('ga','UseParallel', true,'UseVectorized', false);</td>
<td>• Options &gt; User function evaluation &gt; Evaluate fitness and constraint functions &gt; in parallel</td>
</tr>
<tr>
<td>gamultiobj</td>
<td>options = optimoptions('gamultiobj','UseParallel', true,'UseVectorized', false);</td>
<td>• Options &gt; User function evaluation &gt; Evaluate fitness and constraint functions &gt; in parallel</td>
</tr>
<tr>
<td>MultiStart</td>
<td>ms = MultiStart('UseParallel', true); or ms.UseParallel = true</td>
<td></td>
</tr>
<tr>
<td>paretosearch</td>
<td>options = optimoptions('paretosearch','UseParallel',true);</td>
<td></td>
</tr>
<tr>
<td>particleswarm</td>
<td>options = optimoptions('particleswarm','UseParallel',true,'UseVectorized',false);</td>
<td></td>
</tr>
</tbody>
</table>
Beginning in R2019a, when you set the 'UseParallel' option to true, `patternsearch` internally overrides the 'UseCompletePoll' setting to true so it polls in parallel.

After you establish your parallel computing environment, applicable solvers automatically use parallel computing whenever you call them with options.

To stop computing optimizations in parallel, set `UseParallel` to false, or set the Optimization app not to compute in parallel. To halt all parallel computation, enter

```
delte(gcp)
```

**Parallel Search Functions or Hybrid Functions**

To have a `patternsearch` search function run in parallel, or a hybrid function for `ga` or `simulannealbnd` run in parallel, do the following.

1. Set up parallel processing as described in “Multicore Processors” on page 10-14 or “Processor Network” on page 10-16.

2. Ensure that your search function or hybrid function has the conditions outlined in these sections:

- “`patternsearch` Search Function” on page 10-19
- “Parallel Hybrid Functions” on page 10-20
patternsearch Search Function

patternsearch uses a parallel search function under the following conditions:

- UseCompleteSearch is true.
- The search method is not @searchneldermead or custom.
- If the search method is a patternsearch poll method or Latin hypercube search, UseParallel is true. Set at the command line with optimoptions:

  options = optimoptions('patternsearch','UseParallel',true,...
  'UseCompleteSearch',true,'SearchFcn',@GPSPositiveBasis2N);

Or you can use the Optimization app.

- If the search method is ga, the search method option has UseParallel set to true. Set at the command line with optimoptions:

  iterlim = 1; % iteration limit, specifies # ga runs
  gaopt = optimoptions('ga','UseParallel',true);
  options = optimoptions('patternsearch','SearchFcn',...
  @{searchga,iterlim,gaopt});

In the Optimization app, first create gaopt as above, and then use these settings:
Parallel Hybrid Functions

ga, particleswarm, and simulannealbnd can have other solvers run after or interspersed with their iterations. These other solvers are called hybrid functions. For information on using a hybrid function with gamultiobj, see “Parallel Computing with gamultiobj” on page 10-10. Both patternsearch and fmincon can be hybrid functions. You can set options so that patternsearch runs in parallel, or fmincon estimates gradients in parallel.

Set the options for the hybrid function as described in “Hybrid Function Options” on page 11-55 for ga, “Hybrid Function” on page 11-66 for particleswarm, or “Hybrid Function Options” on page 11-82 for simulannealbnd. To summarize:

- If your hybrid function is patternsearch

  1. Create patternsearch options:

     hybridopts = optimoptions('patternsearch','UseParallel',true,...
                               'UseCompletePoll',true);

  2. Set the ga or simulannealbnd options to use patternsearch as a hybrid function:

     options = optimoptions('ga','UseParallel',true); % for ga
     options = optimoptions('ga',options, ...
                               'HybridFcn',{@patternsearch,hybridopts});
     % or, for simulannealbnd:
     options = optimoptions(@simulannealbnd,'HybridFcn',{@patternsearch,hybridopts});
Or use the Optimization app.

For more information on parallel `patternsearch`, see “Pattern Search” on page 10-7.

- If your hybrid function is `fmincon`:
  1. Create `fmincon` options:

     ```matlab
 hybridopts = optimoptions(@fmincon,'UseParallel',true,...
 'Algorithm','interior-point');
 % You can use any Algorithm except trust-region-reflective

 2. Set the `ga` or `simulannealbnd` options to use `fmincon` as a hybrid function:

     ```matlab
     options = optimoptions('ga','UseParallel',true);
     options = optimoptions('ga',options,'HybridFcn',{@fmincon,hybridopts});
     % or, for `simulannealbnd`:
     options = optimoptions(@simulannealbnd,'HybridFcn',{@fmincon,hybridopts});
     
     Or use the Optimization app.

     For more information on parallel `fmincon`, see “Parallel Computing” (Optimization Toolbox).

**Deploy Parallel Optimization**

If you deploy code that calls an optimization solver, and want the solver to use parallel computing, ensure that you explicitly create a parallel pool in your code. Otherwise, the
deployed code can fail to run in parallel, and so run only in serial, because MATLAB Compiler™'s dependency analysis can fail to make parallel functionality available. For example, call parpool explicitly, in addition to setting the solver's UseParallel option to true.

**Testing Parallel Optimization**

To test see if a problem runs correctly in parallel,

1. Try your problem without parallel computation to ensure that it runs properly serially. Make sure this is successful (gives correct results) before going to the next test.
2. Set UseParallel to true, and ensure that there is no parallel pool using delete(gcp). Uncheck Automatically create a parallel pool in Home > Parallel > Parallel Preferences so MATLAB does not create a parallel pool. Your problem runs parfor serially, with loop iterations in reverse order from a for loop. Make sure this is successful (gives correct results) before going to the next test.
3. Set UseParallel to true, and create a parallel pool using parpool. Unless you have a multicore processor or a network set up, you won't see any speedup. This testing is simply to verify the correctness of the computations.

Remember to call your solver using an options argument to test or use parallel functionality.

**See Also**

**More About**

- “How Solvers Compute in Parallel” on page 10-2
- “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™” on page 10-23
This example shows how to speed up the minimization of an expensive optimization problem using functions in Optimization Toolbox™ and Global Optimization Toolbox. In the first part of the example we solve the optimization problem by evaluating functions in a serial fashion, and in the second part of the example we solve the same problem using the parallel for loop (parfor) feature by evaluating functions in parallel. We compare the time taken by the optimization function in both cases.

**Expensive Optimization Problem**

For the purpose of this example, we solve a problem in four variables, where the objective and constraint functions are made artificially expensive by pausing.

```matlab
function f = expensive_objfun(x)
 %EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.
 % Copyright 2007-2013 The MathWorks, Inc.
 % Simulate an expensive function by pausing
 pause(0.1)
 % Evaluate objective function
 f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);
end
```

```matlab
function [c,ceq] = expensive_confun(x)
 %EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.
 % Copyright 2007-2013 The MathWorks, Inc.
 % Simulate an expensive function by pausing
 pause(0.1);
 % Evaluate constraints
 c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4);
 -x(1)*x(2) + x(4) - 10];
 % No nonlinear equality constraints:
 ceq = [];
end
```
Minimizing Using fmincon

We are interested in measuring the time taken by \texttt{fmincon} in serial so that we can compare it to the parallel time.

\begin{verbatim}
startPoint = [-1 1 1 -1];
options = optimoptions('fmincon','Display','iter','Algorithm','interior-point');
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_sequential = toc(startTime);
fprintf('Serial FMINCON optimization takes %g seconds.
',time_fmincon_sequential);
\end{verbatim}

<table>
<thead>
<tr>
<th>Iter</th>
<th>F-count</th>
<th>f(x)</th>
<th>Feasibility</th>
<th>First-order optimality</th>
<th>Norm of step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1.839397e+00</td>
<td>1.500e+00</td>
<td>3.211e+00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>-9.760099e-01</td>
<td>3.708e+00</td>
<td>7.902e-01</td>
<td>2.362e+00</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>-1.480976e+00</td>
<td>0.000e+00</td>
<td>8.344e-01</td>
<td>1.069e+00</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>-2.601599e+00</td>
<td>0.000e+00</td>
<td>8.390e-01</td>
<td>1.218e+00</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>-2.823630e+00</td>
<td>0.000e+00</td>
<td>2.598e+00</td>
<td>1.118e+00</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>-3.905339e+00</td>
<td>0.000e+00</td>
<td>1.210e+00</td>
<td>7.302e-01</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>-6.212992e+00</td>
<td>3.934e-01</td>
<td>7.372e-01</td>
<td>2.405e+00</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>-5.948762e+00</td>
<td>0.000e+00</td>
<td>1.784e+00</td>
<td>1.905e+00</td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>-6.940062e+00</td>
<td>1.233e-02</td>
<td>7.668e-01</td>
<td>7.553e-01</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>-6.973887e+00</td>
<td>0.000e+00</td>
<td>2.549e-01</td>
<td>3.920e-01</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td>-7.142993e+00</td>
<td>0.000e+00</td>
<td>1.903e-01</td>
<td>4.735e-01</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>-7.155325e+00</td>
<td>0.000e+00</td>
<td>1.365e-01</td>
<td>2.626e-01</td>
</tr>
<tr>
<td>12</td>
<td>69</td>
<td>-7.179122e+00</td>
<td>0.000e+00</td>
<td>6.336e-02</td>
<td>9.115e-02</td>
</tr>
<tr>
<td>13</td>
<td>74</td>
<td>-7.180116e+00</td>
<td>0.000e+00</td>
<td>1.069e-03</td>
<td>4.670e-02</td>
</tr>
<tr>
<td>14</td>
<td>79</td>
<td>-7.180409e+00</td>
<td>0.000e+00</td>
<td>7.799e-04</td>
<td>2.815e-03</td>
</tr>
<tr>
<td>15</td>
<td>84</td>
<td>-7.180410e+00</td>
<td>0.000e+00</td>
<td>6.189e-06</td>
<td>3.122e-04</td>
</tr>
</tbody>
</table>

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

Serial FMINCON optimization takes 17.0722 seconds.

Minimizing Using Genetic Algorithm

Since \texttt{ga} usually takes many more function evaluations than \texttt{fmincon}, we remove the expensive constraint from this problem and perform unconstrained optimization instead. Pass empty matrices \texttt{[]} for constraints. In addition, we limit the maximum number of
generations to 15 for ga so that ga can terminate in a reasonable amount of time. We are interested in measuring the time taken by ga so that we can compare it to the parallel ga evaluation. Note that running ga requires Global Optimization Toolbox.

```matlab
rng default % for reproducibility
try
gAvailable = false;
nvar = 4;
gaoptions = optimoptions('ga','MaxGenerations',15,'Display','iter');
startTime = tic;
gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
time_ga_sequential = toc(startTime);
fprintf('Serial GA optimization takes %g seconds.
',time_ga_sequential);
gaAvailable = true;
catch ME
 warning(message('optimdemos:optimparfor:gaNotFound'));
end
```

<table>
<thead>
<tr>
<th>Generation</th>
<th>Func-count</th>
<th>Best f(x)</th>
<th>Mean f(x)</th>
<th>Stall Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>-5.546e+05</td>
<td>1.483e+15</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>-5.581e+17</td>
<td>-1.116e+16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>-7.556e+17</td>
<td>6.679e+22</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>-7.556e+17</td>
<td>-7.195e+16</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>-9.381e+27</td>
<td>-1.876e+26</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>-9.673e+27</td>
<td>-7.497e+26</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>-4.511e+36</td>
<td>-9.403e+34</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>-5.111e+36</td>
<td>-3.011e+35</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>-7.671e+36</td>
<td>9.346e+37</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
<td>-1.52e+43</td>
<td>-3.113e+41</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>600</td>
<td>-2.273e+45</td>
<td>-4.67e+43</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>650</td>
<td>-2.589e+47</td>
<td>-6.281e+45</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>700</td>
<td>-2.589e+47</td>
<td>-1.015e+46</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>750</td>
<td>-8.149e+47</td>
<td>-5.855e+46</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>800</td>
<td>-9.503e+47</td>
<td>-1.29e+47</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 80.2351 seconds.

**Setting Parallel Computing Toolbox**

The finite differencing used by the functions in Optimization Toolbox to approximate derivatives is done in parallel using the `parfor` feature if Parallel Computing Toolbox is available and there is a parallel pool of workers. Similarly, `ga`, `gamultiobj`, and
patternsearch solvers in Global Optimization Toolbox evaluate functions in parallel. To use the `parfor` feature, we use the `parpool` function to set up the parallel environment. The computer on which this example is published has four cores, so `parpool` starts four MATLAB® workers. If there is already a parallel pool when you run this example, we use that pool; see the documentation for `parpool` for more information.

```matlab
if max(size(gcp)) == 0 % parallel pool needed
 parpool % create the parallel pool
end
```

**Minimizing Using Parallel fmincon**

To minimize our expensive optimization problem using the parallel `fmincon` function, we need to explicitly indicate that our objective and constraint functions can be evaluated in parallel and that we want `fmincon` to use its parallel functionality wherever possible. Currently, finite differencing can be done in parallel. We are interested in measuring the time taken by `fmincon` so that we can compare it to the serial `fmincon` run.

```matlab
options = optimoptions(options,'UseParallel',true);
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_parallel = toc(startTime);
fprintf('Parallel FMINCON optimization takes %g seconds.
',time_fmincon_parallel);
```

<table>
<thead>
<tr>
<th>Iter</th>
<th>F-count</th>
<th>f(x)</th>
<th>Feasibility</th>
<th>First-order optimality</th>
<th>Norm of step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1.839397e+00</td>
<td>1.500e+00</td>
<td>3.211e+00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>-9.760099e-01</td>
<td>3.708e+00</td>
<td>7.902e-01</td>
<td>2.362e+00</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>-1.480976e+00</td>
<td>0.000e+00</td>
<td>8.344e-01</td>
<td>1.069e+00</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>-2.601599e+00</td>
<td>0.000e+00</td>
<td>8.390e-01</td>
<td>1.218e+00</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>-2.823630e+00</td>
<td>0.000e+00</td>
<td>2.598e+00</td>
<td>1.118e+00</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>-3.905339e+00</td>
<td>0.000e+00</td>
<td>1.210e+00</td>
<td>7.302e-01</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>-6.212992e+00</td>
<td>3.934e-01</td>
<td>7.372e-01</td>
<td>2.405e+00</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>-5.948762e+00</td>
<td>0.000e+00</td>
<td>1.784e+00</td>
<td>1.905e+00</td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>-6.940062e+00</td>
<td>1.233e-02</td>
<td>7.668e-01</td>
<td>7.553e-01</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>-6.973887e+00</td>
<td>0.000e+00</td>
<td>2.549e-01</td>
<td>3.920e-01</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td>-7.142993e+00</td>
<td>0.000e+00</td>
<td>1.903e-01</td>
<td>4.735e-01</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>-7.155325e+00</td>
<td>0.000e+00</td>
<td>1.365e-01</td>
<td>2.626e-01</td>
</tr>
<tr>
<td>12</td>
<td>69</td>
<td>-7.179122e+00</td>
<td>0.000e+00</td>
<td>6.336e-02</td>
<td>9.115e-02</td>
</tr>
<tr>
<td>13</td>
<td>74</td>
<td>-7.180116e+00</td>
<td>0.000e+00</td>
<td>1.069e-03</td>
<td>4.679e-02</td>
</tr>
<tr>
<td>14</td>
<td>79</td>
<td>-7.180409e+00</td>
<td>0.000e+00</td>
<td>7.799e-04</td>
<td>2.815e-03</td>
</tr>
<tr>
<td>15</td>
<td>84</td>
<td>-7.180410e+00</td>
<td>0.000e+00</td>
<td>6.189e-06</td>
<td>3.122e-04</td>
</tr>
</tbody>
</table>

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

Parallel FMINCON optimization takes 8.11945 seconds.

**Minimizing Using Parallel Genetic Algorithm**

To minimize our expensive optimization problem using the `ga` function, we need to explicitly indicate that our objective function can be evaluated in parallel and that we want `ga` to use its parallel functionality wherever possible. To use the parallel `ga` we also require that the 'Vectorized' option be set to the default (i.e., 'off'). We are again interested in measuring the time taken by `ga` so that we can compare it to the serial `ga` run. Though this run may be different from the serial one because `ga` uses a random number generator, the number of expensive function evaluations is the same in both runs. Note that running `ga` requires Global Optimization Toolbox.

```matlab
rng default % to get the same evaluations as the previous run
if gaAvailable
 gaoptions = optimoptions(gaoptions,'UseParallel',true);
 startTime = tic;
 gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],gaoptions);
 time_ga_parallel = toc(startTime);
 fprintf('Parallel GA optimization takes %g seconds.
',time_ga_parallel);
end
```

<table>
<thead>
<tr>
<th>Generation</th>
<th>Func-count</th>
<th>Best f(x)</th>
<th>Mean f(x)</th>
<th>Stall Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>-5.546e+05</td>
<td>1.483e+15</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>-5.581e+17</td>
<td>-1.116e+16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>-7.556e+17</td>
<td>6.679e+22</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>-7.556e+17</td>
<td>-7.195e+16</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>-9.381e+27</td>
<td>-1.876e+26</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>-9.673e+27</td>
<td>-7.497e+26</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>-4.511e+36</td>
<td>-9.403e+34</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>-5.111e+36</td>
<td>-3.011e+35</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>-7.671e+36</td>
<td>9.346e+37</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
<td>-1.52e+43</td>
<td>-3.113e+41</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>600</td>
<td>-2.273e+45</td>
<td>-4.67e+43</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>650</td>
<td>-2.589e+47</td>
<td>-6.281e+45</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>700</td>
<td>-2.589e+47</td>
<td>-1.015e+46</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>750</td>
<td>-8.149e+47</td>
<td>-5.855e+46</td>
<td>0</td>
</tr>
</tbody>
</table>

10-27
Optimization terminated: maximum number of generations exceeded. Parallel GA optimization takes 15.6984 seconds.

Compare Serial and Parallel Time

```matlab
X = [time_fmincon_sequential time_fmincon_parallel];
Y = [time_ga_sequential time_ga_parallel];
t = [0 1];
plot(t,X,'r--',t,Y,'k-')
ylabel('Time in seconds')
legend('fmincon','ga')
ax = gca;
ax.XTick = [0 1];
ax.XTickLabel = {'Serial' 'Parallel'};
axis([0 1 0 ceil(max([X Y]))])
title('Serial Vs. Parallel Times')
```
Utilizing parallel function evaluation via `parfor` improved the efficiency of both `fmincon` and `ga`. The improvement is typically better for expensive objective and constraint functions.

**See Also**

**More About**
- “How Solvers Compute in Parallel” on page 10-2
- “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14
Options Reference

- “GlobalSearch and MultiStart Properties (Options)” on page 11-2
- “Pattern Search Options” on page 11-9
- “Genetic Algorithm Options” on page 11-33
- “Particle Swarm Options” on page 11-63
- “Surrogate Optimization Options” on page 11-71
- “Simulated Annealing Options” on page 11-78
- “Options Changes in R2016a” on page 11-87
GlobalSearch and MultiStart Properties (Options)

**In this section...**

- “How to Set Properties” on page 11-2
- “Properties of Both Objects” on page 11-2
- “GlobalSearch Properties” on page 11-6
- “MultiStart Properties” on page 11-8

**How to Set Properties**

To create a GlobalSearch or MultiStart object with nondefault properties, use name-value pairs. For example, to create a GlobalSearch object that has iterative display and runs only from feasible points with respect to bounds and inequalities, enter

```matlab
gs = GlobalSearch('Display','iter', ... 'StartPointsToRun','bounds-ineqs');
```

To set a property of an existing GlobalSearch or MultiStart object, use dot notation. For example, if `ms` is a MultiStart object, and you want to set the `Display` property to `'iter'`, enter

```matlab
ms.Display = 'iter';
```

To set multiple properties of an existing object simultaneously, use the constructor (GlobalSearch or MultiStart) with name-value pairs. For example, to set the `Display` property to `'iter'` and the `MaxTime` property to `100`, enter

```matlab
ms = MultiStart(ms,'Display','iter','MaxTime',100);
```

For more information on setting properties, see “Changing Global Options” on page 3-73.

**Properties of Both Objects**

You can create a MultiStart object from a GlobalSearch object and vice-versa.

The syntax for creating a new object from an existing object is:

```matlab
ms = MultiStart(gs);
or
gs = GlobalSearch(ms);
```
The new object contains the properties that apply of the old object. This section describes those shared properties:

- “Display” on page 11-3
- “FunctionTolerance” on page 11-3
- “MaxTime” on page 11-3
- “OutputFcn” on page 11-4
- “PlotFcn” on page 11-5
- “StartPointsToRun” on page 11-5
- “XTolerance” on page 11-6

**Display**

Values for the Display property are:

- 'final' (default) — Summary results to command line after last solver run.
- 'off' — No output to command line.
- 'iter' — Summary results to command line after each local solver run.

**FunctionTolerance**

The FunctionTolerance property describes how close two objective function values must be for solvers to consider them identical for creating the vector of local solutions. Set FunctionTolerance to 0 to obtain the results of every local solver run. Set FunctionTolerance to a larger value to have fewer results.

Solvers consider two solutions identical if they are within XTolerance distance of each other and have objective function values within FunctionTolerance of each other. If both conditions are not met, solvers report the solutions as distinct. The tolerances are relative, not absolute. For details, see “When fmincon Runs” on page 3-53 for GlobalSearch, and “Create GlobalOptimSolution Object” on page 3-57 for MultiStart.

**MaxTime**

The MaxTime property describes a tolerance on the number of seconds since the solver began its run. Solvers halt when they see MaxTime seconds have passed since the beginning of the run. Time means wall clock as opposed to processor cycles. The default is \( \text{Inf} \).
**OutputFcn**

The `OutputFcn` property directs the global solver to run one or more output functions after each local solver run completes. The output functions also run when the global solver starts and ends. Include a handle to an output function written in the appropriate syntax, or include a cell array of such handles. The default is an empty entry ([]).

The syntax of an output function is:

\[
\text{stop} = \text{outFcn}(\text{optimValues}, \text{state})
\]

- `stop` is a Boolean. When `true`, the algorithm stops. When `false`, the algorithm continues.

**Note** A local solver can have an output function. The global solver does not necessarily stop when a local solver output function causes a local solver run to stop. If you want the global solver to stop in this case, have the global solver output function stop when `optimValues.localsolution.exitflag=-1`.

- `optimValues` is a structure, described in “optimValues Structure” on page 11-5.
- `state` is the current state of the global algorithm:
  - `'init'` — The global solver has not called the local solver. The fields in the `optimValues` structure are empty, except for `localrunindex`, which is 0, and `funccount`, which contains the number of objective and constraint function evaluations.
  - `'iter'` — The global solver calls output functions after each local solver run.
  - `'done'` — The global solver finished calling local solvers. The fields in `optimValues` generally have the same values as the ones from the final output function call with `state='iter'`. However, the value of `optimValues.funccount` for `GlobalSearch` can be larger than the value in the last function call with `'iter'`, because the `GlobalSearch` algorithm might have performed some function evaluations that were not part of a local solver. For more information, see “GlobalSearch Algorithm” on page 3-51.

For an example using an output function, see “GlobalSearch Output Function” on page 3-40.

**Note** Output and plot functions do not run when `MultiStart` has the `UseParallel` option set to `true` and there is an open `parpool`. 

---

11-4
optimValues Structure

The optimValues structure contains the following fields:

- bestx — The current best point
- bestfval — Objective function value at bestx
- funccount — Total number of function evaluations
- localrunindex — Index of the local solver run
- localsolution — A structure containing part of the output of the local solver call: X, Fval and Exitflag

PlotFcn

The PlotFcn property directs the global solver to run one or more plot functions after each local solver run completes. Include a handle to a plot function written in the appropriate syntax, or include a cell array of such handles. The default is an empty entry ({}).

The syntax of a plot function is the same as that of an output function. For details, see “OutputFcn” on page 11-4.

There are two predefined plot functions for the global solvers:

- @gsplotbestf plots the best objective function value.
- @gsplotfunccount plots the number of function evaluations.

For an example using a plot function, see “MultiStart Plot Function” on page 3-45.

If you specify more than one plot function, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.

Note: Output and plot functions do not run when MultiStart has the UseParallel option set to true and there is an open parpool.

StartPointsToRun

The StartPointsToRun property directs the solver to exclude certain start points from being run:
• **all** — Accept all start points.
• **bounds** — Reject start points that do not satisfy bounds.
• **bounds-ineqs** — Reject start points that do not satisfy bounds or inequality constraints.

### X_tolerance

The X_Tolerance property describes how close two points must be for solvers to consider them identical for creating the vector of local solutions. Set X_Tolerance to 0 to obtain the results of every local solver run. Set X_Tolerance to a larger value to have fewer results. Solvers compute the distance between a pair of points with \( \| \text{norm} \), the Euclidean distance.

Solvers consider two solutions identical if they are within X_Tolerance distance of each other and have objective function values within Function_Tolerance of each other. If both conditions are not met, solvers report the solutions as distinct. The tolerances are relative, not absolute. For details, see “When fmincon Runs” on page 3-53 for GlobalSearch, and “Create GlobalOptimSolution Object” on page 3-57 for MultiStart.

### GlobalSearch Properties

- “NumTrialPoints” on page 11-6
- “NumStageOnePoints” on page 11-7
- “MaxWaitCycle” on page 11-7
- “BasinRadiusFactor” on page 11-7
- “DistanceThresholdFactor” on page 11-7
- “PenaltyThresholdFactor” on page 11-7

### NumTrialPoints

Number of potential start points to examine in addition to x0 from the problem structure. GlobalSearch runs only those potential start points that pass several tests. For more information, see “GlobalSearch Algorithm” on page 3-51.

Default: 1000
**NumStageOnePoints**

Number of start points in Stage 1. For details, see “Obtain Stage 1 Start Point, Run” on page 3-52.

Default: 200

**MaxWaitCycle**

A positive integer tolerance appearing in several points in the algorithm.

- If the observed penalty function of MaxWaitCycle consecutive trial points is at least the penalty threshold, then raise the penalty threshold (see “PenaltyThresholdFactor” on page 11-7).
- If MaxWaitCycle consecutive trial points are in a basin, then update that basin's radius (see “BasinRadiusFactor” on page 11-7).

Default: 20

**BasinRadiusFactor**

A basin radius decreases after MaxWaitCycle consecutive start points are within the basin. The basin radius decreases by a factor of 1 - BasinRadiusFactor.

Default: 0.2

**DistanceThresholdFactor**

A multiplier for determining whether a trial point is in an existing basin of attraction. For details, see “Examine Stage 2 Trial Point to See if fmincon Runs” on page 3-53. Default: 0.75

**PenaltyThresholdFactor**

Determines increase in penalty threshold. For details, see React to Large Counter Values on page 3-55.

Default: 0.2
MultiStart Properties

UseParallel

The UseParallel property determines whether the solver distributes start points to multiple processors:

- false (default) — Do not run in parallel.
- true — Run in parallel.

For the solver to run in parallel you must set up a parallel environment with parpool. For details, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.
Pattern Search Options

In this section...

“Optimization App vs. Command Line” on page 11-9
“Plot Options” on page 11-10
“Poll Options” on page 11-13
“Multiobjective Options” on page 11-15
“Search Options” on page 11-17
“Mesh Options” on page 11-21
“Constraint Parameters” on page 11-23
“Cache Options” on page 11-23
“Stopping Criteria” on page 11-24
“Output Function Options” on page 11-25
“Display to Command Window Options” on page 11-27
“Vectorized and Parallel Options (User Function Evaluation)” on page 11-28
“Options Table for Pattern Search Algorithms” on page 11-30

Optimization App vs. Command Line

There are two ways to specify options for pattern search, depending on whether you are using the Optimization app or calling the function `patternsearch` at the command line:

- If you are using the Optimization app, you specify the options by selecting an option from a drop-down list or by entering the value of the option in the text field.
- If you are calling `patternsearch` from the command line, you specify the options by creating an `options` object using the function `optimoptions`, as follows:

```
options = optimoptions('patternsearch','Param1',value1,'Param2',value2,...);
```

See “Set Options” on page 4-70 for examples.

In this section, each option is listed in two ways:

- By its label, as it appears in the Optimization app
- By its field name in the `options` object
For example:

- **Poll method** refers to the label of the option in the Optimization app.
- **PollMethod** refers to the corresponding field of the options object.

## Plot Options

Plot options enable you to plot data from the pattern search while it is running. When you select plot functions and run the pattern search, a plot window displays the plots on separate axes. You can stop the algorithm at any time by clicking the **Stop** button on the plot window.

For **patternsearch**, **Plot interval** (PlotInterval) specifies the number of iterations between consecutive calls to the plot function.

You can select any of the following plots in the **Plot functions** pane for **patternsearch** or **paretosearch** with a single objective function.

- **Best function value** ('psplotbestf') plots the best objective function value.
- **Function count** ('psplotfcount') plots the number of function evaluations.
- **Mesh size** ('psplotmeshsize') plots the mesh size.
- **Best point** ('psplotbestx') plots the current best point.
- **Max constraint** ('psplotmaxconstr') plots the maximum nonlinear constraint violation.
- **Custom** enables you to use your own plot function. To specify the plot function using the Optimization app,
  - Select **Custom function**.
  - Enter @myfun in the text box, where myfun is the name of your function.

  “Structure of the Plot Functions” on page 11-11 describes the structure of a plot function.

For **paretosearch** with multiple objective functions, you can select the 'psplotfcount' option, or a custom function that you pass as a function handle, or any of the following functions.

- **'psplotdistance'** — Plot the distance metric. See “paretosearch Algorithm” on page 9-10.
• 'psplotmaxconstr' — Plot the maximum nonlinear constraint violation.
• 'psplotparetof' — Plot the objective function values. Applies to three or fewer objectives.
• 'psplotparetox' — Plot the current points in parameter space. Applies to three or fewer dimensions.
• 'psplotspread' — Plot the spread metric. See “paretosearch Algorithm” on page 9-10.
• 'psplotvolume' — Plot the volume metric. See “paretosearch Algorithm” on page 9-10.

To display a plot when calling patternsearch or paretosearch from the command line, set the PlotFcns option to be a built-in plot function name or a handle to the plot function. For example, to display the best function value, set options as follows:

```matlab
options = optimoptions('patternsearch','PlotFcn','psplotbestf');
```

To display multiple plots, use a cell array of built-in plot function names or a cell array of function handles:

```matlab
options = optimoptions('patternsearch','PlotFcns',{@plotfun1, @plotfun2, ...});
```

where @plotfun1, @plotfun2, and so on are function handles to the plot functions (listed in parentheses in the preceding list).

If you specify more than one plot function, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.

**Structure of the Plot Functions**

The first line of a plot function has the form

```matlab
function stop = plotfun(optimvalues, flag)
```

The input arguments to the function are

- **optimvalues** — Structure containing information about the current state of the solver. The structure contains the following fields for patternsearch:
  - x — Current point
  - iteration — Iteration number
• **fval** — Objective function value  
• **meshsize** — Current mesh size  
• **funccount** — Number of function evaluations  
• **method** — Method used in last iteration  
• **TolFun** — Tolerance on function value in last iteration  
• **TolX** — Tolerance on x value in last iteration  
• **nonlinineq** — Nonlinear inequality constraints, displayed only when a nonlinear constraint function is specified  
• **nonlineq** — Nonlinear equality constraints, displayed only when a nonlinear constraint function is specified

The structure contains the following fields for `paretosearch`:

• **x** — Current point  
• **fval** — Objective function value  
• **iteration** — Iteration number  
• **funccount** — Number of function evaluations  
• **nonlinineq** — Nonlinear inequality constraints, displayed only when a nonlinear constraint function is specified  
• **nonlineq** — Nonlinear equality constraints, always empty []  
• **volume** — Volume measure (see “Definitions for paretosearch Algorithm” on page 9-10)  
• **averagedistance** — Distance measure (see “Definitions for paretosearch Algorithm” on page 9-10)  
• **spread** — Spread measure (see “Definitions for paretosearch Algorithm” on page 9-10)  
• **flag** — Current state in which the plot function is called. The possible values for flag are
   - **'init'** — Initialization state  
   - **'iter'** — Iteration state  
   - **'interrupt'** — Intermediate stage  
   - **'done'** — Final state

For details of flag, see “Structure of the Output Function” on page 11-25.
“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

The output argument `stop` provides a way to stop the algorithm at the current iteration. `stop` can have the following values:

- **false** — The algorithm continues to the next iteration.
- **true** — The algorithm terminates at the current iteration.

### Poll Options

Poll options control how the pattern search polls the mesh points at each iteration.

**Poll method** (`PollMethod`) specifies the pattern the algorithm uses to create the mesh. There are two patterns for each of the classes of direct search algorithms: the generalized pattern search (GPS) algorithm, the generating set search (GSS) algorithm, and the mesh adaptive direct search (MADS) algorithm. These patterns are the Positive basis $2^N$ and the Positive basis $N+1$:

- The default pattern for `patternsearch`, GPS Positive basis $2^N` ("GPSPositiveBasis2N"), consists of the following $2^N$ vectors, where $N$ is the number of independent variables for the objective function.

  
  \[
  \begin{bmatrix}
  1 & 0 & \ldots & 0 \\
  0 & 1 & \ldots & 0 \\
  \vdots & \vdots & \ddots & \vdots \\
  0 & 0 & \ldots & 1 \\
  -1 & 0 & \ldots & 0 \\
  0 & -1 & \ldots & 0 \\
  0 & 0 & \ldots & -1
  \end{bmatrix}
  \]

  For example, if the optimization problem has three independent variables, the pattern consists of the following six vectors.

  \[
  \begin{bmatrix}
  1 & 0 & 0 \\
  0 & 1 & 0 \\
  0 & 0 & 1 \\
  -1 & 0 & 0 \\
  0 & -1 & 0 \\
  0 & 0 & -1
  \end{bmatrix}
  \]

- The GSS Positive basis $2^N$ pattern ("GSSPositiveBasis2N") is similar to GPS Positive basis $2^N$, but adjusts the basis vectors to account for linear constraints. GSS Positive basis $2^N$ is more efficient than GPS Positive basis $2^N$ when the current point is near a linear constraint boundary.

- The MADS Positive basis $2^N$ pattern ("MADSPositiveBasis2N") consists of $2^N$ randomly generated vectors, where $N$ is the number of independent variables for the objective function. This is done by randomly generating $N$ vectors which form a linearly independent set, then using this first set and the negative of this set gives $2^N$ vectors. As shown above, the GPS Positive basis $2^N$ pattern is formed using the positive and negative of the linearly independent identity, however, with the MADS Positive basis $2^N$, the pattern is generated using a random permutation of an $N$-
by-\( N \) linearly independent lower triangular matrix that is regenerated at each iteration.

• The GPS Positive basis Np1 pattern ('GPSPositiveBasisNp1') consists of the following \( N + 1 \) vectors.

\[
\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-1 & -1 & -1 & \ldots & -1
\end{bmatrix}
\]

For example, if the objective function has three independent variables, the pattern consists of the following four vectors.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{bmatrix}
\]

• The GSS Positive basis Np1 pattern ('GSSPositiveBasisNp1') is similar to GPS Positive basis Np1, but adjusts the basis vectors to account for linear constraints. GSS Positive basis Np1 is more efficient than GPS Positive basis Np1 when the current point is near a linear constraint boundary.

• The MADS Positive basis Np1 pattern ('MADSPositiveBasisNp1') consists of \( N \) randomly generated vectors to form the positive basis, where \( N \) is the number of independent variables for the objective function. Then, one more random vector is generated, giving \( N+1 \) randomly generated vectors. Each iteration generates a new pattern when the MADS Positive basis N+1 is selected.

• For paretosearch only, the default 'GSSPositiveBasis2Np2' pattern uses the GSS 2N patterns, and also uses the [1 1 \ldots 1] and [-1 -1 \ldots -1] patterns.

**Complete poll** (UseCompletePoll) specifies whether all the points in the current mesh must be polled at each iteration. **Complete Poll** can have the values On or Off.

- If you set Complete poll to on (true), the algorithm polls all the points in the mesh at each iteration and chooses the point with the smallest objective function value as the current point at the next iteration.
- If you set Complete poll to off (false), the default value, the algorithm stops the poll as soon as it finds a point whose objective function value is less than that of the current point. The algorithm then sets that point as the current point at the next iteration.
- For paretosearch only, the MinPollFraction option specifies the fraction of poll directions that are investigated during a poll, instead of the binary value of UseCompletePoll. To specify a complete poll, set MinPollFraction to 1. To specify that the poll stops as soon as it finds a point that improves all objective functions, set MinPollFraction to 0.
Polling order (PollOrderAlgorithm) specifies the order in which the algorithm searches the points in the current mesh. The options are

- 'Random' — The polling order is random.
- 'Success' — The first search direction at each iteration is the direction in which the algorithm found the best point at the previous iteration. After the first point, the algorithm polls the mesh points in the same order as Consecutive.
- 'Consecutive' — The algorithm polls the mesh points in consecutive order, that is, the order of the pattern vectors as described in “Poll Method” on page 4-37.

**Multiobjective Options**

The paretosearch solver mainly uses patternsearch options. Several of the available built-in plot functions differ; see “Plot Options” on page 11-10. The following options apply only to paretosearch.

In the table, N represents the number of decision variables.
### Multiobjective Pattern Search Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
<th>Allowed and Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParetoSetSize</td>
<td>Number of points in the Pareto set.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>ParetoSetChangeTolerance</td>
<td>Tolerance on the change in volume or spread of solutions. When either of these measures relatively changes by less than (\text{ParetoSetChangeTolerance}), the iterations end. For details, see “Stopping Conditions” on page 9-17.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MinPollFraction</td>
<td>Minimum fraction of the pattern to poll.</td>
<td>Scalar from 0 through 1</td>
</tr>
</tbody>
</table>
### Search Options

Search options specify an optional search that the algorithm can perform at each iteration prior to the polling. If the search returns a point that improves the objective function, the algorithm uses that point at the next iteration and omits the polling. Please note, if you have selected the same **Search method** and **Poll method**, only the option selected in the Poll method will be used, although both will be used when the options selected are different.
Complete search (UseCompleteSearch) applies when you set Search method to GPS Positive basis Np1, GPS Positive basis 2N, GSS Positive basis Np1, GSS Positive basis 2N, MADS Positive basis Np1, MADS Positive basis 2N, or Latin hypercube. Complete search can have the values on (true) or off (false).

For GPS Positive basis Np1, MADS Positive basis Np1, GPS Positive basis 2N, or MADS Positive basis 2N, Complete search has the same meaning as the poll option Complete poll.

Search method (SearchFcn) specifies the optional search step. The options are

- None ([ ]) (the default) specifies no search step.
- GPS Positive basis 2N ('GPSPositiveBasis2N')
- GPS Positive basis Np1 ('GPSPositiveBasisNp1')
- GSS Positive basis 2N ('GSSPositiveBasis2N')
- GSS Positive basis Np1 ('GSSPositiveBasisNp1')
- MADS Positive basis 2N ('MADSPositiveBasis2N')
- MADS Positive basis Np1 ('MADSPositiveBasisNp1')
- Genetic Algorithm ('searchga') specifies a search using the genetic algorithm. If you select Genetic Algorithm, two other options appear:
  - **Iteration limit** — Positive integer specifying the number of iterations of the pattern search for which the genetic algorithm search is performed. The default for **Iteration limit** is 1.
  - **Options** — Options for the genetic algorithm, which you can set using optimoptions.

To change the default values of **Iteration limit** and **Options** at the command line, use the syntax

```matlab
options = optimoptions('patternsearch','SearchFcn',...
{@searchga,iterlim,optionsGA})
```

where `iterlim` is the value of **Iteration limit** and `optionsGA` is the genetic algorithm options object. If you do not specify any `searchga` options, then `searchga` uses the same UseParallel and UseVectorized option settings as patternsearch.
Note If you set **Search method** to Genetic algorithm or Nelder-Mead, we recommend that you leave **Iteration limit** set to the default value 1, because performing these searches more than once is not likely to improve results.

- **Latin hypercube ('searchlhs')** specifies a Latin hypercube search. `patternsearch` generates each point for the search as follows. For each component, take a random permutation of the vector `[1,2,...,k]` minus `rand(1,k)`, divided by `k`. (k is the number of points.) This yields k points, with each component close to evenly spaced. The resulting points are then scaled to fit any bounds. **Latin hypercube** uses default bounds of -1 and 1.

The way the search is performed depends on the setting for **Complete search**:

- If you set **Complete search** to **on** (true), the algorithm polls all the points that are randomly generated at each iteration by the Latin hypercube search and chooses the one with the smallest objective function value.
- If you set **Complete search** to **off** (false) (the default), the algorithm stops the poll as soon as it finds one of the randomly generated points whose objective function value is less than that of the current point, and chooses that point for the next iteration.

If you select **Latin hypercube**, two other options appear:

- **Iteration limit** — Positive integer specifying the number of iterations of the pattern search for which the Latin hypercube search is performed. The default for **Iteration limit** is 1.
- **Design level** — The **Design level** is the number of points `patternsearch` searches, a positive integer. The default for **Design level** is 15 times the number of dimensions.

To change the default values of **Iteration limit** and **Design level** at the command line, use the syntax

```matlab
options = optimoptions('patternsearch','SearchFcn', {@searchlhs,iterlim,level})
```

where `iterlim` is the value of **Iteration limit** and `level` is the value of **Design level**.

- **Nelder-Mead ('searchneldermead')** specifies a search using `fminsearch`, which uses the Nelder-Mead algorithm. If you select **Nelder-Mead**, two other options appear:
• **Iteration limit** — Positive integer specifying the number of iterations of the pattern search for which the Nelder-Mead search is performed. The default for **Iteration limit** is 1.

• **Options** — Options for the function `fminsearch`, which you can create using the function `optimset`.

To change the default values of **Iteration limit** and **Options** at the command line, use the syntax

```matlab
options = optimoptions('patternsearch','SearchFcn',
{
@searchneldermead,
iterlim,
optionsNM})
```

where `iterlim` is the value of **Iteration limit** and `optionsNM` is the options for the search function.

• **Custom** enables you to write your own search function. To specify the search function using the Optimization app,

  - Set **Search function** to `Custom`.
  - Set **Function name** to `@myfun`, where `myfun` is the name of your function.

If you are using `patternsearch` at the command line, set

```matlab
options = optimoptions('patternsearch','SearchFcn',@myfun);
```

To see a template that you can use to write your own search function, enter

```matlab
edit searchfcntemplate
```

The following section describes the structure of the search function.

**Structure of the Search Function**

Your search function must have the following calling syntax.

```matlab
function [successSearch,xBest,fBest,funccount] =
searchfcntemplate(fun,x,A,b,Aeq,beq,lb,ub, ...
 optimValues,options)
```

The search function has the following input arguments:

- **fun** — Objective function
- **x** — Current point
• \(A,b\) — Linear inequality constraints
• \(Aeq,beq\) — Linear equality constraints
• \(lb,ub\) — Lower and upper bound constraints

optimValues — Structure that enables you to set search options. The structure contains the following fields:

• \(x\) — Current point
• \(fval\) — Objective function value at \(x\)
• \(iteration\) — Current iteration number
• \(funcount\) — Counter for user function evaluation
• \(scale\) — Scale factor used to scale the design points
• \(problemtype\) — Flag passed to the search routines, indicating whether the problem is 'unconstrained', 'boundconstraints', or 'linearconstraints'. This field is a subproblem type for nonlinear constrained problems.
• \(meshsize\) — Current mesh size used in search step
• \(method\) — Method used in last iteration
• \(options\) — Pattern search options

The function has the following output arguments:

• successSearch — A Boolean identifier indicating whether the search is successful or not
• \(xBest,fBest\) — Best point and best function value found by search method
• \(funcount\) — Number of user function evaluation in search method

See “Using a Search Method” on page 4-49 for an example.

**Mesh Options**

Mesh options control the mesh that the pattern search uses. The following options are available.

**Initial size** (InitialMeshSize) specifies the size of the initial mesh, which is the length of the shortest vector from the initial point to a mesh point. **Initial size** should be a positive scalar. The default is 1.0.
**Max size** (MaxMeshSize) specifies a maximum size for the mesh. When the maximum size is reached, the mesh size does not increase after a successful iteration. **Max size** must be a positive scalar, and is only used when a GPS or GSS algorithm is selected as the Poll or Search method. The default value is Inf. MADS uses a maximum size of 1.

**Accelerator** (AccelerateMesh) specifies whether, when the mesh size is small, the **Contraction factor** is multiplied by 0.5 after each unsuccessful iteration. **Accelerator** can have the values On or Off, the default. **Accelerator** applies to the GPS and GSS algorithms.

**Rotate** (MeshRotate) is only applied when **Poll method** is set to GPS Positive basis Np1 or GSS Positive basis Np1. It specifies whether the mesh vectors are multiplied by -1 when the mesh size is less than 1/100 of the mesh tolerance (minimum mesh size MeshTolerance) after an unsuccessful poll. In other words, after the first unsuccessful poll with small mesh size, instead of polling in directions $e_i$ (unit positive directions) and $-\Sigma e_i$, the algorithm polls in directions $-e_i$ and $\Sigma e_i$. **Rotate** can have the values Off or On (the default). When the problem has equality constraints, **Rotate** is disabled.

**Rotate** is especially useful for discontinuous functions.

**Note** Changing the setting of **Rotate** has no effect on the poll when **Poll method** is set to GPS Positive basis 2N, GSS Positive basis 2N, MADS Positive basis 2N, or MADS Positive basis Np1.

**Scale** (ScaleMesh) specifies whether the algorithm scales the mesh points by carefully multiplying the pattern vectors by constants proportional to the logarithms of the absolute values of components of the current point (or, for unconstrained problems, of the initial point). **Scale** can have the values Off or On (the default). When the problem has equality constraints, **Scale** is disabled.

**Expansion factor** (MeshExpansionFactor) specifies the factor by which the mesh size is increased after a successful poll. The default value is 2.0, which means that the size of the mesh is multiplied by 2.0 after a successful poll. **Expansion factor** must be a positive scalar and is only used when a GPS or GSS method is selected as the Poll or Search method. MADS uses a factor of 4.0.

**Contraction factor** (MeshContractionFactor) specifies the factor by which the mesh size is decreased after an unsuccessful poll. The default value is 0.5, which means that the size of the mesh is multiplied by 0.5 after an unsuccessful poll. **Contraction factor**
must be a positive scalar and is only used when a GPS or GSS method is selected as the Poll or Search method. MADS uses a factor of 0.25.

See “Mesh Expansion and Contraction” on page 4-86 for more information.

**Constraint Parameters**

For information on the meaning of penalty parameters, see “Nonlinear Constraint Solver Algorithm” on page 4-55.

- **Initial penalty** (*InitialPenalty*) — Specifies an initial value of the penalty parameter that is used by the nonlinear constraint algorithm. **Initial penalty** must be greater than or equal to 1, and has a default of 10.
- **Penalty factor** (*PenaltyFactor*) — Increases the penalty parameter when the problem is not solved to required accuracy and constraints are not satisfied. **Penalty factor** must be greater than 1, and has a default of 100.

**Bind tolerance** (*TolBind*) specifies the tolerance for the distance from the current point to the boundary of the feasible region with respect to linear constraints. This means **Bind tolerance** specifies when a linear constraint is active. **Bind tolerance** is not a stopping criterion. Active linear constraints change the pattern of points **patternsearch** uses for polling or searching. The default value of **Bind tolerance** is 1e-3.

**Cache Options**

The pattern search algorithm can keep a record of the points it has already polled, so that it does not have to poll the same point more than once. If the objective function requires a relatively long time to compute, the cache option can speed up the algorithm. The memory allocated for recording the points is called the cache. This option should only be used for deterministic objective functions, but not for stochastic ones.

**Cache** (*Cache*) specifies whether a cache is used. The options are **On** and **Off**, the default. When you set **Cache** to **On**, the algorithm does not evaluate the objective function at any mesh points that are within **Tolerance** of a point in the cache.

**Tolerance** (*CacheTol*) specifies how close a mesh point must be to a point in the cache for the algorithm to omit polling it. **Tolerance** must be a positive scalar. The default value is **eps**.

**Size** (*CacheSize*) specifies the size of the cache. **Size** must be a positive scalar. The default value is 1e4.
See “Use Cache” on page 4-105 for more information.

**Stopping Criteria**

Stopping criteria determine what causes the pattern search algorithm to stop. Pattern search uses the following criteria:

**Mesh tolerance** (MeshTolerance) specifies the minimum tolerance for mesh size. The GPS and GSS algorithms stop if the mesh size becomes smaller than **Mesh tolerance**. MADS 2N stops when the mesh size becomes smaller than \( \text{MeshTolerance}^2 \). MADS Np1 stops when the mesh size becomes smaller than \( \text{MeshTolerance}/nVar \)\(^2 \), where \( nVar \) is the number of elements of \( x0 \). The default value of MeshTolerance is \( 1e-6 \).

**Max iteration** (MaxIterations) specifies the maximum number of iterations the algorithm performs. The algorithm stops if the number of iterations reaches **Max iteration**. You can select either

- **100*numberOfVariables** — Maximum number of iterations is 100 times the number of independent variables (the default).
- **Specify** — A positive integer for the maximum number of iterations

**Max function evaluations** (MaxFunctionEvaluations) specifies the maximum number of evaluations of the objective function. The algorithm stops if the number of function evaluations reaches **Max function evaluations**. You can select either

- **2000*numberOfVariables** — Maximum number of function evaluations is 2000 times the number of independent variables.
- **Specify** — A positive integer for the maximum number of function evaluations

**Time limit** (MaxTime) specifies the maximum time in seconds the pattern search algorithm runs before stopping. This also includes any specified pause time for pattern search algorithms.

**X tolerance** (StepTolerance) specifies the minimum distance between the current points at two consecutive iterations. Does not apply to MADS polling. After an unsuccessful poll, the algorithm stops if the distance between two consecutive points is less than **X tolerance** and the mesh size is smaller than **X tolerance**. The default value is \( 1e-6 \).

**Function tolerance** (FunctionTolerance) specifies the minimum tolerance for the objective function. Does not apply to MADS polling. After an unsuccessful poll, the
algorithm stops if the difference between the function value at the previous best point and function value at the current best point is less than **Function tolerance**, and if the mesh size is also smaller than **X tolerance**. The default value is 1e-6.

See “Setting Solver Tolerances” on page 4-48 for an example.

**Constraint tolerance** (ConstraintTolerance) — The **Constraint tolerance** is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints.

### Output Function Options

Output functions are functions that the pattern search algorithm calls at each generation. To specify the output function using the Optimization app,

- Select **Custom function**.
- Enter `@myfun` in the text box, where `myfun` is the name of your function. Write `myfun` with appropriate syntax on page 11-25.
- To pass extra parameters in the output function, use “Anonymous Functions” (Optimization Toolbox).
- For multiple output functions, enter a cell array of output function handles: `{@myfun1,@myfun2,...}`.

At the command line, set

```matlab
options = optimoptions('patternsearch','OutputFcn','myfun');
```

For multiple output functions, enter a cell array of function handles:

```matlab
options = optimoptions('patternsearch','OutputFcn',{@myfun1,@myfun2,...});
```

To see a template that you can use to write your own output function, enter

```matlab
edit psoutputfcntemplate
```

at the MATLAB command prompt.

**Structure of the Output Function**

Your output function must have the following calling syntax:

```matlab
[stop,options,optchanged] = myfun(optimvalues,options,flag)
```
MATLAB passes the `optimvalues`, `state`, and `flag` data to your output function, and the output function returns `stop`, `options`, and `optchanged` data.

The output function has the following input arguments:

- **optimvalues** — Structure containing information about the current state of the solver. The structure contains the following fields:
  - `x` — Current point
  - `iteration` — Iteration number
  - `fval` — Objective function value at `x`
  - `meshsize` — Current mesh size
  - `funccount` — Number of function evaluations
  - `method` — Method used in last iteration, such as 'Update multipliers' or 'Increase penalty' for a nonlinearly constrained problem, or 'Successful Poll', 'Refine Mesh', or 'Successful Search', possibly with a '\Rotate' suffix, for a problem without nonlinear constraints
  - `TolFun` — Absolute value of change in function value in last iteration
  - `TolX` — Norm of change in `x` in last iteration
  - `nonlinineq` — Nonlinear inequality constraint function values at `x`, displayed only when a nonlinear constraint function is specified
  - `nonlineq` — Nonlinear equality constraint function values at `x`, displayed only when a nonlinear constraint function is specified
- **options** — Options
- **flag** — Current state in which the output function is called. The possible values for `flag` are
  - 'init' — Initialization state
  - 'iter' — Iteration state
  - 'interrupt' — Iteration of a subproblem of a nonlinearly constrained problem
    - When `flag` is 'interrupt', the values of `optimvalues` fields apply to the subproblem iterations.
    - When `flag` is 'interrupt', `patternsearch` does not accept changes in `options`, and ignores `optchanged`.
  - 'done' — Final state
“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the output function.

The output function returns the following arguments to `patternsearch`:

- `stop` — Provides a way to stop the algorithm at the current iteration. `stop` can have the following values.
  - `false` — The algorithm continues to the next iteration.
  - `true` — The algorithm terminates at the current iteration.
- `options` — `patternsearch` options.
- `optchanged` — Boolean flag indicating changes to `options`. To change `options` for subsequent iterations, set `optchanged` to `true`.

**Display to Command Window Options**

**Level of display** ('Display') specifies how much information is displayed at the command line while the pattern search is running. The available options are

- **Off** ('off') — No output is displayed.
- **Iterative** ('iter') — Information is displayed for each iteration.
- **Diagnose** ('diagnose') — Information is displayed for each iteration. In addition, the diagnostic lists some problem information and the options that are changed from the defaults.
- **Final** ('final') — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

- `Iter` — Iteration number
- `FunEval` — Cumulative number of function evaluations
- `MeshSize` — Current mesh size
- `FunVal` — Objective function value of the current point
- `Method` — Outcome of the current poll (with no nonlinear constraint function specified). With a nonlinear constraint function, `Method` displays the update method used after a subproblem is solved.
- `Max Constraint` — Maximum nonlinear constraint violation (displayed only when a nonlinear constraint function has been specified)
The default value of Level of display is

- Off in the Optimization app
- 'final' in options created using optimoptions

**Vectorized and Parallel Options (User Function Evaluation)**

You can choose to have your objective and constraint functions evaluated in serial, parallel, or in a vectorized fashion. These options are available in the User function evaluation section of the Options pane of the Optimization app, or by setting the 'UseVectorized' and 'UseParallel' options with optimoptions.

**Note** You must set 'UseCompletePoll' to true for patternsearch to use vectorized or parallel polling. Similarly, set 'UseCompleteSearch' to true for vectorized or parallel searching.

Beginning in R2019a, when you set the 'UseParallel' option to true, patternsearch internally overrides the 'UseCompletePoll' setting to true so it polls in parallel.

- When Evaluate objective and constraint functions ('UseVectorized') is in serial (false), patternsearch calls the objective function on one point at a time as it loops through the mesh points. (At the command line, this assumes 'UseParallel' is at its default value of false.)

- When Evaluate objective and constraint functions ('UseVectorized') is vectorized (true), patternsearch calls the objective function on all the points in the mesh at once, i.e., in a single call to the objective function.

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

For details and an example, see “Vectorize the Objective and Constraint Functions” on page 4-111.

- When Evaluate objective and constraint functions ('UseParallel') is in parallel (true), patternsearch calls the objective function in parallel, using the parallel environment you established (see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14). At the command line, set 'UseParallel' to false to compute serially.
**Note** You cannot simultaneously use vectorized and parallel computations. If you set 'UseParallel' to true and 'UseVectorized' to true, `patternsearch` evaluates your objective and constraint functions in a vectorized manner, not in parallel.

### How Objective and Constraint Functions Are Evaluated

<table>
<thead>
<tr>
<th>Assume UseCompletePoll = true</th>
<th>UseVectorized = false</th>
<th>UseVectorized = true</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel = false</td>
<td>Serial</td>
<td>Vectorized</td>
</tr>
<tr>
<td>UseParallel = true</td>
<td>Parallel</td>
<td>Vectorized</td>
</tr>
</tbody>
</table>
### Options Table for Pattern Search Algorithms

#### Option Availability Table for All Algorithms

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Algorithm Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccelerateMesh</td>
<td>Accelerate mesh size contraction.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>Cache</td>
<td>With Cache set to 'on', patternsearch keeps a history of the mesh points it polls and does not poll points close to them again at subsequent iterations. Use this option if patternsearch runs slowly because it is taking a long time to compute the objective function. If the objective function is stochastic, it is advised not to use this option.</td>
<td>All</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the cache, in number of points.</td>
<td>All</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Positive scalar specifying how close the current mesh point must be to a point in the cache in order for patternsearch to avoid polling it. Available if 'Cache' option is set to 'on'.</td>
<td>All</td>
</tr>
<tr>
<td>ConstraintTolerance</td>
<td>Tolerance on nonlinear constraints.</td>
<td>All</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display to Command Window.</td>
<td>All</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>Tolerance on function value.</td>
<td>All</td>
</tr>
<tr>
<td>InitialMeshSize</td>
<td>Initial mesh size used in pattern search algorithms.</td>
<td>All</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of the penalty parameter.</td>
<td>All</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Algorithm Availability</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>MaxFunctionEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>All</td>
</tr>
<tr>
<td>MaxIterations</td>
<td>Maximum number of iterations.</td>
<td>All</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll/search step.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Total time (in seconds) allowed for optimization. Also includes any specified pause time for pattern search algorithms.</td>
<td>All</td>
</tr>
<tr>
<td>MeshContractionFactor</td>
<td>Mesh contraction factor, used when iteration is unsuccessful.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>MeshExpansionFactor</td>
<td>Mesh expansion factor, expands mesh when iteration is successful.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum.</td>
<td>GPS Np1 and GSS Np1</td>
</tr>
<tr>
<td>MeshTolerance</td>
<td>Tolerance on mesh size.</td>
<td>All</td>
</tr>
<tr>
<td>OutputFcnc</td>
<td>User-specified function that a pattern search calls at each iteration.</td>
<td>All</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter.</td>
<td>All</td>
</tr>
<tr>
<td>PlotFcnc</td>
<td>Specifies function to plot at run time.</td>
<td>All</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Specifies that plot functions will be called at every interval.</td>
<td>All</td>
</tr>
<tr>
<td>PollingOrder</td>
<td>Order in which search directions are polled.</td>
<td>GPS and GSS</td>
</tr>
<tr>
<td>PollMethod</td>
<td>Polling strategy used in pattern search.</td>
<td>All</td>
</tr>
<tr>
<td>ScaleMesh</td>
<td>Automatic scaling of variables.</td>
<td>All</td>
</tr>
<tr>
<td>SearchFcnc</td>
<td>Specifies search method used in pattern search.</td>
<td>All</td>
</tr>
<tr>
<td><strong>Option</strong></td>
<td><strong>Description</strong></td>
<td><strong>Algorithm Availability</strong></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>StepTolerance</td>
<td>Tolerance on independent variable.</td>
<td>All</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance used to determine if linear constraint is active.</td>
<td>All</td>
</tr>
<tr>
<td>UseCompletePoll</td>
<td>Complete poll around current iterate. Evaluate all the points in a poll step.</td>
<td>All</td>
</tr>
<tr>
<td>UseCompleteSearch</td>
<td>Complete search around current iterate when the search method is a poll method. Evaluate all the points in a search step.</td>
<td>All</td>
</tr>
<tr>
<td>UseParallel</td>
<td>When true, compute objective functions of a poll or search in parallel. Disable by setting to false.</td>
<td>All</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Specifies whether objective and constraint functions are vectorized.</td>
<td>All</td>
</tr>
</tbody>
</table>
Genetic Algorithm Options

In this section...

“Optimization App vs. Command Line” on page 11-33
“Plot Options” on page 11-34
“Population Options” on page 11-38
“Fitness Scaling Options” on page 11-41
“Selection Options” on page 11-43
“Reproduction Options” on page 11-45
“Mutation Options” on page 11-45
“Crossover Options” on page 11-48
“Migration Options” on page 11-51
“Constraint Parameters” on page 11-53
“Multiobjective Options” on page 11-54
“Hybrid Function Options” on page 11-55
“Stopping Criteria Options” on page 11-56
“Output Function Options” on page 11-58
“Display to Command Window Options” on page 11-60
“Vectorize and Parallel Options (User Function Evaluation)” on page 11-61

Optimization App vs. Command Line

There are two ways to specify options for the genetic algorithm, depending on whether you are using the Optimization app or calling the functions ga or gamultiobj at the command line:

- If you are using the Optimization app (optimtool), select an option from a drop-down list or enter the value of the option in a text field.
- If you are calling ga or gamultiobj at the command line, create options using the function optimoptions, as follows:

```matlab
options = optimoptions('ga','Param1', value1, 'Param2', value2, ...);
% or
options = optimoptions('gamultiobj','Param1', value1, 'Param2', value2, ...);
```
See “Setting Options at the Command Line” on page 5-88 for examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Optimization app
• By its field name in options

For example:

• **Population type** is the label of the option in the Optimization app.
• **PopulationType** is the corresponding field of **options**.

**Plot Options**

Plot options let you plot data from the genetic algorithm while it is running. You can stop the algorithm at any time by clicking the **Stop** button on the plot window.

**Plot interval** (**PlotInterval**) specifies the number of generations between consecutive calls to the plot function.

You can select any of the following plot functions in the **Plot functions** pane for both **ga** and **gamultiobj**:

• **Score diversity** (**'gaplotscorediversity'**) plots a histogram of the scores at each generation.
• **Stopping** (**'gaplotstopping'**) plots stopping criteria levels.
• **Genealogy** (**'gaplotgenealogy'**) plots the genealogy of individuals. Lines from one generation to the next are color-coded as follows:
  • Red lines indicate mutation children.
  • Blue lines indicate crossover children.
  • Black lines indicate elite individuals.
• **Scores** (**'gaplotscores'**) plots the scores of the individuals at each generation.
• **Distance** (**'gaplotdistance'**) plots the average distance between individuals at each generation.
• **Selection** (**'gaplotselection'**) plots a histogram of the parents.
• **Max constraint** (**'gaplotmaxconstr'**) plots the maximum nonlinear constraint violation at each generation. For **ga**, available only for the Augmented **Lagrangian**
('auglag') **Nonlinear constraint algorithm** (NonlinearConstraintAlgorithm) option. Therefore, not available for integer-constrained problems, as they use the Penalty ('penalty') nonlinear constraint algorithm.

- **Custom function** lets you use plot functions of your own. To specify the plot function if you are using the Optimization app,
  - Select **Custom function**.
  - Enter `@myfun` in the text box, where `myfun` is the name of your function.

See “Structure of the Plot Functions” on page 11-36.

The following plot functions are available for `ga` only:

- **Best fitness** (`'gaplotbestf'`) plots the best score value and mean score versus generation.
- **Best individual** (`'gaplotbestindiv'`) plots the vector entries of the individual with the best fitness function value in each generation.
- **Expectation** (`'gaplotexpectation'`) plots the expected number of children versus the raw scores at each generation.
- **Range** (`'gaplotrange'`) plots the minimum, maximum, and mean score values in each generation.

The following plot functions are available for `gamultiobj` only:

- **Pareto front** (`'gaplotpareto'`) plots the Pareto front for the first two objective functions.
- **Average Pareto distance** (`'gaplotparetодistance'`) plots a bar chart of the distance of each individual from its neighbors.
- **Rank histogram** (`'gaplotrankhist'`) plots a histogram of the ranks of the individuals. Individuals of rank 1 are on the Pareto frontier. Individuals of rank 2 are lower than at least one rank 1 individual, but are not lower than any individuals from other ranks, etc.
- **Average Pareto spread** (`'gaplotspread'`) plots the average spread as a function of iteration number.

To display a plot when calling `ga` or `gamultiobj` from the command line, set the `PlotFcns` option to be a built-in plot function name or a handle to the plot function. For example, to display the best fitness plot, set `options` as follows:

```matlab
options = optimoptions('ga','PlotFcns','gaplotbestf');```
To display multiple plots, use a cell array of built-in plot function names or a cell array of function handles:

```matlab
options = optimoptions('ga','PlotFcns', {@plotfun1, @plotfun2, ...});
```

where `@plotfun1`, `@plotfun2`, and so on are function handles to the plot functions.

If you specify multiple plot functions, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.

Structure of the Plot Functions

The first line of a plot function has this form:

```matlab
function state = plotfun(options,state,flag)
```

The input arguments to the function are

- `options` — Structure containing all the current options settings.
- `flag` — Description of the stage the algorithm is currently in. For details, see “Output Function Options” on page 11-58.

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

The output argument `state` is a state structure as well. Pass the input argument, modified if you like; see “Changing the State Structure” on page 11-59. To stop the iterations, set `state.StopFlag` to a nonempty character vector, such as `'y'`.

The State Structure

`ga`

The state structure for `ga`, which is an input argument to plot, mutation, and output functions, contains the following fields:

- `Generation` — Current generation number
- `StartTime` — Time when genetic algorithm started, returned by `tic`
- `StopFlag` — Reason for stopping, a character vector
- **LastImprovement** — Generation at which the last improvement in fitness value occurred
- **LastImprovementTime** — Time at which last improvement occurred
- **Best** — Vector containing the best score in each generation
- **how** — The 'augLag' nonlinear constraint algorithm reports one of the following actions: 'Infeasible point', 'Update multipliers', or 'Increase penalty'; see “Augmented Lagrangian Genetic Algorithm” on page 5-72
- **FunEval** — Cumulative number of function evaluations
- **Expectation** — Expectation for selection of individuals
- **Selection** — Indices of individuals selected for elite, crossover, and mutation
- **Population** — Population in the current generation
- **Score** — Scores of the current population
- **NonlinIneq** — Nonlinear inequality constraints at current point, present only when a nonlinear constraint function is specified, there are no integer variables, flag is not 'interrupt', and NonlinearConstraintAlgorithm is 'auglag'
- **NonlinEq** — Nonlinear equality constraints at current point, present only when a nonlinear constraint function is specified, there are no integer variables, flag is not 'interrupt', and NonlinearConstraintAlgorithm is 'auglag'

gamultiobj

The state structure for `gamultiobj`, which is an input argument to plot, mutation, and output functions, contains the following fields:

- **Population** — Population in the current generation
- **Score** — Scores of the current population, a `Population-by-nObjectives` matrix, where `nObjectives` is the number of objectives
- **Generation** — Current generation number
- **StartTime** — Time when genetic algorithm started, returned by tic
- **StopFlag** — Reason for stopping, a character vector
- **FunEval** — Cumulative number of function evaluations
- **Selection** — Indices of individuals selected for elite, crossover, and mutation
- **Rank** — Vector of the ranks of members in the population
- **Distance** — Vector of distances of each member of the population to the nearest neighboring member
• **AverageDistance** — The average of Distance
• **Spread** — Vector where the entries are the spread in each generation
• **mIneq** — Number of nonlinear inequality constraints
• **mEq** — Number of nonlinear equality constraints
• **mAll** — Total number of nonlinear constraints, \(mAll = mIneq + mEq \)
• **C** — Nonlinear inequality constraints at current point, a \(\text{PopulationSize-by-mIneq} \) matrix
• **Ceq** — Nonlinear equality constraints at current point, a \(\text{PopulationSize-by-mEq} \) matrix
• **isFeas** — Feasibility of population, a logical vector with \(\text{PopulationSize} \) elements
• **maxLinInfeas** — Maximum infeasibility with respect to linear constraints for the population

Population Options

Population options let you specify the parameters of the population that the genetic algorithm uses.

Population type (PopulationType) specifies the type of input to the fitness function. Types and their restrictions are:

• **Double vector** ('doubleVector') — Use this option if the individuals in the population have type double. Use this option for mixed integer programming. This is the default.
• **Bit string** ('bitstring') — Use this option if the individuals in the population have components that are 0 or 1.

Caution The individuals in a Bit string population are vectors of type double, not strings or characters.

For **Creation function** (CreationFcn) and **Mutation function** (MutationFcn), use Uniform ('gacreationuniform' and 'mutationuniform') or Custom. For **Crossover function** (CrossoverFcn), use Scattered ('crossoverscattered'), Single point ('crossoversinglepoint'), Two point ('crossovertwopoint'), or Custom. You cannot use a Hybrid function, and ga ignores all constraints, including bounds, linear constraints, and nonlinear constraints.
Custom — For **Crossover function** and **Mutation function**, use Custom. For **Creation function**, either use Custom, or provide an **Initial population**. You cannot use a **Hybrid function**, and **ga** ignores all constraints, including bounds, linear constraints, and nonlinear constraints.

Population size (PopulationSize) specifies how many individuals there are in each generation. With a large population size, the genetic algorithm searches the solution space more thoroughly, thereby reducing the chance that the algorithm returns a local minimum that is not a global minimum. However, a large population size also causes the algorithm to run more slowly.

If you set **Population size** to a vector, the genetic algorithm creates multiple subpopulations, the number of which is the length of the vector. The size of each subpopulation is the corresponding entry of the vector. See “Migration Options” on page 11-51.

Creation function (CreationFcn) specifies the function that creates the initial population for **ga**. Do not specify a creation function with integer problems because **ga** overrides any choice you make. Choose from:

- [] uses the default creation function for your problem.
- **Uniform** (‘gacreationuniform’) creates a random initial population with a uniform distribution. This is the default when there are no linear constraints, or when there are integer constraints. The uniform distribution is in the initial population range (InitialPopulationRange). The default values for InitialPopulationRange are [-10;10] for every component, or [-9999;10001] when there are integer constraints. These bounds are shifted and scaled to match any existing bounds lb and ub.

Caution Do not use ‘gacreationuniform’ when you have linear constraints. Otherwise, your population might not satisfy the linear constraints.

- **Feasible population** (‘gacreationlinearfeasible’), the default when there are linear constraints and no integer constraints, creates a random initial population that satisfies all bounds and linear constraints. If there are linear constraints, Feasible population creates many individuals on the boundaries of the constraint region, and creates a well-dispersed population. Feasible population ignores **Initial range** (InitialPopulationRange).

 ‘gacreationlinearfeasible’ calls linprog to create a feasible population with respect to bounds and linear constraints.
For an example showing its behavior, see “Custom Plot Function and Linear Constraints in ga” on page 5-102.

- **Nonlinear Feasible population** ('gacreationnonlinearfeasible') is the default creation function for the 'penalty' nonlinear constraint algorithm. For details, see “Constraint Parameters” on page 11-53.

- Custom lets you write your own creation function, which must generate data of the type that you specify in **Population type**. To specify the creation function if you are using the Optimization app,

 - Set **Creation function** to Custom.
 - Set **Function name** to @myfun, where myfun is the name of your function.

If you are using ga, set

```matlab
options = optimoptions('ga','CreationFcn',@myfun);
```

Your creation function must have the following calling syntax.

```matlab
function Population = myfun(GenomeLength, FitnessFcn, options)
```

The input arguments to the function are:

- **GenomeLength** — Number of independent variables for the fitness function
- **FitnessFcn** — Fitness function
- **options** — Options

The function returns **Population**, the initial population for the genetic algorithm.

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your creation function creates individuals that satisfy these constraints. Otherwise, your population might not satisfy the constraints.

Initial population (**InitialPopulationMatrix**) specifies an initial population for the genetic algorithm. The default value is [], in which case ga uses the default **Creation function** to create an initial population. If you enter a nonempty array in the **Initial population** field, the array must have no more than **Population size** rows, and exactly **Number of variables** columns. If you have a partial initial population, meaning fewer
than **Population size** rows, then the genetic algorithm calls a **Creation function** to
generate the remaining individuals.

Initial scores (*InitialScoreMatrix*) specifies initial scores for the initial population.
The initial scores can also be partial. Do not specify initial scores with integer problems
because `ga` overrides any choice you make.

Initial range (*InitialPopulationRange*) specifies the range of the vectors in the
initial population that is generated by the `gacroationuniform` creation function. You
can set **Initial range** to be a matrix with two rows and **Number of variables** columns,
each column of which has the form `[lb;ub]`, where `lb` is the lower bound and `ub` is the
upper bound for the entries in that coordinate. If you specify **Initial range** to be a 2-by-1
vector, each entry is expanded to a constant row of length **Number of variables**. If you
do not specify an **Initial range**, the default is `[-10;10]` (`[-1e4+1;1e4+1]` for integer-
constrained problems), modified to match any existing bounds.

See “Setting the Initial Range” on page 5-97 for an example.

Fitness Scaling Options

Fitness scaling converts the raw fitness scores that are returned by the fitness function to
values in a range that is suitable for the selection function. You can specify options for
fitness scaling in the **Fitness scaling** pane.

Scaling function (*FitnessScalingFcn*) specifies the function that performs the
scaling. The options are

- **Rank** ('fitscalingrank') — The default fitness scaling function, **Rank**, scales the
 raw scores based on the rank of each individual instead of its score. The rank of an
 individual is its position in the sorted scores. An individual with rank `r` has scaled
 score proportional to `1/\sqrt{r}`. So the scaled score of the most fit individual is proportional
to 1, the scaled score of the next most fit is proportional to `1/\sqrt{2}`, and so on. **Rank**
 fitness scaling removes the effect of the spread of the raw scores. The square root
 makes poorly ranked individuals more nearly equal in score, compared to rank
 scoring. For more information, see “Fitness Scaling” on page 5-108.
- **Proportional** ('fitscalingprop') — Proportional scaling makes the scaled value
 of an individual proportional to its raw fitness score.
- **Top** ('fitscalingtop') — Top scaling scales the top individuals equally. Selecting
 Top displays an additional field, **Quantity**, which specifies the number of individuals
 that are assigned positive scaled values. **Quantity** can be an integer from 1 through
the population size or a fraction from 0 through 1 specifying a fraction of the population size. The default value is 0.4. Each of the individuals that produce offspring is assigned an equal scaled value, while the rest are assigned the value 0. The scaled values have the form [0 1/n 0 0 1/n 0 0 1/n ...].

To change the default value for Quantity at the command line, use the following syntax:

```matlab
options = optimoptions('ga','FitnessScalingFcn', {@fitscalingtop,quantity})
```

where quantity is the value of Quantity.

- **Shift linear** ('fitscalingshiftlinear') — Shift linear scaling scales the raw scores so that the expectation of the fittest individual is equal to a constant multiplied by the average score. You specify the constant in the **Max survival rate** field, which is displayed when you select Shift linear. The default value is 2.

To change the default value of Max survival rate at the command line, use the following syntax

```matlab
options = optimoptions('ga','FitnessScalingFcn',
                       {@fitscalingshiftlinear, rate})
```

where rate is the value of Max survival rate.

- **Custom** lets you write your own scaling function. To specify the scaling function using the Optimization app,
 - Set **Scaling function** to Custom.
 - Set **Function name** to @myfun, where myfun is the name of your function.

If you are using ga at the command line, set

```matlab
options = optimoptions('ga','FitnessScalingFcn',@myfun);
```

Your scaling function must have the following calling syntax:

```matlab
function expectation = myfun(scores, nParents)
```

The input arguments to the function are:

- **scores** — A vector of scalars, one for each member of the population
- **nParents** — The number of parents needed from this population
The function returns **expectation**, a column vector of scalars of the same length as **scores**, giving the scaled values of each member of the population. The sum of the entries of **expectation** must equal **nParents**.

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

See “Fitness Scaling” on page 5-108 for more information.

Selection Options

Selection options specify how the genetic algorithm chooses parents for the next generation. You can specify the function the algorithm uses in the **Selection function** (**SelectionFcn**) field in the **Selection** options pane. Do not use with integer problems.

gamultiobj uses only the Tournament (**'selectiontournament'**) selection function.

For **ga** the options are:

- **Stochastic uniform** (**'selectionstochunif'**) — The **ga** default selection function, **Stochastic uniform**, lays out a line in which each parent corresponds to a section of the line of length proportional to its scaled value. The algorithm moves along the line in steps of equal size. At each step, the algorithm allocates a parent from the section it lands on. The first step is a uniform random number less than the step size.

- **Remainder** (**'selectionremainder'**) — Remainder selection assigns parents deterministically from the integer part of each individual’s scaled value and then uses roulette selection on the remaining fractional part. For example, if the scaled value of an individual is 2.3, that individual is listed twice as a parent because the integer part is 2. After parents have been assigned according to the integer parts of the scaled values, the rest of the parents are chosen stochastically. The probability that a parent is chosen in this step is proportional to the fractional part of its scaled value.

- **Uniform** (**'selectionuniform'**) — Uniform selection chooses parents using the expectations and number of parents. Uniform selection is useful for debugging and testing, but is not a very effective search strategy.

- **Roulette** (**'selectionroulette'**) — Roulette selection chooses parents by simulating a roulette wheel, in which the area of the section of the wheel corresponding to an individual is proportional to the individual's expectation. The algorithm uses a random number to select one of the sections with a probability equal to its area.
• Tournament('selectiontournament') — Tournament selection chooses each parent by choosing Tournament size players at random and then choosing the best individual out of that set to be a parent. Tournament size must be at least 2. The default value of Tournament size is 4.

To change the default value of Tournament size at the command line, use the syntax

```matlab
options = optimoptions('ga','SelectionFcn',{@selectiontournament,size})
```

where size is the value of Tournament size.

When Constraint parameters > Nonlinear constraint algorithm is Penalty, ga uses Tournament with size 2.

• Custom enables you to write your own selection function. To specify the selection function using the Optimization app,

 • Set Selection function to Custom.
 • Set Function name to @myfun, where myfun is the name of your function.

If you are using ga at the command line, set

```matlab
options = optimoptions('ga','SelectionFcn',@myfun);
```

Your selection function must have the following calling syntax:

```matlab
function parents = myfun(expectation, nParents, options)
```

ga provides the input arguments expectation, nParents, and options. Your function returns the indices of the parents.

The input arguments to the function are:

• expectation

 • For ga, expectation is a column vector of the scaled fitness of each member of the population. The scaling comes from the “Fitness Scaling Options” on page 11-41.

 Tip You can ensure that you have a column vector by using `expectation(:,1)`. For example, edit `selectionstochunif` or any of the other built-in selection functions.
• For `gamultiobj`, `expectation` is a matrix whose first column is the rank of the individuals, and whose second column is the distance measure of the individuals. See “Multiobjective Options” on page 11-54.

• `nParents`— Number of parents to select.
• `options`— Genetic algorithm options.

The function returns `parents`, a row vector of length `nParents` containing the indices of the parents that you select.

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

See “Selection” on page 5-25 for more information.

Reproduction Options

Reproduction options specify how the genetic algorithm creates children for the next generation.

Elite count (`EliteCount`) specifies the number of individuals that are guaranteed to survive to the next generation. Set **Elite count** to be a positive integer less than or equal to the population size. The default value is `ceil(0.05*PopulationSize)` for continuous problems, and `0.05*(default PopulationSize)` for mixed-integer problems.

Crossover fraction (`CrossoverFraction`) specifies the fraction of the next generation, other than elite children, that are produced by crossover. Set **Crossover fraction** to be a fraction between 0 and 1, either by entering the fraction in the text box or moving the slider. The default value is 0.8.

See “Setting the Crossover Fraction” on page 5-114 for an example.

Mutation Options

Mutation options specify how the genetic algorithm makes small random changes in the individuals in the population to create mutation children. Mutation provides genetic diversity and enables the genetic algorithm to search a broader space. You can specify the mutation function in the **Mutation function** (`MutationFcn`) field in the **Mutation** options pane. Do not use with integer problems. You can choose from the following functions:
• **Gaussian** ('mutationgaussian') — The default mutation function for unconstrained problems, Gaussian, adds a random number taken from a Gaussian distribution with mean 0 to each entry of the parent vector. The standard deviation of this distribution is determined by the parameters **Scale** and **Shrink**, which are displayed when you select Gaussian, and by the **Initial range** setting in the **Population** options.

• The **Scale** parameter determines the standard deviation at the first generation. If you set **Initial range** to be a 2-by-1 vector \(v\), the initial standard deviation is the same at all coordinates of the parent vector, and is given by \(\text{Scale} \cdot (v(2) - v(1))\).

If you set **Initial range** to be a vector \(v\) with two rows and **Number of variables** columns, the initial standard deviation at coordinate \(i\) of the parent vector is given by \(\text{Scale} \cdot (v(i,2) - v(i,1))\).

• The **Shrink** parameter controls how the standard deviation shrinks as generations go by. If you set **Initial range** to be a 2-by-1 vector, the standard deviation at the \(k\)th generation, \(\sigma_k\), is the same at all coordinates of the parent vector, and is given by the recursive formula

\[
\sigma_k = \sigma_{k-1} \left(1 - \text{Shrink} \frac{k}{\text{Generations}}\right).
\]

If you set **Initial range** to be a vector with two rows and **Number of variables** columns, the standard deviation at coordinate \(i\) of the parent vector at the \(k\)th generation, \(\sigma_{i,k}\), is given by the recursive formula

\[
\sigma_{i,k} = \sigma_{i,k-1} \left(1 - \text{Shrink} \frac{k}{\text{Generations}}\right).
\]

If you set **Shrink** to 1, the algorithm shrinks the standard deviation in each coordinate linearly until it reaches 0 at the last generation is reached. A negative value of **Shrink** causes the standard deviation to grow.

The default value of both **Scale** and **Shrink** is 1. To change the default values at the command line, use the syntax

```matlab
options = optimoptions('ga','MutationFcn', ...('@mutationgaussian', scale, shrink))
```

where `scale` and `shrink` are the values of **Scale** and **Shrink**, respectively.
Caution Do not use `mutationgaussian` when you have bounds or linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

- **Uniform** (`'mutationuniform'`) — Uniform mutation is a two-step process. First, the algorithm selects a fraction of the vector entries of an individual for mutation, where each entry has a probability **Rate** of being mutated. The default value of **Rate** is 0.01. In the second step, the algorithm replaces each selected entry by a random number selected uniformly from the range for that entry.

To change the default value of **Rate** at the command line, use the syntax

```matlab
options = optimoptions('ga','MutationFcn', [@mutationuniform, rate])
```

where `rate` is the value of **Rate**.

Caution Do not use `mutationuniform` when you have bounds or linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

- **Adaptive Feasible** (`'mutationadaptfeasible'`), the default mutation function when there are constraints, randomly generates directions that are adaptive with respect to the last successful or unsuccessful generation. The mutation chooses a direction and step length that satisfies bounds and linear constraints.

- **Custom** enables you to write your own mutation function. To specify the mutation function using the Optimization app,

 - Set **Mutation function** to Custom.
 - Set **Function name** to `@myfun`, where `myfun` is the name of your function.

If you are using `ga`, set

```matlab
options = optimoptions('ga','MutationFcn', @myfun);
```

Your mutation function must have this calling syntax:

```matlab
function mutationChildren = myfun(parents, options, nvars, FitnessFcn, state, thisScore, thisPopulation)
```

The arguments to the function are

- **parents** — Row vector of parents chosen by the selection function
- **options** — Options
• nvars — Number of variables
• FitnessFcn — Fitness function
• thisScore — Vector of scores of the current population
• thisPopulation — Matrix of individuals in the current population

The function returns mutationChildren—the mutated offspring—as a matrix where rows correspond to the children. The number of columns of the matrix is Number of variables.

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your mutation function creates individuals that satisfy these constraints. Otherwise, your population will not necessarily satisfy the constraints.

Crossover Options

Crossover options specify how the genetic algorithm combines two individuals, or parents, to form a crossover child for the next generation.

Crossover function (CrossoverFcn) specifies the function that performs the crossover. Do not use with integer problems. You can choose from the following functions:

• Scattered ('crossoverscattered'), the default crossover function for problems without linear constraints, creates a random binary vector and selects the genes where the vector is a 1 from the first parent, and the genes where the vector is a 0 from the second parent, and combines the genes to form the child. For example, if p1 and p2 are the parents

 p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

 and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following child:

 child1 = [a b 3 4 e 6 7 8]
Caution Do not use 'crossoverscattered' when you have linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

- Single point ('crossoversinglepoint') chooses a random integer \(n \) between 1 and **Number of variables** and then
 - Selects vector entries numbered less than or equal to \(n \) from the first parent.
 - Selects vector entries numbered greater than \(n \) from the second parent.
 - Concatenates these entries to form a child vector.

For example, if \(p_1 \) and \(p_2 \) are the parents
\[
p_1 = [a \ b \ c \ d \ e \ f \ g \ h]
p_2 = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8]
\]
and the crossover point is 3, the function returns the following child.
\[
\text{child} = [a \ b \ c \ 4 \ 5 \ 6 \ 7 \ 8]
\]

Caution Do not use 'crossoversinglepoint' when you have linear constraints. Otherwise, your population will not necessarily satisfy the constraints.

- Two point ('crossovertwopoint') selects two random integers \(m \) and \(n \) between 1 and **Number of variables**. The function selects
 - Vector entries numbered less than or equal to \(m \) from the first parent
 - Vector entries numbered from \(m+1 \) to \(n \), inclusive, from the second parent
 - Vector entries numbered greater than \(n \) from the first parent.

The algorithm then concatenates these genes to form a single gene. For example, if \(p_1 \) and \(p_2 \) are the parents
\[
p_1 = [a \ b \ c \ d \ e \ f \ g \ h]
p_2 = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8]
\]
and the crossover points are 3 and 6, the function returns the following child.
\[
\text{child} = [a \ b \ c \ 4 \ 5 \ 6 \ g \ h]
\]

Caution Do not use 'crossovertwopoint' when you have linear constraints. Otherwise, your population will not necessarily satisfy the constraints.
• **Intermediate ('crossoverintermediate')**, the default crossover function when there are linear constraints, creates children by taking a weighted average of the parents. You can specify the weights by a single parameter, **Ratio**, which can be a scalar or a row vector of length **Number of variables**. The default is a vector of all 1's. The function creates the child from **parent1** and **parent2** using the following formula.

\[
\text{child} = \text{parent1} + \text{rand} \times \text{Ratio} \times (\text{parent2} - \text{parent1})
\]

If all the entries of **Ratio** lie in the range [0, 1], the children produced are within the hypercube defined by placing the parents at opposite vertices. If **Ratio** is not in that range, the children might lie outside the hypercube. If **Ratio** is a scalar, then all the children lie on the line between the parents.

To change the default value of **Ratio** at the command line, use the syntax

```
options = optimoptions('ga','CrossoverFcn', ...
{@crossoverintermediate, ratio});
```

where **ratio** is the value of **Ratio**.

• **Heuristic ('crossoverheuristic')** returns a child that lies on the line containing the two parents, a small distance away from the parent with the better fitness value in the direction away from the parent with the worse fitness value. You can specify how far the child is from the better parent by the parameter **Ratio**, which appears when you select **Heuristic**. The default value of **Ratio** is 1.2. If **parent1** and **parent2** are the parents, and **parent1** has the better fitness value, the function returns the child

\[
\text{child} = \text{parent2} + R \times (\text{parent1} - \text{parent2})
\]

To change the default value of **Ratio** at the command line, use the syntax

```
options = optimoptions('ga','CrossoverFcn',...
{@crossoverheuristic,ratio});
```

where **ratio** is the value of **Ratio**.

• **Arithmetic ('crossoverarithmetic')** creates children that are the weighted arithmetic mean of two parents. Children are always feasible with respect to linear constraints and bounds.

• **Custom** enables you to write your own crossover function. To specify the crossover function using the Optimization app,
• Set **Crossover function** to Custom.
• Set **Function name** to @myfun, where myfun is the name of your function.

If you are using ga, set

```matlab
options = optimoptions('ga','CrossoverFcn',@myfun);
```

Your crossover function must have the following calling syntax.

```matlab
xoverKids = myfun(parents, options, nvars, FitnessFcn, ... unused,thisPopulation)
```

The arguments to the function are

• **parents** — Row vector of parents chosen by the selection function
• **options** — options
• **nvars** — Number of variables
• **FitnessFcn** — Fitness function
• **unused** — Placeholder not used
• **thisPopulation** — Matrix representing the current population. The number of rows of the matrix is **Population size** and the number of columns is **Number of variables**.

The function returns **xoverKids**—the crossover offspring—as a matrix where rows correspond to the children. The number of columns of the matrix is **Number of variables**.

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your crossover function creates individuals that satisfy these constraints. Otherwise, your population will not necessarily satisfy the constraints.

Migration Options

Note Subpopulations refer to a form of parallel processing for the genetic algorithm. ga currently does not support this form. In subpopulations, each worker hosts a number of
individuals. These individuals are a subpopulation. The worker evolves the subpopulation independently of other workers, except when migration causes some individuals to travel between workers.

Because ga does not currently support this form of parallel processing, there is no benefit to setting PopulationSize to a vector, or to setting the MigrationDirection, MigrationInterval, or MigrationFraction options.

Migration options specify how individuals move between subpopulations. Migration occurs if you set Population size to be a vector of length greater than 1. When migration occurs, the best individuals from one subpopulation replace the worst individuals in another subpopulation. Individuals that migrate from one subpopulation to another are copied. They are not removed from the source subpopulation.

You can control how migration occurs by the following three fields in the Migration options pane:

- **Direction** (MigrationDirection) — Migration can take place in one or both directions.
 - If you set Direction to Forward ('forward'), migration takes place toward the last subpopulation. That is, the nth subpopulation migrates into the (n+1)th subpopulation.
 - If you set Direction to Both ('both'), the nth subpopulation migrates into both the (n-1)th and the (n+1)th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last subpopulation migrates into the first, and the first may migrate into the last.

- **Interval** (MigrationInterval) — Specifies how many generation pass between migrations. For example, if you set Interval to 20, migration takes place every 20 generations.

- **Fraction** (MigrationFraction) — Specifies how many individuals move between subpopulations. Fraction specifies the fraction of the smaller of the two subpopulations that moves. For example, if individuals migrate from a subpopulation of 50 individuals into a subpopulation of 100 individuals and you set Fraction to 0.1, the number of individuals that migrate is 0.1*50=5.
Constraint Parameters

Constraint parameters refer to the nonlinear constraint solver. For details on the algorithm, see “Nonlinear Constraint Solver Algorithms” on page 5-72.

Choose between the nonlinear constraint algorithms by setting the `NonlinearConstraintAlgorithm` option to 'auglag' (Augmented Lagrangian) or 'penalty' (Penalty algorithm).

- “Augmented Lagrangian Genetic Algorithm” on page 11-53
- “Penalty Algorithm” on page 11-53

Augmented Lagrangian Genetic Algorithm

- Initial penalty (InitialPenalty) — Specifies an initial value of the penalty parameter that is used by the nonlinear constraint algorithm. Initial penalty must be greater than or equal to 1, and has a default of 10.
- Penalty factor (PenaltyFactor) — Increases the penalty parameter when the problem is not solved to required accuracy and constraints are not satisfied. Penalty factor must be greater than 1, and has a default of 100.

Penalty Algorithm

The penalty algorithm uses the `gacreationnonlinearfeasible` creation function by default. This creation function uses `fmincon` to find feasible individuals. `gacreationnonlinearfeasible` starts `fmincon` from a variety of initial points within the bounds from the `InitialPopulationRange` option. Optionally, `gacreationnonlinearfeasible` can run `fmincon` in parallel on the initial points.

You can specify tuning parameters for `gacreationnonlinearfeasible` using the following name-value pairs.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolverOpts</td>
<td><code>fmincon</code> options, created using <code>optimoptions</code> or <code>optimset</code>.</td>
</tr>
<tr>
<td>UseParallel</td>
<td>When true, run <code>fmincon</code> in parallel on initial points; default is false.</td>
</tr>
<tr>
<td>NumStartPts</td>
<td>Number of start points, a positive integer up to <code>sum(PopulationSize)</code> in value.</td>
</tr>
</tbody>
</table>
Include the name-value pairs in a cell array along with `@gacreationnonlinearfeasible`.

```matlab
options = optimoptions('ga','CreationFcn',{@gacreationnonlinearfeasible,...
    'UseParallel',true,'NumStartPts',20});
```

Multiobjective Options

Multiobjective options define parameters characteristic of the multiobjective genetic algorithm. You can specify the following parameters:

- **ParetoFraction** — Sets the fraction of individuals to keep on the first Pareto front while the solver selects individuals from higher fronts. This option is a scalar between 0 and 1.

Note The fraction of individuals on the first Pareto front can exceed `ParetoFraction`. This occurs when there are too few individuals of other ranks in step 6 of “Iterations” on page 9-8.

- **DistanceMeasureFcn** — Defines a handle to the function that computes distance measure of individuals, computed in decision variable space (genotype, also termed design variable space) or in function space (phenotype). For example, the default distance measure function is `'distancecrowding'` in function space, which is the same as `{@distancecrowding,'phenotype'}`.

“Distance” measures a crowding of each individual in a population. Choose between the following:

- `'distancecrowding'`, or the equivalent `{@distancecrowding,'phenotype'}` — Measure the distance in fitness function space.
- `{@distancecrowding,'genotype'}` — Measure the distance in decision variable space.
- `@distancefunction` — Write a custom distance function using the following template.

```matlab
function distance = distancefunction(pop,score,options)
    % Uncomment one of the following two lines, or use a combination of both
    % y = score; % phenotype
    % y = pop; % genotype
    popSize = size(y,1); % number of individuals
    numData = size(y,2); % number of dimensions or fitness functions
```
distance = zeros(popSize,1); % allocate the output
% Compute distance here

gamultiobj passes the population in pop, the computed scores for the population in scores, and the options in options. Your distance function returns the distance from each member of the population to a reference, such as the nearest neighbor in some sense. For an example, edit the built-in file distancecrowding.m.

Hybrid Function Options

- “ga Hybrid Function” on page 11-55
- “gamultiobj Hybrid Function” on page 11-56

ga Hybrid Function

A hybrid function is another minimization function that runs after the genetic algorithm terminates. You can specify a hybrid function in **Hybrid function** (HybridFcn) options. Do not use with integer problems. The choices are

- [] — No hybrid function.
- fminsearch ('fminsearch') — Uses the MATLAB function fminsearch to perform unconstrained minimization.
- patternsearch ('patternsearch') — Uses a pattern search to perform constrained or unconstrained minimization.
- fminunc ('fminunc') — Uses the Optimization Toolbox function fminunc to perform unconstrained minimization.
- fmincon ('fmincon') — Uses the Optimization Toolbox function fmincon to perform constrained minimization.

Note Ensure that your hybrid function accepts your problem constraints. Otherwise, ga throws an error.

You can set separate options for the hybrid function. Use optimset for fminsearch, or optimoptions for fmincon, patternsearch, or fminunc. For example:

hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');

Include the hybrid options in the Genetic Algorithm options as follows:
options = optimoptions('ga',options,'HybridFcn',{@fminunc,hybridopts});

hybridopts must exist before you set options.

See “Hybrid Scheme in the Genetic Algorithm” on page 5-130 for an example. See “When to Use a Hybrid Function” on page 5-161.

gamultiobj Hybrid Function

A hybrid function is another minimization function that runs after the multiobjective genetic algorithm terminates. You can specify the hybrid function `fgoalattain` in **Hybrid function** (HybridFcn) options.

In use as a multiobjective hybrid function, the solver does the following:

1. Compute the maximum and minimum of each objective function at the solutions. For objective \(j \) at solution \(k \), let
 \[
 F_{\text{max}}(j) = \max_k F_k(j)
 \]
 \[
 F_{\text{min}}(j) = \min_k F_k(j).
 \]

2. Compute the total weight at each solution \(k \),
 \[
 w(k) = \sum_j \frac{F_{\text{max}}(j) - F_k(j)}{1 + F_{\text{max}}(j) - F_{\text{min}}(j)}.
 \]

3. Compute the weight for each objective function \(j \) at each solution \(k \),
 \[
 p(j,k) = w(k) \frac{F_{\text{max}}(j) - F_k(j)}{1 + F_{\text{max}}(j) - F_{\text{min}}(j)}.
 \]

4. For each solution \(k \), perform the goal attainment problem with goal vector \(F_k(j) \) and weight vector \(p(j,k) \).

For more information, see section 9.6 of Deb [3].

Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can specify the following options:
• **Generations** *(MaxGenerations)* — Specifies the maximum number of iterations for the genetic algorithm to perform. The default is $100 \times \text{number of variables}.$

• **Time limit** *(MaxTime)* — Specifies the maximum time in seconds the genetic algorithm runs before stopping, as measured by tic and toc. This limit is enforced after each iteration, so ga can exceed the limit when an iteration takes substantial time.

• **Fitness limit** *(FitnessLimit)* — The algorithm stops if the best fitness value is less than or equal to the value of **Fitness limit**. Does not apply to gamultiobj.

• **Stall generations** *(MaxStallGenerations)* — The algorithm stops if the average relative change in the best fitness function value over **Stall generations** is less than or equal to **Function tolerance**. (If the **Stall Test** *(StallTest)* option is 'geometricWeighted', then the test is for a geometric weighted average relative change.) For a problem with nonlinear constraints, **Stall generations** applies to the subproblem (see “Nonlinear Constraint Solver Algorithms” on page 5-72).

For gamultiobj, if the geometric average of the relative change in the spread of the Pareto solutions over **Stall generations** is less than **Function tolerance**, and the final spread is smaller than the average spread over the last **Stall generations**, then the algorithm stops. The geometric average coefficient is $\frac{1}{2}$. The spread is a measure of the movement of the Pareto front. See “gamultiobj Algorithm” on page 9-5.

• **Stall time limit** *(MaxStallTime)* — The algorithm stops if there is no improvement in the best fitness value for an interval of time in seconds specified by **Stall time limit**, as measured by tic and toc.

• **Function tolerance** *(FunctionTolerance)* — The algorithm stops if the average relative change in the best fitness function value over **Stall generations** is less than or equal to **Function tolerance**. (If the StallTest option is 'geometricWeighted', then the test is for a geometric weighted average relative change.)

For gamultiobj, if the geometric average of the relative change in the spread of the Pareto solutions over **Stall generations** is less than **Function tolerance**, and the final spread is smaller than the average spread over the last **Stall generations**, then the algorithm stops. The geometric average coefficient is $\frac{1}{2}$. The spread is a measure of the movement of the Pareto front. See “gamultiobj Algorithm” on page 9-5.

• **Constraint tolerance** *(ConstraintTolerance)* — The **Constraint tolerance** is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints. Also, $\max(\sqrt{\varepsilon}, \text{ConstraintTolerance})$ determines feasibility with respect to linear constraints.
See “Set Maximum Number of Generations” on page 5-136 for an example.

Output Function Options

Output functions are functions that the genetic algorithm calls at each generation. Unlike all other solvers, a `ga` output function can not only read the values of the state of the algorithm, but can modify those values.

To specify the output function using the Optimization app,

- Select **Custom function**.
- Enter `@myfun` in the text box, where `myfun` is the name of your function. Write `myfun` with appropriate syntax on page 11-58.
- To pass extra parameters in the output function, use “Anonymous Functions” (Optimization Toolbox).
- For multiple output functions, enter a cell array of output function handles: `{@myfun1,@myfun2,...}`.

At the command line, set

```matlab
options = optimoptions('ga','OutputFcn',@myfun);
```

For multiple output functions, enter a cell array of function handles:

```matlab
options = optimoptions('ga','OutputFcn',{@myfun1,@myfun2,...});
```

To see a template that you can use to write your own output functions, enter `edit gaoutputfcntemplate` at the MATLAB command line.

For an example, see “Custom Output Function for Genetic Algorithm” on page 5-146.

Structure of the Output Function

Your output function must have the following calling syntax:

```matlab
[state,options,optchanged] = myfun(options,state,flag)
```

MATLAB passes the `options`, `state`, and `flag` data to your output function, and the output function returns `state`, `options`, and `optchanged` data.
Note To stop the iterations, set `state.StopFlag` to a nonempty character vector, such as 'y'.

The output function has the following input arguments:

- `options` — Options
- `flag` — Current status of the algorithm:
 - 'init' — Initialization state
 - 'iter' — Iteration state
 - 'interrupt' — Iteration of a subproblem of a nonlinearly constrained problem for the 'auglag' nonlinear constraint algorithm. When `flag` is 'interrupt':
 - The values of `state` fields apply to the subproblem iterations.
 - `ga` does not accept changes in `options`, and ignores `optchanged`.
 - The `state.NonlinIneq` and `state.NonlinEq` fields are not available.
 - 'done' — Final state

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the function.

The output function returns the following arguments to `ga`:

- `state` — Structure containing information about the current generation. “The State Structure” on page 11-36 describes the fields of `state`. To stop the iterations, set `state.StopFlag` to a nonempty character vector, such as 'y'.
- `options` — Options as modified by the output function. This argument is optional.
- `optchanged` — Boolean flag indicating changes to `options`. To change `options` for subsequent iterations, set `optchanged` to true.

Changing the State Structure

Caution Changing the state structure carelessly can lead to inconsistent or erroneous results. Usually, you can achieve the same or better state modifications by using mutation or crossover functions, instead of changing the state structure in a plot function or output function.
ga output functions can change the state structure (see “The State Structure” on page 11-36). Be careful when changing values in this structure, as you can pass inconsistent data back to ga.

Tip If your output structure changes the Population field, then be sure to update the Score field, and possibly the Best, NonlinIneq, or NonlinEq fields, so that they contain consistent information.

To update the Score field after changing the Population field, first calculate the fitness function values of the population, then calculate the fitness scaling for the population. See “Fitness Scaling Options” on page 11-41.

Display to Command Window Options

Level of display ('Display') specifies how much information is displayed at the command line while the genetic algorithm is running. The available options are

- **Off ('off')** — No output is displayed.
- **Iterative ('iter')** — Information is displayed at each iteration.
- **Diagnose ('diagnose')** — Information is displayed at each iteration. In addition, the diagnostic lists some problem information and the options that have been changed from the defaults.
- **Final ('final')** — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

- **Generation** — Generation number
- **f-count** — Cumulative number of fitness function evaluations
- **Best f(x)** — Best fitness function value
- **Mean f(x)** — Mean fitness function value
- **Stall generations** — Number of generations since the last improvement of the fitness function

When a nonlinear constraint function has been specified, Iterative and Diagnose do not display the **Mean f(x)**, but will additionally display:

- **Max Constraint** — Maximum nonlinear constraint violation
The default value of **Level of display** is

- **Off** in the Optimization app
- **'final'** in options created using `optimoptions`

Vectorize and Parallel Options (User Function Evaluation)

You can choose to have your fitness and constraint functions evaluated in serial, parallel, or in a vectorized fashion. These options are available in the **User function evaluation** section of the **Options** pane of the Optimization app, or by setting the `UseVectorized` and `UseParallel` options with `optimoptions`.

- **When Evaluate fitness and constraint functions** (`'UseVectorized'`) is **in serial** (**false**), `ga` calls the fitness function on one individual at a time as it loops through the population. (At the command line, this assumes `'UseParallel'` is at its default value of **false**.)

- **When Evaluate fitness and constraint functions** (`'UseVectorized'`) is **vectorized** (**true**), `ga` calls the fitness function on the entire population at once, i.e., in a single call to the fitness function.

If there are nonlinear constraints, the fitness function and the nonlinear constraints all need to be vectorized in order for the algorithm to compute in a vectorized manner.

See “Vectorize the Fitness Function” on page 5-139 for an example.

- **When Evaluate fitness and constraint functions** (`UseParallel`) is **in parallel** (**true**), `ga` calls the fitness function in parallel, using the parallel environment you established (see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14). At the command line, set `UseParallel` to **false** to compute serially.

Note You cannot simultaneously use vectorized and parallel computations. If you set `'UseParallel'` to **true** and `'UseVectorized'` to **true**, `ga` evaluates your fitness and constraint functions in a vectorized manner, not in parallel.
How Fitness and Constraint Functions Are Evaluated

<table>
<thead>
<tr>
<th></th>
<th>UseVectorized = false</th>
<th>UseVectorized = true</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel = false</td>
<td>Serial</td>
<td>Vectorized</td>
</tr>
<tr>
<td>UseParallel = true</td>
<td>Parallel</td>
<td>Vectorized</td>
</tr>
</tbody>
</table>
Particle Swarm Options

In this section...

“Specifying Options for particleswarm” on page 11-63
“Swarm Creation” on page 11-63
“Display Settings” on page 11-64
“Algorithm Settings” on page 11-65
“Hybrid Function” on page 11-66
“Output Function and Plot Function” on page 11-67
“Parallel or Vectorized Function Evaluation” on page 11-69
“Stopping Criteria” on page 11-69

Specifying Options for particleswarm

Create options using the `optimoptions` function as follows.

```matlab
options = optimoptions('particleswarm','Param1',value1,'Param2',value2,...);
```

For an example, see “Optimize Using Particle Swarm” on page 6-3.

Each option in this section is listed by its field name in `options`. For example, `Display` refers to the corresponding field of `options`.

Swarm Creation

By default, `particleswarm` calls the `pswcreationuniform` swarm creation function. This function works as follows.

1. If an `InitialSwarmMatrix` option exists, `pswcreationuniform` takes the first `SwarmSize` rows of the `InitialSwarmMatrix` matrix as the swarm. If the number of rows of the `InitialSwarmMatrix` matrix is smaller than `SwarmSize`, then `pswcreationuniform` continues to the next step.

2. `pswcreationuniform` creates enough particles so that there are `SwarmSize` in total. `pswcreationuniform` creates particles that are randomly, uniformly distributed. The range for any swarm component is `-InitialSwarmSpan/2,InitialSwarmSpan/2`, shifted and scaled if necessary to match any bounds.
After creation, `particleswarm` checks that all particles satisfy any bounds, and truncates components if necessary. If the Display option is 'iter' and a particle needed truncation, then `particleswarm` notifies you.

Custom Creation Function

Set a custom creation function using `optimoptions` to set the `CreationFcn` option to `@customcreation`, where `customcreation` is the name of your creation function file. A custom creation function has this syntax.

```matlab
swarm = customcreation(problem)
```

The creation function should return a matrix of size `SwarmSize-by-nvars`, where each row represents the location of one particle. See `problem` for details of the problem structure. In particular, you can obtain `SwarmSize` from `problem.options.SwarmSize`, and `nvars` from `problem.nvars`.

For an example of a creation function, see the code for `pswcreationuniform`.

```matlab
edit pswcreationuniform
```

Display Settings

The Display option specifies how much information is displayed at the command line while the algorithm is running.

- 'off' or 'none' — No output is displayed.
- 'iter' — Information is displayed at each iteration.
- 'final' (default) — The reason for stopping is displayed.

`iter` displays:

- **Iteration** — Iteration number
- f-count — Cumulative number of objective function evaluations
- Best f(x) — Best objective function value
- Mean f(x) — Mean objective function value over all particles
- Stall Iterations — Number of iterations since the last change in Best f(x)

The `DisplayInterval` option sets the number of iterations that are performed before the iterative display updates. Give a positive integer.
Algorithm Settings

The details of the particleswarm algorithm appear in “Particle Swarm Optimization Algorithm” on page 6-10. This section describes the tuning parameters.

The main step in the particle swarm algorithm is the generation of new velocities for the swarm:

For u_1 and u_2 uniformly (0,1) distributed random vectors of length $nvars$, update the velocity

$$v = W \cdot v + y_1 \cdot u_1 \cdot (p-x) + y_2 \cdot u_2 \cdot (g-x).$$

The variables $W = \text{inertia}$, $y_1 = \text{SelfAdjustmentWeight}$, and $y_2 = \text{SocialAdjustmentWeight}$.

This update uses a weighted sum of:

- The previous velocity v
- $x-p$, the difference between the current position x and the best position p the particle has seen
- $x-g$, the difference between the current position x and the best position g in the current neighborhood

Based on this formula, the options have the following effect:

- Larger absolute value of inertia W leads to the new velocity being more in the same line as the old, and with a larger absolute magnitude. A large absolute value of W can destabilize the swarm. The value of W stays within the range of the two-element vector InertiaRange.
- Larger values of $y_1 = \text{SelfAdjustmentWeight}$ make the particle head more toward the best place it has visited.
- Larger values of $y_2 = \text{SocialAdjustmentWeight}$ make the particle head more toward the best place in the current neighborhood.

Large values of inertia, SelfAdjustmentWeight, or SocialAdjustmentWeight can destabilize the swarm.

The MinNeighborsFraction option sets both the initial neighborhood size for each particle, and the minimum neighborhood size; see “Particle Swarm Optimization
Setting MinNeighborsFraction to 1 has all members of the swarm use the global minimum point as their societal adjustment target.

See “Optimize Using Particle Swarm” on page 6-3 for an example that sets a few of these tuning options.

Hybrid Function

A hybrid function is another minimization function that runs after the particle swarm algorithm terminates. You can specify a hybrid function in the HybridFcn option. The choices are

- [] — No hybrid function.
- 'fminsearch' — Use the MATLAB function fminsearch to perform unconstrained minimization.
- 'patternsearch' — Use a pattern search to perform constrained or unconstrained minimization.
- 'fminunc' — Use the Optimization Toolbox function fminunc to perform unconstrained minimization.
- 'fmincon' — Use the Optimization Toolbox function fmincon to perform constrained minimization.

Note Ensure that your hybrid function accepts your problem constraints. Otherwise, particleswarm throws an error.

You can set separate options for the hybrid function. Use optimset for fminsearch, or optimoptions for fmincon, patternsearch, or fminunc. For example:

```matlab
hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
```

Include the hybrid options in the particleswarm options as follows:

```matlab
options = optimoptions(options,'HybridFcn',{@fminunc,hybridopts});
```

Hybridopts must exist before you set options.

For an example that uses a hybrid function, see “Optimize Using Particle Swarm” on page 6-3. See “When to Use a Hybrid Function” on page 5-161.
Output Function and Plot Function

Output functions are functions that `particleswarm` calls at each iteration. Output functions can halt `particleswarm`, or can perform other tasks. To specify an output function,

```
options = optimoptions(@particleswarm,'OutputFcn',@outfun)
```

where `outfun` is a function with syntax specified in “Structure of the Output Function or Plot Function” on page 11-67. If you have several output functions, pass them as a cell array of function handles:

```
options = optimoptions(@particleswarm,'OutputFcn',{@outfun1,@outfun2,@outfun3})
```

Similarly, plot functions are functions that `particleswarm` calls at each iteration. The difference between an output function and a plot function is that a plot function has built-in plotting enhancements, such as buttons that appear on the plot window to pause or stop `particleswarm`. The lone built-in plot function `pswplotbestf` plots the best objective function value against iterations. To specify it,

```
options = optimoptions(@particleswarm,'PlotFcn','pswplotbestf')
```

To create a custom plot function, write a function with syntax specified in “Structure of the Output Function or Plot Function” on page 11-67. To specify a custom plot function, use a function handle. If you have several plot functions, pass them as a cell array of function handles:

```
options = optimoptions(@particleswarm,'PlotFcn',{@plotfun1,@plotfun2,@plotfun3})
```

For an example of a custom output function, see “Particle Swarm Output Function” on page 6-6.

Structure of the Output Function or Plot Function

An output function has the following calling syntax:

```
stop = myfun(optimValues,state)
```

If your function sets `stop` to `true`, iterations end. Set `stop` to `false` to have `particleswarm` continue to calculate.

The function has the following input arguments:
• **optimValues** — Structure containing information about the swarm in the current iteration. Details are in “optimValues Structure” on page 11-68.

• **state** — String giving the state of the current iteration.

 • 'init' — The solver has not begun to iterate. Your output function or plot function can use this state to open files, or set up data structures or plots for subsequent iterations.

 • 'iter' — The solver is proceeding with its iterations. Typically, this is where your output function or plot function performs its work.

 • 'done' — The solver reached a stopping criterion. Your output function or plot function can use this state to clean up, such as closing any files it opened.

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to output functions or plot functions.

optimValues Structure

`particleswarm` passes the `optimValues` structure to your output functions or plot functions. The `optimValues` structure has the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>funccount</code></td>
<td>Total number of objective function evaluations.</td>
</tr>
<tr>
<td><code>bestx</code></td>
<td>Best solution point found, corresponding to the best objective function value <code>bestfval</code>.</td>
</tr>
<tr>
<td><code>bestfval</code></td>
<td>Best (lowest) objective function value found.</td>
</tr>
<tr>
<td><code>iteration</code></td>
<td>Iteration number.</td>
</tr>
<tr>
<td><code>meanfval</code></td>
<td>Mean objective function among all particles at the current iteration.</td>
</tr>
<tr>
<td><code>stalliterations</code></td>
<td>Number of iterations since the last change in <code>bestfval</code>.</td>
</tr>
<tr>
<td><code>swarm</code></td>
<td>Matrix containing the particle positions. Each row contains the position of one particle, and the number of rows is equal to the swarm size.</td>
</tr>
<tr>
<td><code>swarmfvals</code></td>
<td>Vector containing the objective function values of particles in the swarm. For particle <code>i</code>, <code>swarmfvals(i) = fun(swarm(i,:), where </code>fun` is the objective function.</td>
</tr>
</tbody>
</table>
Parallel or Vectorized Function Evaluation

For increased speed, you can set your options so that `particleswarm` evaluates the objective function for the swarm in parallel or in a vectorized fashion. You can use only one of these options. If you set `UseParallel` to `true` and `UseVectorized` to `true`, then the computations are done in a vectorized fashion, and not in parallel.

- “Parallel particleswarm” on page 11-69
- “Vectorized particleswarm” on page 11-69

Parallel particleswarm

If you have a Parallel Computing Toolbox license, you can distribute the evaluation of the objective functions to the swarm among your processors or cores. Set the `UseParallel` option to `true`.

Parallel computation is likely to be faster than serial when your objective function is computationally expensive, or when you have many particles and processors. Otherwise, communication overhead can cause parallel computation to be slower than serial computation.

For details, see “Parallel Computing”.

Vectorized particleswarm

If your objective function can evaluate all the particles at once, you can usually save time by setting the `UseVectorized` option to `true`. Your objective function should accept an M-by-N matrix, where each row represents one particle, and return an M-by-1 vector of objective function values. This option works the same way as the `patternsearch` and `ga UseVectorized` options. For `patternsearch` details, see “Vectorize the Objective and Constraint Functions” on page 4-111.

Stopping Criteria

`particleswarm` stops iterating when any of the following occur.
<table>
<thead>
<tr>
<th>Stopping Option</th>
<th>Stopping Test</th>
<th>Exit Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxStallIterations and</td>
<td>Relative change in the best function value g over the last MaxStallIterations iterations is less than FunctionTolerance.</td>
<td>1</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxIterations</td>
<td>Number of iterations reaches MaxIterations.</td>
<td>0</td>
</tr>
<tr>
<td>OutputFcn or PlotFcn</td>
<td>OutputFcn or PlotFcn can halt the iterations.</td>
<td>-1</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Best objective function value g is less than or equal to ObjectiveLimit.</td>
<td>-3</td>
</tr>
<tr>
<td>MaxStallTime</td>
<td>Best objective function value g did not change in the last MaxStallTime seconds.</td>
<td>-4</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Function run time exceeds MaxTime seconds.</td>
<td>-5</td>
</tr>
</tbody>
</table>

Also, if you set the FunValCheck option to 'on', and the swarm has particles with NaN, Inf, or complex objective function values, particleswarm stops and issues an error.
Surrogate Optimization Options

Algorithm Control

To control the surrogate optimization algorithm, use the following options.

- **InitialPoints** — Specify initial points in one of two ways.
 - Matrix — Each row of the matrix represents an initial point. The length of each row is the same as the number of elements in the bounds `lb` or `ub`. The number of rows is arbitrary. `surrogateopt` uses all the rows to construct the initial surrogate. If there are fewer than `MinSurrogatePoints` rows, then `surrogateopt` generates the remaining initial points. `surrogateopt` evaluates the objective function at each initial point.
 - Structure — The structure contains the field `X` and, optionally, the field `Fval`. The `X` field contains a matrix where each row represents an initial point. The `Fval` field contains a vector representing the objective function values at each point in `X`. Passing `Fval` saves time for the solver.

- **MinSurrogatePoints** — Number of initial points used for constructing the surrogate. Larger values lead to a more accurate finished surrogate, but take more time to finish the surrogate. `surrogateopt` creates this number of random points after each switch to the random generation phase. See “Surrogate Optimization Algorithm” on page 7-4.

- **MinSampleDistance** — This option controls two aspects of the algorithm.
 - During the phase to estimate the minimum value of the surrogate, the algorithm generates random points at which to evaluate the surrogate. If any of these points are closer than `MinSampleDistance` to any previous point whose objective function value was evaluated, then `surrogateopt` discards the newly generated points and does not evaluate them.
 - If `surrogateopt` discards all of the random points, then it does not try to minimize the surrogate and, instead, switches to the random generation phase. If the `surrogateoptplot` plot function is running, then it marks this switch with a blue vertical line.

For details, see “Surrogate Optimization Algorithm” on page 7-4.
Stopping Criteria

Generally, the algorithm stops only when it reaches a limit that you set. There are three limits that you can set using **optimoptions**. Additionally, a plot function or output function can halt the solver.

<table>
<thead>
<tr>
<th>Stopping Option</th>
<th>Stopping Test</th>
<th>Exit Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxFunctionEvaluations</td>
<td>The solver stops after it completes <code>MaxFunctionEvaluations</code> function evaluations. When computing in parallel, the solver stops all workers after a worker returns with the final function evaluation, leaving some computations incomplete and unused.</td>
<td>0</td>
</tr>
<tr>
<td>MaxTime</td>
<td>The solver stops after it reaches <code>MaxTime</code> seconds from the start of the optimization, as measured by <code>tic</code> / <code>toc</code>. The solver does not interrupt a function evaluation in progress, so the actual compute time can exceed <code>MaxTime</code>.</td>
<td>0</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>The solver stops if it obtains an objective function value less than or equal to <code>ObjectiveLimit</code>.</td>
<td>1</td>
</tr>
<tr>
<td>OutputFcn or PlotFcn</td>
<td>An <code>OutputFcn</code> or <code>PlotFcn</code> can halt the iterations.</td>
<td>-1</td>
</tr>
<tr>
<td>Bounds lb and ub</td>
<td>If an entry in <code>lb</code> exceeds the corresponding entry in <code>ub</code>, the solver stops because the bounds are inconsistent.</td>
<td>-2</td>
</tr>
</tbody>
</table>

Command-Line Display

Set the `Display` option to control what `surrogateopt` returns to the command line.

- `'final'` — Return only the exit message. This is the default behavior.
- `'iter'` — Return iterative display.
• 'off' or the equivalent 'none' — No command-line display.

With an iterative display, the solver returns the following information in table format.

• F-count — Number of function evaluations
• Time(s) — Time in seconds since the solver started
• Best Fval — Lowest objective function value obtained
• Current Fval — Latest objective function value

Output Function

An output function can halt the solver or perform a computation at each iteration. To include an output function, set the OutputFcn option to @myoutputfcn, where myoutputfcn is a function with the syntax described in the next paragraph. This syntax is the same as for Optimization Toolbox output functions, but with different meanings of the x and optimValues arguments. For information about those output functions, see “Output Function Syntax” (Optimization Toolbox). For an example of an output function with this syntax, see “Output Functions” (Optimization Toolbox).

The syntax of an output function is:

\[
\text{stop} = \text{outfun}(x, \text{optimValues}, \text{state})
\]

surrogateopt passes the values of x, optimValues, and state to the output function (outfun, in this case) at each iteration. The output function returns stop, a Boolean value (true or false) indicating whether to stop surrogateopt.

• x — The input argument x is the best point found so far, meaning the point with the lowest objective function value.
• optimValues — This input argument is a structure containing the following fields. For more information about these fields, see “Surrogate Optimization Algorithm” on page 7-4.
optimValues Structure

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentFlag</td>
<td>How the current point was created.</td>
</tr>
<tr>
<td></td>
<td>• 'initial' — Initial point passed in options.InitialPoints</td>
</tr>
<tr>
<td></td>
<td>• 'random' — Random sample within the bounds</td>
</tr>
<tr>
<td></td>
<td>• 'adaptive' — Result of the solver trying to minimize the surrogate</td>
</tr>
<tr>
<td>currentFval</td>
<td>Objective function value at the current point</td>
</tr>
<tr>
<td>currentX</td>
<td>Current point</td>
</tr>
<tr>
<td>elapsedtime</td>
<td>Time in seconds since the solver started</td>
</tr>
<tr>
<td>flag</td>
<td>How the best point was created</td>
</tr>
<tr>
<td></td>
<td>• 'initial' — Initial point passed in options.InitialPoints</td>
</tr>
<tr>
<td></td>
<td>• 'random' — Random sample within the bounds</td>
</tr>
<tr>
<td></td>
<td>• 'adaptive' — Result of the solver trying to minimize the surrogate</td>
</tr>
<tr>
<td>funccount</td>
<td>Total number of objective function evaluations</td>
</tr>
<tr>
<td>fval</td>
<td>Lowest objective function value encountered</td>
</tr>
<tr>
<td>incumbentFlag</td>
<td>How the incumbent point was created.</td>
</tr>
<tr>
<td></td>
<td>• 'initial' — Initial point passed in options.InitialPoints</td>
</tr>
<tr>
<td></td>
<td>• 'random' — Random sample within the bounds</td>
</tr>
<tr>
<td></td>
<td>• 'adaptive' — Result of the solver trying to minimize the surrogate</td>
</tr>
<tr>
<td>incumbentFval</td>
<td>Objective function value at the incumbent point.</td>
</tr>
<tr>
<td>incumbentX</td>
<td>Incumbent point, meaning the best point found since the last phase shift to random sampling</td>
</tr>
<tr>
<td>iteration</td>
<td>Same as funccount; allows surrogateopt to use the same plot functions as some other solvers</td>
</tr>
<tr>
<td>Field Name</td>
<td>Contents</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>surrogateReset</td>
<td>Boolean value indicating that the current iteration resets the model and switches to random sampling</td>
</tr>
<tr>
<td>surrogateResetCount</td>
<td>Total number of times that surrogateReset is true</td>
</tr>
</tbody>
</table>

- **state** — This input argument is the state of the algorithm, specified as one of these values.
 - 'init' — The algorithm is in the initial state before the first iteration. When the algorithm is in this state, you can set up plot axes or other data structures or open files.
 - 'iter' — The algorithm just evaluated the objective function. You perform most calculations and view most displays when the algorithm is in this state.
 - 'done' — The algorithm performed its final objective function evaluation. When the algorithm is in this state, you can close files, finish plots, or prepare in other ways for surrogateopt to stop.

Plot Function

A plot function displays information at each iteration. You can pause or halt the solver by clicking buttons on the plot. To include a plot function, set the PlotFcn option to a function handle or cell array of function handles to plot functions. The three built-in plot functions are:

- @optimplotfval (default) — Shows the best function value. If you do not choose a plot function, surrogateopt uses @optimplotfval.
- @optimplotx — Shows the best point found as a bar plot.
- @surrogateoptplot — Shows the current objective function value, best function value, and information about the algorithm phase. See “Interpret surrogateoptplot” on page 7-28.

You can write a custom plot function using the syntax of an “Output Function” on page 11-73. For an example, examine the code for @surrogateoptplot by entering type surrogateoptplot at the MATLAB command line.
Parallel Computing

If you set the 'UseParallel' option to true, surrogateopt computes in parallel. Computing in parallel requires a Parallel Computing Toolbox license. For details, see “Surrogate Optimization Algorithm” on page 7-4.

Checkpoint File

When you set the name of a checkpoint file using the CheckpointFile option, surrogateopt writes data to the file after each iteration, which enables the function to resume the optimization from the current state. When restarting, surrogateopt does not evaluate the objective function value at previously evaluated points.

A checkpoint file can be a file path such as "C:\Documents\MATLAB\check1" or a file name such as 'checkpoint1June2019'. A checkpoint file optionally can include the .mat file extension, as in 'checkpoint1June2019.mat'. If you specify a file name without a path, surrogateopt saves the checkpoint file in the current folder.

You can change only the following options when resuming the optimization:

- CheckpointFile
- Display
- MaxFunctionEvaluations
- MaxTime
- MinSurrogatePoints
- ObjectiveLimit
- OutputFcn
- PlotFcn
- UseParallel

To resume the optimization from a checkpoint file, call surrogateopt with the file name as the first argument.

[x,fval,exitflag,output] = surrogateopt('check1')

To resume the optimization using new options, include the new options as the second argument.
opts = optimoptions(options,'MaxFunctionEvaluations',500);
[x,fval,exitflag,output] = surrogateopt('check1',opts)

During the restart, surrogateopt runs any output functions and plot functions, based on the original function evaluations. So, for example, you can create a different plot based on an optimization that already ran. See “Work with Checkpoint Files” on page 7-64.

Note surrogateopt does not save all details of the state in the checkpoint file. Therefore, subsequent iterations can differ from the iterations that the solver takes without stopping at the checkpointed state.

Note Checkpointing takes time. This overhead is especially noticeable for functions that otherwise take little time to evaluate.

See Also
surrogateopt

More About
- “Surrogate Optimization”
- “Surrogate Optimization Algorithm” on page 7-4
Simulated Annealing Options

In this section...

“Set Simulated Annealing Options at the Command Line” on page 11-78
“Plot Options” on page 11-78
“Temperature Options” on page 11-80
“Algorithm Settings” on page 11-81
“Hybrid Function Options” on page 11-82
“Stopping Criteria Options” on page 11-83
“Output Function Options” on page 11-84
“Display Options” on page 11-85

Set Simulated Annealing Options at the Command Line

Specify options by creating an options object using the optimoptions function as follows:

```matlab
options = optimoptions(@simulannealbnd,'Param1',value1,'Param2',value2,...);
```

Each option in this section is listed by its field name in options. For example, InitialTemperature refers to the corresponding field of options.

Plot Options

Plot options enable you to plot data from the simulated annealing solver while it is running.

PlotInterval specifies the number of iterations between consecutive calls to the plot function.

To display a plot when calling simulannealbnd from the command line, set the PlotFcn field of options to be a built-in plot function name or handle to the plot function. You can specify any of the following plots:

- 'saplotbestf' plots the best objective function value.
- 'saplotbestx' plots the current best point.
• 'saplotf' plots the current function value.
• 'saplotx' plots the current point.
• 'saplotstopping' plots stopping criteria levels.
• 'saplottemperature' plots the temperature at each iteration.
• @myfun plots a custom plot function, where myfun is the name of your function. See “Structure of the Plot Functions” on page 11-11 for a description of the syntax.

For example, to display the best objective plot, set options as follows:

options = optimoptions(@simulannealbnd,'PlotFcns',{'saplotbestf'});

To display multiple plots, use the cell array syntax:

options = optimoptions(@simulannealbnd,'PlotFcns',{@plotfun1,@plotfun2,...});

where @plotfun1, @plotfun2, and so on are function handles to the plot functions.

If you specify more than one plot function, all plots appear as subplots in the same window. Right-click any subplot to obtain a larger version in a separate figure window.

Structure of the Plot Functions

The first line of a plot function has the form:

```matlab
function stop = plotfun(options,optimvalues,flag)
```

The input arguments to the function are:

• **options** — Options created using `optimoptions`.
• **optimvalues** — Structure containing information about the current state of the solver. The structure contains the following fields:
 - **x** — Current point
 - **fval** — Objective function value at x
 - **bestx** — Best point found so far
 - **bestfval** — Objective function value at best point
 - **temperature** — Current temperature
 - **iteration** — Current iteration
 - **funccount** — Number of function evaluations
• \(t0 \) — Start time for algorithm
• \(k \) — Annealing parameter
• \(\text{flag} \) — Current state in which the plot function is called. The possible values for \(\text{flag} \) are
 • 'init' — Initialization state
 • 'iter' — Iteration state
 • 'done' — Final state

The output argument \(\text{stop} \) provides a way to stop the algorithm at the current iteration. \(\text{stop} \) can have the following values:

• \(\text{false} \) — The algorithm continues to the next iteration.
• \(\text{true} \) — The algorithm terminates at the current iteration.

Temperature Options

Temperature options specify how the temperature will be lowered at each iteration over the course of the algorithm.

• \(\text{InitialTemperature} \) — Initial temperature at the start of the algorithm. The default is 100. The initial temperature can be a vector with the same length as \(x \), the vector of unknowns. \text{simulannealbnd} expands a scalar initial temperature into a vector.
• \(\text{TemperatureFcn} \) — Function used to update the temperature schedule. Let \(k \) denote the annealing parameter. (The annealing parameter is the same as the iteration number until reannealing.) The options are:
 • 'temperatureexp' — The temperature is equal to \(\text{InitialTemperature} \times 0.95^k \). This is the default.
 • 'temperaturefast' — The temperature is equal to \(\text{InitialTemperature} / k \).
 • 'temperatureboltz' — The temperature is equal to \(\text{InitialTemperature} / \ln(k) \).
 • @myfun — Uses a custom function, \(\text{myfun} \), to update temperature. The syntax is:
 \[
 \text{temperature} = \text{myfun}(ext{optimValues},\text{options})
 \]
 where \(\text{optimValues} \) is a structure described in “Structure of the Plot Functions” on page 11-79. \(\text{options} \) is either created with \(\text{optimoptions} \), or consists of default options, if you did not create any options. Both the annealing parameter
optimValues.k and the temperature optimValues.temperature are vectors with length equal to the number of elements of the current point x. For example, the function temperaturefast is:

\[
\text{temperature} = \text{options.InitialTemperature} / \text{optimValues.k};
\]

Algorithm Settings

Algorithm settings define algorithmic specific parameters used in generating new points at each iteration.

Parameters that can be specified for `simulannealbnd` are:

- **DataType** — Type of data to use in the objective function. Choices:
 - `'double'` (default) — A vector of type `double`.
 - `'custom'` — Any other data type. You must provide a `'custom'` annealing function. You cannot use a hybrid function.

- **AnnealingFcn** — Function used to generate new points for the next iteration. The choices are:
 - `'annealingfast'` — The step has length temperature, with direction uniformly at random. This is the default.
 - `'annealingboltz'` — The step has length square root of temperature, with direction uniformly at random.
 - `@myfun` — Uses a custom annealing algorithm, `myfun`. The syntax is:

\[
\text{newx} = \text{myfun(optimValues,problem)}
\]

where `optimValues` is a structure described in “Structure of the Output Function” on page 11-84, and `problem` is a structure containing the following information:

- **objective**: function handle to the objective function
- **x0**: the start point
- **nvar**: number of decision variables
- **lb**: lower bound on decision variables
- **ub**: upper bound on decision variables

For example, the current position is `optimValues.x`, and the current objective function value is `problem.objective(optimValues.x)`.
You can write a custom objective function by modifying the `saannealingfcntemplate.m` file. To keep all iterates within bounds, have your custom annealing function call `sahonorbounds` as the final command.

- **ReannealInterval** — Number of points accepted before reannealing. The default value is 100.
- **AcceptanceFcn** — Function used to determine whether a new point is accepted or not. The choices are:
 - 'acceptancesa' — Simulated annealing acceptance function, the default. If the new objective function value is less than the old, the new point is always accepted. Otherwise, the new point is accepted at random with a probability depending on the difference in objective function values and on the current temperature. The acceptance probability is

\[
\frac{1}{1 + \exp\left(\frac{\Delta}{\max(T)}\right)},
\]

where \(\Delta = \text{new objective} - \text{old objective}\), and \(T\) is the current temperature. Since both \(\Delta\) and \(T\) are positive, the probability of acceptance is between 0 and 1/2. Smaller temperature leads to smaller acceptance probability. Also, larger \(\Delta\) leads to smaller acceptance probability.

- @myfun — A custom acceptance function, myfun. The syntax is:

  ```matlab
  acceptpoint = myfun(optimValues,newx,newfval);
  ```

 where `optimValues` is a structure described in “Structure of the Output Function” on page 11-84, `newx` is the point being evaluated for acceptance, and `newfval` is the objective function at `newx`. `acceptpoint` is a Boolean, with value `true` to accept `newx`, and `false` to reject `newx`.

Hybrid Function Options

A hybrid function is another minimization function that runs during or at the end of iterations of the solver. `HybridInterval` specifies the interval (if not never or end) at which the hybrid function is called. You can specify a hybrid function using the `HybridFcn` option. The choices are:

- [] — No hybrid function.
- 'fminsearch' — Uses the MATLAB function `fminsearch` to perform unconstrained minimization.
• 'patternsearch' — Uses `patternsearch` to perform constrained or unconstrained minimization.
• 'fminunc' — Uses the Optimization Toolbox function `fminunc` to perform unconstrained minimization.
• 'fmincon' — Uses the Optimization Toolbox function `fmincon` to perform constrained minimization.

Note Ensure that your hybrid function accepts your problem constraints. Otherwise, `simulannealbnd` throws an error.

You can set separate options for the hybrid function. Use `optimset` for `fminsearch`, or `optimoptions` for `fmincon`, `patternsearch`, or `fminunc`. For example:

```matlab
hybridopts = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');
```

Include the hybrid options in the `simulannealbnd` options as follows:

```matlab
options = optimoptions(@simulannealbnd,options,'HybridFcn',{@fminunc,hybridopts});
```

`hybridopts` must exist before you set `options`.

See “Hybrid Scheme in the Genetic Algorithm” on page 5-130 for an example. See “When to Use a Hybrid Function” on page 5-161.

Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can specify the following options:

- **FunctionTolerance** — The algorithm runs until the average change in value of the objective function in `StallIterLim` iterations is less than `FunctionTolerance`. The default value is `1e-6`.
- **MaxIterations** — The algorithm stops if the number of iterations exceeds this maximum number of iterations. You can specify the maximum number of iterations as a positive integer or `Inf`. Inf is the default.
- **MaxFunctionEvaluations** specifies the maximum number of evaluations of the objective function. The algorithm stops if the number of function evaluations exceeds the maximum number of function evaluations. The allowed maximum is `3000*numberofvariables`.
- **MaxTime** specifies the maximum time in seconds the algorithm runs before stopping.
- **ObjectiveLimit** — The algorithm stops if the best objective function value is less than or equal to the value of **ObjectiveLimit**.

Output Function Options

Output functions are functions that the algorithm calls at each iteration. The default value is to have no output function, []. You must first create an output function using the syntax described in “Structure of the Output Function” on page 11-84.

Using the Optimization app:

- Specify **Output function** as @myfun, where myfun is the name of your function.
- To pass extra parameters in the output function, use “Anonymous Functions” (Optimization Toolbox).
- For multiple output functions, enter a cell array of output function handles:
 {@myfun1,@myfun2,...}.

At the command line:

- `options = optimoptions(@simulannealbnd,'OutputFcn',@myfun);`
- For multiple output functions, enter a cell array of function handles:
 `options = optimoptions(@simulannealbnd,'OutputFcn',{@myfun1,@myfun2,...});`

To see a template that you can use to write your own output functions, enter `edit saoutputfcntemplate` at the MATLAB command line.

Structure of the Output Function

The output function has the following calling syntax.

`[stop,options,optchanged] = myfun(options,optimvalues,flag)`

The function has the following input arguments:

- **options** — Options created using **optimoptions**.
- **optimvalues** — Structure containing information about the current state of the solver. The structure contains the following fields:
• \(x \) — Current point
• \(fval \) — Objective function value at \(x \)
• \(bestx \) — Best point found so far
• \(bestfval \) — Objective function value at best point
• \(temperature \) — Current temperature, a vector the same length as \(x \)
• \(iteration \) — Current iteration
• \(funccount \) — Number of function evaluations
• \(t0 \) — Start time for algorithm
• \(k \) — Annealing parameter, a vector the same length as \(x \)
• \(flag \) — Current state in which the output function is called. The possible values for \(flag \) are
 - \('init' \) — Initialization state
 - \('iter' \) — Iteration state
 - \('done' \) — Final state

“Passing Extra Parameters” (Optimization Toolbox) explains how to provide additional parameters to the output function.

The output function returns the following arguments:

• \(stop \) — Provides a way to stop the algorithm at the current iteration. \(stop \) can have the following values:
 - \(false \) — The algorithm continues to the next iteration.
 - \(true \) — The algorithm terminates at the current iteration.
• \(options \) — Options as modified by the output function.
• \(optchanged \) — A Boolean flag indicating changes were made to \(options \). This must be set to \(true \) if options are changed.

Display Options

Use the \(\text{Display} \) option to specify how much information is displayed at the command line while the algorithm is running. The available options are

• \(\text{off} \) — No output is displayed. This is the default value for \(options \) exported from the Optimization app.
• **iter** — Information is displayed at each iteration.
• **diagnose** — Information is displayed at each iteration. In addition, the diagnostic lists some problem information and the options that have been changed from the defaults.
• **final** — The reason for stopping is displayed. This is the default for options created using `optimoptions`.

Both **iter** and **diagnose** display the following information:

• **Iteration** — Iteration number
• **f-count** — Cumulative number of objective function evaluations
• **Best f(x)** — Best objective function value
• **Current f(x)** — Current objective function value
• **Mean Temperature** — Mean temperature function value
Options Changes in R2016a

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Use optimoptions to Set Options” on page 11-87</td>
</tr>
<tr>
<td>“Options that optimoptions Hides” on page 11-87</td>
</tr>
<tr>
<td>“Table of Option Names in Legacy Order” on page 11-91</td>
</tr>
<tr>
<td>“Table of Option Names in Current Order” on page 11-93</td>
</tr>
</tbody>
</table>

Use optimoptions to Set Options

Before R2016a, you set options for some Global Optimization Toolbox solvers by using a dedicated option function:

- `gaoptimset` for `ga` and `gamultiobj`
- `psoptimset` for `patternsearch`
- `saoptimset` for `simulannealbnd`

Beginning in R2016a, the recommended way to set options is to use `optimoptions`. (You already set `particleswarm` options using `optimoptions`.)

Note GlobalSearch and MultiStart use a different mechanism for setting properties. See “GlobalSearch and MultiStart Properties (Options)” on page 11-2. Some of these property names changed as solver option names changed.

Some option names changed in R2016a. See “Table of Option Names in Legacy Order” on page 11-91.

`optimoptions` “hides” some options, meaning it does not display their values. `optimoptions` displays only current names, not legacy names. For details, see “View Options” (Optimization Toolbox).

Options that optimoptions Hides

`optimoptions` does not display some options. To view the setting of any such “hidden” option, use dot notation. For details, see “View Options” (Optimization Toolbox). These options are listed in *italics* in the options tables in the function reference pages.
Options that optimoptions Hides

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Solvers</th>
<th>Reason for Hiding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>With Cache set to 'on', <code>patternsearch</code> keeps a history of the mesh points it polls. At subsequent iterations, <code>patternsearch</code> does not poll points close to those it already polled. Use this option if <code>patternsearch</code> runs slowly while computing the objective function. If the objective function is stochastic, do not use this option.</td>
<td><code>patternsearch</code></td>
<td>Works poorly</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the history.</td>
<td><code>patternsearch</code></td>
<td>Works poorly</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Largest distance from the current mesh point to any point in the history in order for <code>patternsearch</code> to avoid polling the current point. Use if 'Cache' option is set to 'on'.</td>
<td><code>patternsearch</code></td>
<td>Works poorly</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Solvers</td>
<td>Reason for Hiding</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>DisplayInterval</td>
<td>Interval for iterative display. The iterative display prints one line for every DisplayInterval iterations.</td>
<td>particleswarm, simulannealbnd</td>
<td>Not generally useful</td>
</tr>
<tr>
<td>FunValCheck</td>
<td>Check whether objective function and constraints values are valid. 'on' displays an error when the objective function or constraints return a value that is complex, Inf, or NaN.</td>
<td>particleswarm</td>
<td>Not generally useful</td>
</tr>
<tr>
<td>HybridInterval</td>
<td>Interval (if not 'end' or 'never') at which HybridFcn is called.</td>
<td>simulannealbnd</td>
<td>Not generally useful</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of penalty parameter.</td>
<td>ga, patternsearch</td>
<td>Difficult to know how to set</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll or search step.</td>
<td>patternsearch</td>
<td>Not generally useful</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum.</td>
<td>patternsearch</td>
<td>Default value is best</td>
</tr>
<tr>
<td>MigrationDirection</td>
<td>Direction of migration — see “Migration Options” on page 11-51.</td>
<td>ga</td>
<td>Not useful</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Solvers</td>
<td>Reason for Hiding</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>MigrationFraction</td>
<td>Scalar between 0 and 1 specifying the fraction of individuals in each subpopulation that migrates to a different subpopulation — see “Migration Options” on page 11-51.</td>
<td>ga</td>
<td>Not useful</td>
</tr>
<tr>
<td>MigrationInterval</td>
<td>Positive integer specifying the number of generations that take place between migrations of individuals between subpopulations — see “Migration Options” on page 11-51</td>
<td>ga</td>
<td>Not useful</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter.</td>
<td>ga, patternsearch</td>
<td>Difficult to know how to set</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Positive integer specifying the number of generations between consecutive calls to the plot functions.</td>
<td>ga, patternsearch, simulannealbnd</td>
<td>Not useful</td>
</tr>
<tr>
<td>StallTest</td>
<td>String describing the stopping test.</td>
<td>ga</td>
<td>Default value is best</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance. See “Constraint Parameters” on page 11-23.</td>
<td>patternsearch</td>
<td>Default value is usually best</td>
</tr>
</tbody>
</table>
Table of Option Names in Legacy Order

These two tables have identical information. One is in alphabetical order by legacy option name, the other is in order by current option name. The tables show values only when the values differ between legacy and current, and show only the names that differ. For changes in Optimization Toolbox solvers, see “Current and Legacy Option Name Tables” (Optimization Toolbox).

* indicates GlobalSearch and MultiStart property names as well as solver option names.
Option Names in Legacy Order

<table>
<thead>
<tr>
<th>Legacy Name</th>
<th>Current Name</th>
<th>Legacy Values</th>
<th>Current Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompletePoll</td>
<td>UseCompletePoll</td>
<td>'on', 'off'</td>
<td>true, false</td>
</tr>
<tr>
<td>CompleteSearch</td>
<td>UseCompleteSearch</td>
<td>'on', 'off'</td>
<td>true, false</td>
</tr>
<tr>
<td>Generations</td>
<td>MaxGenerations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitialPopulation</td>
<td>InitialPopulationMatrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitialScores</td>
<td>InitialScoreMatrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitialSwarm</td>
<td>InitialSwarmMatrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxFunEvals</td>
<td>MaxFunctionEvaluations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxIter</td>
<td>MaxIterations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeshAccelerator</td>
<td>AccelerateMesh</td>
<td>'on', 'off'</td>
<td>true, false</td>
</tr>
<tr>
<td>MeshContraction</td>
<td>MeshContractionFactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeshExpansion</td>
<td>MeshExpansionFactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MinFractionNeighbors</td>
<td>MinNeighborsFraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NonlinConAlgorithm</td>
<td>NonlinearConstraintAlgorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* OutputFcns</td>
<td>* OutputFcn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* PlotFcns</td>
<td>* PlotFcn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PollingOrder</td>
<td>PollOrderAlgorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PopInitRange</td>
<td>InitialPopulationRange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SearchMethod</td>
<td>SearchFcn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legacy Name</td>
<td>Current Name</td>
<td>Legacy Values</td>
<td>Current Values</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SelfAdjustment</td>
<td>SelfAdjustmentWeight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SocialAdjustment</td>
<td>SocialAdjustmentWeight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StallGenLimit</td>
<td>MaxStallGenerations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StallIterLimit</td>
<td>MaxStallIterations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StallTimeLimit</td>
<td>MaxStallTime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeLimit</td>
<td>MaxTime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TolCon</td>
<td>ConstraintTolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*TolFun</td>
<td>*FunctionTolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TolMesh</td>
<td>MeshTolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*TolX</td>
<td>StepTolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*XTolerance for GlobalSearch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and MultiStart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vectorized</td>
<td>UseVectorized</td>
<td>'on', 'off'</td>
<td>true, false</td>
</tr>
</tbody>
</table>

Table of Option Names in Current Order

* indicates `GlobalSearch` and `MultiStart` property names as well as solver option names.
Option Names in Current Order

<table>
<thead>
<tr>
<th>Current Name</th>
<th>Legacy Name</th>
<th>Current Values</th>
<th>Legacy Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccelerateMesh</td>
<td>MeshAccelerator</td>
<td>true, false</td>
<td>'on', 'off'</td>
</tr>
<tr>
<td>ConstraintTolerance</td>
<td>TolCon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*FunctionTolerance</td>
<td>*TolFun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitialPopulationMatrix</td>
<td>InitialPopulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitialPopulationRange</td>
<td>PopInitRange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitialScoreMatrix</td>
<td>InitialScores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InitialSwarmMatrix</td>
<td>InitialSwarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxFunctionEvaluations</td>
<td>MaxFunEvals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxGenerations</td>
<td>Generations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxIterations</td>
<td>MaxIter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxStallGenerations</td>
<td>StallGenLimit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxStallIterations</td>
<td>StallIterLimit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxStallTime</td>
<td>StallTimeLimit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxTime</td>
<td>TimeLimit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeshContractionFactor</td>
<td>MeshContraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeshExpansionFactor</td>
<td>MeshExpansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeshTolerance</td>
<td>TolMesh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Name</td>
<td>Legacy Name</td>
<td>Current Values</td>
<td>Legacy Values</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>MinNeighborsFraction</td>
<td>MinFractionNeighbors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NonlinearConstraintAlgorithm</td>
<td>NonlinConAlgorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*OutputFcn</td>
<td>*OutputFcns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*PlotFcn</td>
<td>*PlotFcns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PollOrderAlgorithm</td>
<td>PollingOrder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SearchFcn</td>
<td>SearchMethod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SelfAdjustmentWeight</td>
<td>SelfAdjustment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SocialAdjustmentWeight</td>
<td>SocialAdjustment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StepTolerance</td>
<td>TolX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UseCompletePoll</td>
<td>CompletePoll</td>
<td>true, false</td>
<td>'on', 'off'</td>
</tr>
<tr>
<td>UseCompleteSearch</td>
<td>CompleteSearch</td>
<td>true, false</td>
<td>'on', 'off'</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Vectorized</td>
<td>true, false</td>
<td>'on', 'off'</td>
</tr>
<tr>
<td>*XTolerance</td>
<td>*TolX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Functions — Alphabetical List
createOptimProblem

Create optimization problem structure

Syntax

problem = createOptimProblem('solverName')
problem =
createOptimProblem('solverName','ParameterName',ParameterValue,...)

Description

problem = createOptimProblem('solverName') creates an empty optimization
problem structure for the solverName solver.

problem =
createOptimProblem('solverName','ParameterName',ParameterValue,...)
accepts one or more comma-separated parameter name/value pairs. Specify
ParameterName inside single quotes.

Input Arguments

solverName

Name of the solver. For a GlobalSearch problem, use 'fmincon'. For a MultiStart
problem, use 'fmincon','fminunc','lsqcurvefit' or 'lsqnonlin'.

Parameter Name/Value Pairs

Aeq

Matrix for linear equality constraints. The constraints have the form:
Aeq x = beq
Aineq

Matrix for linear inequality constraints. The constraints have the form:

\[A_{ineq} \, x \leq b_{ineq} \]

beq

Vector for linear equality constraints. The constraints have the form:

\[A_{eq} \, x = b_{eq} \]

bineq

Vector for linear inequality constraints. The constraints have the form:

\[A_{ineq} \, x \leq b_{ineq} \]

lb

Vector of lower bounds.

\(lb \) can also be an array; see “Matrix Arguments” (Optimization Toolbox).

nonlcon

Function handle to the nonlinear constraint function. The constraint function must accept a vector \(x \) and return two vectors: \(c \), the nonlinear inequality constraints, and \(ceq \), the nonlinear equality constraints. If one of these constraint functions is empty, \(\text{nonlcon} \) must return \([] \) for that function.

If the GradConstr option is ‘on’, then in addition \(\text{nonlcon} \) must return two additional outputs, \(\text{gradc} \) and \(\text{gradceq} \). The \(\text{gradc} \) parameter is a matrix with one column for the gradient of each constraint, as is \(\text{gradceq} \).

For more information, see “Write Constraints” on page 2-8.

objective

Function handle to the objective function. For all solvers except \(\text{lsqnonlin} \) and \(\text{lsqcurvefit} \), the objective function must accept a vector \(x \) and return a scalar. If the GradObj option is ‘on’, then the objective function must return a second output, a vector, representing the gradient of the objective. For \(\text{lsqnonlin} \), the objective function
must accept a vector \(x \) and return a vector. \texttt{lsqnonlin} sums the squares of the objective function values. For \texttt{lsqcurvefit}, the objective function must accept two inputs, \(x \) and \(xdata \), and return a vector.

For more information, see “Compute Objective Functions” on page 2-2.

\textbf{options}

Optimization options. Create options with \texttt{optimoptions}, or by exporting from the Optimization app (Optimization Toolbox).

\textbf{ub}

Vector of upper bounds.

\texttt{ub} can also be an array; see “Matrix Arguments” (Optimization Toolbox).

\textbf{x0}

A vector, a potential starting point for the optimization. Gives the dimensionality of the problem.

\(x0 \) can also be an array; see “Matrix Arguments” (Optimization Toolbox).

\textbf{xdata}

Vector of data points for \texttt{lsqcurvefit}.

\textbf{ydata}

Vector of data points for \texttt{lsqcurvefit}.

\textbf{Output Arguments}

\textbf{problem}

Optimization problem structure.
Examples

Create a problem structure using Rosenbrock's function as objective (see “Hybrid Scheme in the Genetic Algorithm” on page 5-130), the interior-point algorithm for fmincon, and bounds with absolute value 2:

```matlab
anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2);
opts = optimoptions(@fmincon,'Algorithm','interior-point');
problem = createOptimProblem('fmincon','x0',randn(2,1),...
    'objective',anonrosen,'lb',[-2;-2],'ub',[2;2],...
    'options',opts);
```

Alternatives

You can create a problem structure by exporting from the Optimization app (optimtool), as described in “Exporting from the Optimization app” on page 3-8.

See Also

GlobalSearch | MultiStart | optimtool

Topics

“Create Problem Structure” on page 3-5

Introduced in R2010a
CustomStartPointSet

Custom start points

Description

A CustomStartPointSet is an object wrapper of a matrix whose rows represent start points for MultiStart.

Creation

Syntax

tpoints = CustomStartPointSet(ptmatrix)

Description

tpoints = CustomStartPointSet(ptmatrix) generates a CustomStartPointSet object from the ptmatrix matrix. Each row of ptmatrix represents one start point.

Input Arguments

ptmatrix — Start points matrix

Start points, specified as a matrix. Each row of ptmatrix represents one start point.

Example: randn(40,3) creates 40 start points of 3 dimensions.

Data Types: double
Properties

NumStartPoints — Number of start points
positive integer

This property is read-only.

Number of start points, specified as a positive integer. NumStartPoints is the number of rows in ptmatrix.

Example: 40

Data Types: double

StartPointsDimension — Dimension of each start point
positive integer

This property is read-only.

Dimension of each start point, specified as a positive integer. StartPointsDimension is the number of columns in ptmatrix.

StartPointsDimension is the same as the number of elements in problem.x0, the problem structure you pass to run.

Example: 5

Data Types: double

Object Functions

list List start points

Examples

Create CustomStartPointSet

Create a CustomStartPointSet object with 64 three-dimensional points.
[x, y, z] = meshgrid(1:4);
ptmatrix = [x(:), y(:), z(:)] + [10, 20, 30];
tpoints = CustomStartPointSet(ptmatrix);

tpoints is the ptmatrix matrix contained in a CustomStartPointSet object.
Extract the original matrix from the tpoints object by using list.
tpts = list(tpoints);
Check that the tpts output is identical to ptmatrix.
isequal(ptmatrix, tpts)
an = logical
1

See Also
MultiStart | RandomStartPointSet | list

Topics
“CustomStartPointSet Object for Start Points” on page 3-18
“Workflow for GlobalSearch and MultiStart” on page 3-3

Introduced in R2010a
Find minimum of function using genetic algorithm

Syntax

\[
x = \text{ga}(\text{fun},\text{nvars})
\]
\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b})
\]
\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b},\text{Aeq},\text{beq})
\]
\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b},\text{Aeq},\text{beq},\text{lb},\text{ub})
\]
\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b},\text{Aeq},\text{beq},\text{lb},\text{ub},\text{nonlcon})
\]
\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b},\text{Aeq},\text{beq},\text{lb},\text{ub},\text{nonlcon},\text{options})
\]
\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b},[],[],\text{lb},\text{ub},\text{nonlcon},\text{IntCon})
\]
\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b},[],[],\text{lb},\text{ub},\text{nonlcon},\text{IntCon},\text{options})
\]
\[
x = \text{ga}(\text{problem})
\]
\[
[x,fval] = \text{ga}(__)
\]
\[
[x,fval,\text{exitflag},\text{output}] = \text{ga}(__)
\]
\[
[x,fval,\text{exitflag},\text{output},\text{population},\text{scores}] = \text{ga}(__)
\]

Description

\[
x = \text{ga}(\text{fun},\text{nvars}) \text{ finds a local unconstrained minimum, } x, \text{ to the objective function, fun. nvars is the dimension (number of design variables) of fun.}
\]

\textbf{Note} "Passing Extra Parameters" (Optimization Toolbox) explains how to pass extra parameters to the objective function and nonlinear constraint functions, if necessary.

\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b}) \text{ finds a local minimum } x \text{ to fun, subject to the linear inequalities } A*x \leq b. \text{ ga evaluates the matrix product } A*x \text{ as if } x \text{ is transposed } (A*x').
\]

\[
x = \text{ga}(\text{fun},\text{nvars},\text{A},\text{b},\text{Aeq},\text{beq}) \text{ finds a local minimum } x \text{ to fun, subject to the linear equalities } \text{Aeq}*x = \text{beq and A*x \leq b. (Set A=[] and b=[] if no linear inequalities exist.) ga evaluates the matrix product Aeq*x as if x is transposed (Aeq*x').}
\]
x = ga(fun,nvars,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design variables, x, so that a solution is found in the range lb ≤ x ≤ ub. (Set Aeq=[] and beq=[] if no linear equalities exist.)

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimization to the constraints defined in nonlcon. The function nonlcon accepts x and returns vectors C and Ceq representing the nonlinear inequalities and equalities respectively. ga minimizes the fun such that C(x) ≤ 0 and Ceq(x) = 0. (Set lb=[] and ub=[] if no bounds exist.)

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes with the default optimization parameters replaced by values in options. (Set nonlcon=[] if no nonlinear constraints exist.) Create options using optimoptions.

x = ga(fun,nvars,A,b,[],[],lb,ub,nonlcon,IntCon) or x = ga(fun,nvars,A,b,[],[],lb,ub,nonlcon,IntCon,options) requires that the variables listed in IntCon take integer values.

Note When there are integer constraints, ga does not accept linear or nonlinear equality constraints, only inequality constraints.

x = ga(problem) finds the minimum for problem, where problem is a structure.

[x,fval] = ga(__), for any previous input arguments, also returns fval, the value of the fitness function at x.

[x,fval,exitflag,output] = ga(__) also returns exitflag, an integer identifying the reason the algorithm terminated, and output, a structure that contains output from each generation and other information about the performance of the algorithm.

[x,fval,exitflag,output,population,scores] = ga(__) also returns a matrix population, whose rows are the final population, and a vector scores, the scores of the final population.

Examples
Optimize a Nonsmooth Function Using ga

The `ps_example.m` file ships with your software. Plot the function.

```matlab
xi = linspace(-6,2,300);
yi = linspace(-4,4,300);
[X,Y] = meshgrid(xi,yi);
Z = ps_example([X(:),Y(:)]);
Z = reshape(Z,size(X));
surf(X,Y,Z,'MeshStyle','none')
colormap 'jet'
view(-26,43)
xlabel('x(1)')
ylabel('x(2)')
title('ps_example(x)')
```
Find the minimum of this function using ga.

```matlab
rng default % For reproducibility
x = ga(@ps_example,2)
```

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

```
x = 1x2
    -4.6793    -0.0860
```
Minimize a Nonsmooth Function with Linear Constraints

Use the genetic algorithm to minimize the ps_example function on the region $x(1) + x(2) >= 1$ and $x(2) <= 5 + x(1)$.

First, convert the two inequality constraints to the matrix form $A*x <= b$. In other words, get the x variables on the left-hand side of the inequality, and make both inequalities less than or equal:

\[-x(1) - x(2) <= -1\]
\[-x(1) + x(2) <= 5\]

$A = \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}$;

$b = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$;

Solve the constrained problem using `ga`.

```matlab
rng default % For reproducibility
fun = @ps_example;
x = ga(fun,2,A,b)
```

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

```matlab
x = 1x2
 0.9993    0.0000
```

The constraints are satisfied to within the default value of the constraint tolerance, 1e-3. To see this, compute $A*x' - b$, which should have negative components.

```matlab
disp(A*x' - b)
```

```
0.0007
-5.9993
```

Minimize a Nonsmooth Function with Linear Equality and Inequality Constraints

Use the genetic algorithm to minimize the ps_example function on the region $x(1) + x(2) >= 1$ and $x(2) == 5 + x(1)$.
First, convert the two constraints to the matrix form $A \cdot x \leq b$ and $A_{eq} \cdot x = b_{eq}$. In other words, get the x variables on the left-hand side of the expressions, and make the inequality into less than or equal form:

$$-x(1) - x(2) \leq -1$$

$$-x(1) + x(2) = 5$$

$A = [-1 -1];$

$b = -1;$

$A_{eq} = [-1 1];$

$beq = 5;$

Solve the constrained problem using `ga`.

```matlab
rng default % For reproducibility
fun = @(ps_example)
    x = ga(fun,2,A,b,Aeq,beq)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1x2

   -2.0000    2.9990
```

Check that the constraints are satisfied to within the default value of `ConstraintTolerance`, $1e^{-3}$.

```matlab
disp(A*x' - b)
    1.0000e-03
disp(A_{eq}*x' - beq)
    -9.9997e-04
```

Optimize with Linear Constraints and Bounds

Use the genetic algorithm to minimize the `ps_example` function on the region $x(1) + x(2) \geq 1$ and $x(2) = 5 + x(1)$. In addition, set bounds $1 \leq x(1) \leq 6$ and $-3 \leq x(2) \leq 8$.
First, convert the two linear constraints to the matrix form \(Ax \leq b \) and \(Aeq x = beq \). In other words, get the \(x \) variables on the left-hand side of the expressions, and make the inequality into less than or equal form:

\[-x(1) - x(2) \leq -1\]
\[-x(1) + x(2) = 5\]

\[
A = \begin{bmatrix} -1 & -1 \end{bmatrix}; \\
b = -1;
\]
\[
Aeq = \begin{bmatrix} -1 & 1 \end{bmatrix}; \\
beq = 5;
\]

Set bounds \(lb \) and \(ub \).

\[
lb = \begin{bmatrix} 1 & -3 \end{bmatrix}; \\
ub = \begin{bmatrix} 6 & 8 \end{bmatrix};
\]

Solve the constrained problem using \texttt{ga}.

```
rng default % For reproducibility
fun = @ps_example;
x = ga(fun,2,A,b,Aeq,beq,lb,ub)
```

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

\[
x = 1x2
\]

\[
\begin{bmatrix} 1.0001 & 5.9992 \end{bmatrix}
\]

Check that the linear constraints are satisfied to within the default value of \texttt{ConstraintTolerance}, \(1e-3\).

```
disp(A*x' - b)

-5.9993

disp(Aeq*x' - beq)

-9.4902e-04
```
Optimize with Nonlinear Constraints Using ga

Use the genetic algorithm to minimize the ps_example function on the region $2x_1^2 + x_2^2 \leq 3$ and $(x_1 + 1)^2 = (x_2/2)^4$.

To do so, first write a function ellipsecons.m that returns the inequality constraint in the first output, c, and the equality constraint in the second output, ceq. Save the file ellipsecons.m to a folder on your MATLAB® path.

type ellipsecons

function [c,ceq] = ellipsecons(x)

c = 2*x(1)^2 + x(2)^2 - 3;
ceq = (x(1)+1)^2 - (x(2)/2)^4;

Include a function handle to ellipsecons as the nonlcon argument.

nonlcon = @ellipsecons;
fun = @ps_example;
rng default % For reproducibility
x = ga(fun,2,[],[],[],[],[],[],nonlcon)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance.

x = 1x2

-0.9766 0.0362

Check that the nonlinear constraints are satisfied at x. The constraints are satisfied when $c \leq 0$ and $ceq = 0$ to within the default value of ConstraintTolerance, 1e-3.

[c,ceq] = nonlcon(x)

c = -1.0911
ceq = 5.4645e-04
Minimize with Nondefault Options

Use the genetic algorithm to minimize the `ps_example` function on the region \(x(1) + x(2) \geq 1 \) and \(x(2) = 5 + x(1) \) using a constraint tolerance that is smaller than the default.

First, convert the two constraints to the matrix form \(A\mathbf{x} \leq \mathbf{b} \) and \(A_{eq}\mathbf{x} = \mathbf{beq} \). In other words, get the \(x \) variables on the left-hand side of the expressions, and make the inequality into less than or equal form:

\[
-x(1) - x(2) \leq -1 \\
-x(1) + x(2) = 5
\]

\[
A = \begin{bmatrix} -1 & -1 \end{bmatrix}; \\
b = -1; \\
A_{eq} = \begin{bmatrix} -1 & 1 \end{bmatrix}; \\
beq = 5;
\]

To obtain a more accurate solution, set a constraint tolerance of \(1e^{-6} \). And to monitor the solver progress, set a plot function.

\[
\text{options} = \text{optimoptions}('ga', 'ConstraintTolerance', 1e-6, 'PlotFcn', @gaplotbestf);
\]

Solve the minimization problem.

\[
\text{rng default} \quad \text{For reproducibility} \\
\text{fun} = \text{@ps_example}; \\
\text{x} = \text{ga}([\text{fun},2,A,b,A_{eq},beq,\text{[]}],[],[],[],\text{options})
\]
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

\[x = 1 \times 2 \]

\[-2.0000 \quad 3.0000\]

Check that the linear constraints are satisfied to within $1e-6$.

\[\text{disp}(A \times x' - b) \]

\[9.9986e-07 \]

\[\text{disp}(Aeq \times x' - beq) \]

\[-9.9565e-07 \]
Minimize a Nonlinear Function with Integer Constraints

Use the genetic algorithm to minimize the *ps_example* function subject to the constraint that \(x(1) \) is an integer.

```matlab
IntCon = 1;
rng default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
x = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,IntCon)
```

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

```
x = 1x2
    -5.0000   -0.0000
```

Obtain the Solution and Function Value

Use to genetic algorithm to minimize an integer-constrained nonlinear problem. Obtain both the location of the minimum and the minimum function value.

```matlab
IntCon = 1;
rng default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
```
nonlcon = [];
[x,fval] = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,IntCon)

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance.

x = 1×2
 -5.0000 -0.0000

fval = -1.9178

Compare this result to the solution of the problem with no constraints.

[x,fval] = ga(fun,2)

Optimization terminated: maximum number of generations exceeded.

x = 1×2
 -4.7121 0.0051

fval = -1.9949

Obtain Diagnostic Information

Use the genetic algorithm to minimize the ps_example function constrained to have \(x(1)\) integer-valued. To understand the reason the solver stopped and how `ga` searched for a minimum, obtain the `exitflag` and `output` results. Also, plot the minimum observed objective function value as the solver progresses.

IntCon = 1;
rng default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
options = optimoptions('ga','PlotFcns', @gaplotbestf);
[x,fval,exitflag,output] = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,IntCon,options)

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

x = 1x2
 -5.0000 -0.0000

fval = -1.9178

exitflag = 1
output = struct with fields:
 problemtype: 'integerconstraints'
 rngstate: [1x1 struct]
 generations: 96
 funccount: 3881
 message: 'Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance...
 maxconstraint: 0

Obtain Final Population and Scores

Use the genetic algorithm to minimize the ps_example function constrained to have x(1) integer-valued. Obtain all outputs, including the final population and vector of scores.

IntCon = 1;
rgn default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
[x,fval,exitflag,output,population,scores] = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,IntCon);

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance.

Examine the first 10 members of the final population and their corresponding scores. Notice that x(1) is integer-valued for all these population members. The integer ga algorithm generates only integer-feasible populations.

disp(population(1:10,:))

 -5.0000 -0.0000
 -5.0000 -0.0000
 -5.0000 0.0014
 -6.0000 0.0008
 -13.0000 -0.0124
 -10.0000 0.0011
disp(scores(1:10))

-1.9178
-1.9178
-1.9165
1.0008
64.0124
25.0011
-1.5126
2.5072
-1.5126
-1.9178
-1.9178

Input Arguments

fun — Objective function

function handle | function name

Objective function, specified as a function handle or function name. Write the objective function to accept a row vector of length `nvars` and return a scalar value.

When the 'UseVectorized' option is true, write `fun` to accept a `pop-by-nvars` matrix, where `pop` is the current population size. In this case, `fun` returns a vector the same length as `pop` containing the fitness function values. Ensure that `fun` does not assume any particular size for `pop`, since `ga` can pass a single member of a population even in a vectorized calculation.

Example: `fun = @(x)(x-[4,2]).^2`

Data Types: char | function_handle | string

nvars — Number of variables

positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length `nvars` to `fun`.

Example: 4
A — Linear inequality constraints

Data Types: double

A real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number of inequalities.

A encodes the M linear inequalities

\[A \times x \leq b, \]

where \(x \) is the column vector of \(N \) variables \(x(:) \), and \(b \) is a column vector with \(M \) elements.

For example, to specify

\[
\begin{align*}
 x_1 + 2x_2 & \leq 10 \\
 3x_1 + 4x_2 & \leq 20 \\
 5x_1 + 6x_2 & \leq 30,
\end{align*}
\]

give these constraints:

\[
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix};
\]

\[
b = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix};
\]

Example: To specify that the control variables sum to 1 or less, give the constraints \(A = \text{ones}(1,N) \) and \(b = 1 \).

Data Types: double

b — Linear inequality constraints

Data Types: double

A real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:).

b encodes the M linear inequalities

\[A \times x \leq b, \]

where \(x \) is the column vector of \(N \) variables \(x(:) \), and A is a matrix of size M-by-N.
For example, to specify
\[
\begin{align*}
 x_1 + 2x_2 & \leq 10 \\
 3x_1 + 4x_2 & \leq 20 \\
 5x_1 + 6x_2 & \leq 30,
\end{align*}
\]
give these constraints:

\[
A = \begin{bmatrix} 1 & 2 & 3; 4 & 5 & 6 \end{bmatrix};
b = \begin{bmatrix} 10; 20; 30 \end{bmatrix};
\]
Example: To specify that the control variables sum to 1 or less, give the constraints \[A = \text{ones}(1,N)\] and \[b = 1\].

Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-nvars matrix, where Me is the number of equalities.

Aeq encodes the Me linear equalities

\[
Aeq \cdot x \quad = \quad b_{eq},
\]
where \(x\) is the column vector of N variables \(x(:)\), and beq is a column vector with Me elements.

For example, to specify
\[
\begin{align*}
 x_1 + 2x_2 + 3x_3 & = 10 \\
 2x_1 + 4x_2 + x_3 & = 20,
\end{align*}
\]
give these constraints:

\[
Aeq = \begin{bmatrix} 1 & 2 & 3; 2 & 4 & 1 \end{bmatrix};
b_{eq} = \begin{bmatrix} 10; 20 \end{bmatrix};
\]
Example: To specify that the control variables sum to 1, give the constraints \(Aeq = \text{ones}(1,N)\) and \(b_{eq} = 1\).

Data Types: double
beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).

beq encodes the Me linear equalities

\[A_{eq} \cdot x = beq, \]

where \(x \) is the column vector of N variables \(x(:) \), and Aeq is a matrix of size Meq-by-N.

For example, to specify

\[
\begin{align*}
 x_1 & + 2x_2 & + 3x_3 & = 10 \\
 2x_1 & + 4x_2 & + x_3 & = 20,
\end{align*}
\]

give these constraints:

```plaintext
Aeq = [1,2,3;2,4,1];  
beq = [10;20];
```

Example: To specify that the control variables sum to 1, give the constraints \(A_{eq} = \text{ones}(1,N) \) and \(beq = 1 \).

Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a real vector or array of doubles. lb represents the lower bounds element-wise in \(lb \leq x \leq ub \).

Internally, ga converts an array lb to the vector lb(:).

Example: \(lb = [0;-Inf;4] \) means \(x(1) \geq 0, x(3) \geq 4 \).

Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a real vector or array of doubles. ub represents the upper bounds element-wise in \(lb \leq x \leq ub \).
Internally, `ga` converts an array `ub` to the vector `ub(:)`.

Example: `ub = [\text{Inf};4;10]` means $x(2) \leq 4, x(3) \leq 10$.

Data Types: `double`

nonlcon — Nonlinear constraints

function handle | function name

Nonlinear constraints, specified as a function handle or function name. `nonlcon` is a function that accepts a vector or array `x` and returns two arrays, `c(x)` and `ceq(x)`.

- `c(x)` is the array of nonlinear inequality constraints at `x`. `ga` attempts to satisfy

 \[c(x) \leq 0 \]

 for all entries of `c`.

- `ceq(x)` is the array of nonlinear equality constraints at `x`. `ga` attempts to satisfy

 \[ceq(x) = 0 \]

 for all entries of `ceq`.

For example,

\[
\begin{align*}
x &= \text{ga}(@\text{myfun},4,A,b,Aeq,beq,lb,ub,@\text{mycon})
\end{align*}
\]

where `mycon` is a MATLAB function such as

```matlab
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.
```

For more information, see “Nonlinear Constraints” (Optimization Toolbox).

To learn how to use vectorized constraints, see “Vectorized Constraints” on page 2-9.

Note `ga` does not enforce nonlinear constraints to be satisfied when the `PopulationType` option is set to 'bitString' or 'custom'.

If `IntCon` is not empty, the second output of `nonlcon` (`ceq`) must be an empty entry (`[]`).

For information on how `ga` uses `nonlcon`, see “Nonlinear Constraint Solver Algorithms” on page 5-72.
Data Types: char | function_handle | string

options — Optimization options
output of optimoptions | structure

Optimization options, specified as the output of optimoptions or a structure.

Create options by using optimoptions (recommended) or by exporting options from the Optimization app. For details, see “Importing and Exporting Your Work” (Optimization Toolbox).

optimoptions hides the options listed in *italics*. See “Options that optimoptions Hides” on page 11-87.

- Values in {} denote the default value.
- {}* represents the default when there are linear constraints, and for MutationFcn also when there are bounds.
- I* indicates that ga handles options for integer constraints differently; this notation does not apply to gamultiobj.
- NM indicates that the option does not apply to gamultiobj.
Options for ga, Integer ga, and gamultiobj

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstraintTolerance</td>
<td>Determines the feasibility with respect to nonlinear constraints. Also, (\text{max}(\sqrt{\text{eps}}, \text{ConstraintTolerance})) determines feasibility with respect to linear constraints. For an options structure, use TolCon.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CreationFcn</td>
<td>* Function that creates the initial population. Specify as a name of a built-in creation function or a function handle. See “Population Options” on page 11-38.</td>
<td>{'gacreationuniform'}</td>
</tr>
<tr>
<td>CrossoverFcn</td>
<td>* Function that the algorithm uses to create crossover children. Specify as a name of a built-in crossover function or a function handle. See “Crossover Options” on page 11-48.</td>
<td>{'crossoverscattered'}</td>
</tr>
<tr>
<td>CrossoverFraction</td>
<td>The fraction of the population at the next generation, not including elite children, that the crossover function creates.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display.</td>
<td>'off'</td>
</tr>
</tbody>
</table>

12-29
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
</table>
| DistanceMeasureFcn | Function that computes distance measure of individuals. Specify as a name of a built-in distance measure function or a function handle. The value applies to decision variable or design space (genotype) or to function space (phenotype). The default 'distancecrowding' is in function space (phenotype). For gamultiobj only. See “Multiobjective Options” on page 11-54. For an options structure, use a function handle, not a name. | {'distancecrowding' } means the same as {@distancecrowding,'phenotype'} |}
| EliteCount | **NM** Positive integer specifying how many individuals in the current generation are guaranteed to survive to the next generation. Not used in gamultiobj. | Positive integer |}
| FitnessLimit | **NM** If the fitness function attains the value of FitnessLimit, the algorithm halts. | Scalar | {-Inf} |
| FitnessScalingFcn | Function that scales the values of the fitness function. Specify as a name of a built-in scaling function or a function handle. Option unavailable for gamultiobj. | {'fitscalingrank'} |}
| | | 'fitscalingshiftlinear' |}
| | | 'fitscalingprop' |}
| | | 'fitscalingtop' |}
<p>| | | Custom fitness scaling function on page 11-41 |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>FunctionTolerance</td>
<td>The algorithm stops if the average relative change in the best fitness function value over MaxStallGenerations generations is less than or equal to FunctionTolerance. If StallTest is 'geometricWeighted', then the algorithm stops if the weighted average relative change is less than or equal to FunctionTolerance. For gamultiobj, the algorithm stops when the geometric average of the relative change in value of the spread over options.MaxStallGenerations generations is less than options.FunctionTolerance, and the final spread is less than the mean spread over the past options.MaxStallGenerations generations. See “gamultiobj Algorithm” on page 9-5. For an options structure, use TolFun.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>HybridFcn</td>
<td>I* Function that continues the optimization after ga terminates. Specify as a name or a function handle. Alternatively, a cell array specifying the hybrid function and its options. See “ga Hybrid Function” on page 11-55. For gamultiobj, the only hybrid function is @goalattain. See “gamultiobj Hybrid Function” on page 11-56. See “When to Use a Hybrid Function” on page 5-161.</td>
<td>Function name or handle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 1-by-2 cell array</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>NM I* Initial value of penalty parameter</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>InitialPopulationMatrix</td>
<td>Initial population used to seed the genetic algorithm. Has up to PopulationSize rows and N columns, where N is the number of variables. You can pass a partial population, meaning one with fewer than PopulationSize rows. In that case, the genetic algorithm uses CreationFcn to generate the remaining population members. See “Population Options” on page 11-38. For an options structure, use InitialPopulation.</td>
<td>Matrix</td>
</tr>
<tr>
<td>InitialPopulationRange</td>
<td>Matrix or vector specifying the range of the individuals in the initial population. Applies to gacreationuniform creation function. ga shifts and scales the default initial range to match any finite bounds. For an options structure, use PopInitRange.</td>
<td>Matrix or vector</td>
</tr>
<tr>
<td>InitialScoresMatrix</td>
<td>Initial scores used to determine fitness. Has up to PopulationSize rows and has Nf columns, where Nf is the number of fitness functions (1 for ga, greater than 1 for gamultiobj). You can pass a partial scores matrix, meaning one with fewer than PopulationSize rows. In that case, the solver fills in the scores when it evaluates the fitness functions. For an options structure, use InitialScores.</td>
<td>Column vector for single objective</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>MaxGenerations</td>
<td>Maximum number of iterations before the algorithm halts. For an options structure, use Generations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxStallGenerations</td>
<td>The algorithm stops if the average relative change in the best fitness function value over MaxStallGenerations generations is less than or equal to FunctionTolerance. If StallTest is 'geometricWeighted', then the algorithm stops if the weighted average relative change is less than or equal to FunctionTolerance. For gamultiobj, the algorithm stops when the geometric average of the relative change in value of the spread over options.MaxStallGenerations generations is less than options.FunctionTolerance, and the final spread is less than the mean spread over the past options.MaxStallGenerations generations. See “gamultiobj Algorithm” on page 9-5. For an options structure, use StallGenLimit.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxStallTime</td>
<td>NM The algorithm stops if there is no improvement in the objective function for MaxStallTime seconds, as measured by tic and toc. For an options structure, use StallTimeLimit.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MaxTime</td>
<td>The algorithm stops after running after MaxTime seconds, as measured by tic and toc. This limit is enforced after each iteration, so ga can exceed the limit when an iteration takes substantial time. For an options structure, use TimeLimit.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MigrationDirection</td>
<td>Direction of migration. See “Migration Options” on page 11-51</td>
<td>'both'</td>
</tr>
<tr>
<td>MigrationFraction</td>
<td>Scalar from 0 through 1 specifying the fraction of individuals in each subpopulation that migrates to a different subpopulation. See “Migration Options” on page 11-51</td>
<td>Scalar</td>
</tr>
<tr>
<td>MigrationInterval</td>
<td>Positive integer specifying the number of generations that take place between migrations of individuals between subpopulations. See “Migration Options” on page 11-51.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MutationFcn</td>
<td>Function that produces mutation children. Specify as a name of a built-in mutation function or a function handle. See “Mutation Options” on page 11-45.</td>
<td>{'mutationgaussian'} for ga, {'mutationadaptfeasible'}* for gamultiobj</td>
</tr>
<tr>
<td>NonlinearConstraintAlgorithm</td>
<td>Nonlinear constraint algorithm. See “Nonlinear Constraint Solver Algorithms” on page 5-72. Option unchangeable for gamultiobj. For an options structure, use NonlinConAlgorithm.</td>
<td>{'auglag'} for ga, {'penalty'} for gamultiobj</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Functions that <code>ga</code> calls at each iteration. Specify as a function handle or a cell array of function handles. See “Output Function Options” on page 11-58.</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use <code>OutputFcns</code>.</td>
<td></td>
</tr>
<tr>
<td>ParetoFraction</td>
<td>Scalar from 0 through 1 specifying the fraction of individuals to keep on the first Pareto front while the solver selects individuals from higher fronts, for <code>gamultiobj</code> only. See “Multiobjective Options” on page 11-54.</td>
<td>Scalar</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td><code>NM I*</code> Penalty update parameter.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Function that plots data computed by the algorithm. Specify as a name of a built-in plot function, a function handle, or a cell array of built-in names or function handles. See “Plot Options” on page 11-34.</td>
<td><code>ga</code> or <code>gamultiobj</code>: <code>{[]}</code></td>
</tr>
<tr>
<td></td>
<td>For an options structure, use <code>PlotFcns</code>.</td>
<td><code>ga</code> only: `'gaplotbestf'</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>gamultiobj</code> only: `gaplotpareto'</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Positive integer specifying the number of generations between consecutive calls to the plot functions.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>PopulationSize</td>
<td>Size of the population.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>PopulationType</td>
<td>Data type of the population. Must be 'doubleVector' for mixed integer problems.</td>
<td>'bitstring'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ga ignores all constraints when PopulationType is set to 'bitString' or 'custom'. See “Population Options” on page 11-38.</td>
</tr>
<tr>
<td>SelectionFcn</td>
<td>Function that selects parents of crossover and mutation children. Specify as a name of a built-in selection function or a function handle.</td>
<td>{'selectionstochunif'} for ga, {'selectiontournament'} for gamultiobj</td>
</tr>
<tr>
<td>StallTest</td>
<td>Stopping test type.</td>
<td>'geometricWeighted'</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute fitness and nonlinear constraint functions in parallel. See “Vectorize and Parallel Options (User Function Evaluation)” on page 11-61 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
<td>true</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Specifies whether functions are vectorized. See “Vectorize and Parallel Options (User Function Evaluation)” on page 11-61 and “Vectorize the Fitness Function” on page 5-139. For an options structure, use Vectorized with the values 'on' or 'off'.</td>
<td>true</td>
</tr>
</tbody>
</table>

Example: `optimoptions('ga','PlotFcn',@gaplotbestf)`

IntCon — Integer variables

vector of positive integers

Integer variables, specified as a vector of positive integers taking values from 1 to `nvars`. Each value in `IntCon` represents an `x` component that is integer-valued.

Note When `IntCon` is nonempty, `Aeq` and `beq` must be an empty entry ([[]]), and `nonlcon` must return empty for `ceq`. For more information on integer programming, see “Mixed Integer Optimization” on page 5-50.

Example: To specify that the even entries in `x` are integer-valued, set `IntCon` to `2:2:nvars`

Data Types: double

problem — Problem description

structure

Problem description, specified as a structure containing these fields.

<table>
<thead>
<tr>
<th>field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitnessfcn</td>
<td>Fitness functions</td>
</tr>
<tr>
<td>nvars</td>
<td>Number of design variables</td>
</tr>
<tr>
<td>Aineq</td>
<td>A matrix for linear inequality constraints</td>
</tr>
<tr>
<td>Bineq</td>
<td>b vector for linear inequality constraints</td>
</tr>
<tr>
<td>Aeq</td>
<td>Aeq matrix for linear equality constraints</td>
</tr>
</tbody>
</table>
Beq | beq vector for linear equality constraints
lb | Lower bound on x
ub | Upper bound on x
nonlcon | Nonlinear constraint function
rngstate | Optional field to reset the state of the random number generator
solver | 'ga'
options | Options created using optimoptions or exported from the Optimization app

Create problem by exporting a problem from the Optimization app, as described in “Importing and Exporting Your Work” (Optimization Toolbox).

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. x is the best point that ga located during its iterations.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason ga stopped
integer

Reason that ga stopped, returned as an integer.
<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Without nonlinear constraints — Average cumulative change in value of the fitness function over MaxStallGenerations generations is less than <code>FunctionTolerance</code>, and the constraint violation is less than <code>ConstraintTolerance</code>.</td>
</tr>
<tr>
<td>2</td>
<td>With nonlinear constraints — Magnitude of the complementarity measure (see “Complementarity Measure” on page 12-40) is less than <code>sqrt(ConstraintTolerance)</code>, the subproblem is solved using a tolerance less than <code>FunctionTolerance</code>, and the constraint violation is less than <code>ConstraintTolerance</code>.</td>
</tr>
<tr>
<td>3</td>
<td>Value of the fitness function did not change in MaxStallGenerations generations and the constraint violation is less than <code>ConstraintTolerance</code>.</td>
</tr>
<tr>
<td>4</td>
<td>Magnitude of step smaller than machine precision and the constraint violation is less than <code>ConstraintTolerance</code>.</td>
</tr>
<tr>
<td>5</td>
<td>Minimum fitness limit <code>FitnessLimit</code> reached and the constraint violation is less than <code>ConstraintTolerance</code>.</td>
</tr>
<tr>
<td>0</td>
<td>Maximum number of generations MaxGenerations exceeded.</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization terminated by an output function or plot function.</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point found.</td>
</tr>
<tr>
<td>-4</td>
<td>Stall time limit <code>MaxStallTime</code> exceeded.</td>
</tr>
<tr>
<td>-5</td>
<td>Time limit <code>MaxTime</code> exceeded.</td>
</tr>
</tbody>
</table>

When there are integer constraints, ga uses the penalty fitness value instead of the fitness value for stopping criteria.

output — Information about the optimization process

Information about the optimization process, returned as a structure with these fields:

- **problemttype** — Problem type, one of:
 - 'unconstrained'
 - 'boundconstraints'
 - 'linearconstraints'
• 'nonlinearconstr'
• 'integerconstraints'
• rngstate — State of the MATLAB random number generator, just before the algorithm started. You can use the values in rngstate to reproduce the output of ga. See “Reproduce Results” on page 5-92.
• generations — Number of generations computed.
• funccount — Number of evaluations of the fitness function.
• message — Reason the algorithm terminated.
• maxconstraint — Maximum constraint violation, if any.

population — Final population
matrix
Final population, returned as a PopulationSize-by-nvars matrix. The rows of population are the individuals.

scores — Final scores
column vector
Final scores, returned as a column vector.

• For non-integer problems, the final scores are the fitness function values of the rows of population.
• For integer problems, the final scores are the penalty fitness values of the population members. See “Integer ga Algorithm” on page 5-59.

Definitions

Complementarity Measure

In the Augmented Lagrangian nonlinear constraint solver, the complementarity measure is the norm of the vector whose elements are \(c_i \lambda_i \), where \(c_i \) is the nonlinear inequality constraint violation, and \(\lambda_i \) is the corresponding Lagrange multiplier. See “Augmented Lagrangian Genetic Algorithm” on page 5-72.
Tips

- To write a function with additional parameters to the independent variables that can be called by `ga`, see “Passing Extra Parameters” (Optimization Toolbox).
- For problems that use the population type `Double Vector` (the default), `ga` does not accept functions whose inputs are of type `complex`. To solve problems involving complex data, write your functions so that they accept real vectors, by separating the real and imaginary parts.

Algorithms

For a description of the genetic algorithm, see “How the Genetic Algorithm Works” on page 5-18.

For a description of the mixed integer programming algorithm, see “Integer ga Algorithm” on page 5-59.

For a description of the nonlinear constraint algorithms, see “Nonlinear Constraint Solver Algorithms” on page 5-72.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also
gamultiobj | optimoptions | particleswarm | patternsearch

Topics
“Genetic Algorithm”
“Getting Started with Global Optimization Toolbox”
“Optimization Problem Setup”

Introduced before R2006a
gamultiobj

Find Pareto front of multiple fitness functions using genetic algorithm

Syntax

\[x = \text{gamultiobj}(\text{fun}, \text{nvars}) \]
\[x = \text{gamultiobj}(\text{fun}, \text{nvars}, A, b) \]
\[x = \text{gamultiobj}(\text{fun}, \text{nvars}, A, b, \text{Aeq}, \text{beq}) \]
\[x = \text{gamultiobj}(\text{fun}, \text{nvars}, A, b, \text{Aeq}, \text{beq}, \text{lb}, \text{ub}) \]
\[x = \text{gamultiobj}(\text{fun}, \text{nvars}, A, b, \text{Aeq}, \text{beq}, \text{lb}, \text{ub}, \text{nonlcon}) \]
\[x = \text{gamultiobj}(\text{fun}, \text{nvars}, A, b, \text{Aeq}, \text{beq}, \text{lb}, \text{ub}, \text{options}) \]
\[x = \text{gamultiobj}(\text{problem}) \]
\[[x, fval] = \text{gamultiobj}(___) \]
\[[x, fval, \text{exitflag}, \text{output}] = \text{gamultiobj}(__) \]
\[[x, fval, \text{exitflag}, \text{output}, \text{population}, \text{scores}] = \text{gamultiobj}(__) \]

Description

\[x = \text{gamultiobj}(\text{fun}, \text{nvars}) \] finds \(x\) on the “Pareto Front” on page 12-72 of the objective functions defined in \text{fun}. \text{nvars} is the dimension of the optimization problem (number of decision variables). The solution \(x\) is local, which means it might not be on the global Pareto front.

\underline{Note} “Passing Extra Parameters” (Optimization Toolbox) explains how to pass extra parameters to the objective function and nonlinear constraint functions, if necessary.

\[x = \text{gamultiobj}(\text{fun}, \text{nvars}, A, b) \] finds a local Pareto set \(x\) subject to the linear inequalities \(A \times x \leq b\). See “Linear Inequality Constraints” (Optimization Toolbox). \text{gamultiobj} supports linear constraints only for the default \text{PopulationType} option ('\text{doubleVector}').

\[x = \text{gamultiobj}(\text{fun}, \text{nvars}, A, b, \text{Aeq}, \text{beq}) \] finds a local Pareto set \(x\) subject to the linear equalities \(\text{Aeq} \times x = \text{beq}\) and the linear inequalities \(A \times x \leq b\), see “Linear Equality Constraints”.
Constraints” (Optimization Toolbox). (Set \(A = [] \) and \(b = [] \) if no inequalities exist.)
gamultiobj supports linear constraints only for the default PopulationType option
('doubleVector').

\[
x = \text{gamultiobj}(\text{fun,nvars,A,b,Aeq,beq,lb,ub})
\]
defines a set of lower and upper bounds on the design variables \(x \) so that a local Pareto set is
found in the range \(\text{lb} \leq x \leq \text{ub} \), see “Bound Constraints” (Optimization Toolbox). Use empty matrices for
\(\text{Aeq} \) and \(\text{beq} \) if no linear equality constraints exist. gamultiobj supports bound
constraints only for the default PopulationType option ('doubleVector').

\[
x = \text{gamultiobj}(\text{fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon})
\]
finds a Pareto set subject to the constraints defined in \(\text{nonlcon} \). The function \(\text{nonlcon} \) accepts \(x \) and
returns vectors \(c \) and \(\text{ceq} \), representing the nonlinear inequalities and equalities
respectively. gamultiobj minimizes \(\text{fun} \) such that \(c(x) \leq 0 \) and \(\text{ceq}(x) = 0 \). (Set
\(\text{lb} = [] \) and \(\text{ub} = [] \) if no bounds exist.) gamultiobj supports nonlinear constraints
only for the default PopulationType option ('doubleVector').

\[
x = \text{gamultiobj}(\text{fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options})
or \(x = \text{gamultiobj}(\text{fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options}) \)
\]
finds a Pareto set \(x \) with the default optimization parameters replaced by values in \(\text{options} \). Create \(\text{options} \) using
\text{optimoptions} (recommended) or by exporting from the Optimization app.

\[
x = \text{gamultiobj}(\text{problem})
\]
finds the Pareto set for \(\text{problem} \), where \(\text{problem} \) is a
structure. Create \(\text{problem} \) by exporting a problem from the Optimization app, as
described in “Importing and Exporting Your Work” (Optimization Toolbox).

\[
[x,fval] = \text{gamultiobj}(_)
\]
for any input variables, returns a matrix \(fval \), the
value of all the fitness functions defined in \(\text{fun} \) for all the solutions in \(x \). \(fval \) has \(nf \)
columns, where \(nf \) is the number of objectives, and has the same number of rows as \(x \).

\[
[x,fval,exitflag,output] = \text{gamultiobj}(_)
\]
returns \(\text{exitflag} \), an integer
identifying the reason the algorithm stopped, and \(\text{output} \), a structure that contains
information about the optimization process.

\[
[x,fval,exitflag,output,population,scores] = \text{gamultiobj}(_)
\]
returns \(\text{population} \), whose rows are the final population, and \(\text{scores} \), the scores of the final
population.

Examples
Simple Multiobjective Problem

Find the Pareto front for a simple multiobjective problem. There are two objectives and two decision variables \(x \).

\[
\text{fitnessfcn} = @(x)[\text{norm}(x)^2,0.5*\text{norm}(x(:)-[2;-1])^2+2];
\]

Find the Pareto front for this objective function.

```matlab
rng default % For reproducibility
x = gamultiobj(fitnessfcn,2);
```

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

Plot the solution points.

```matlab
plot(x(:,1),x(:,2),'ko')
xlabel('x(1)')
ylabel('x(2)')
title('Pareto Points in Parameter Space')
```
To see the effect of a linear constraint on this problem, see “Multiobjective Problem with Linear Constraint” on page 12-46.

Multiobjective Problem with Linear Constraint

This example shows how to find the Pareto front for a multiobjective problem in the presence of a linear constraint.

There are two objective functions and two decision variables x.

\[
\text{fitnessfcn} = @(x)[\text{norm}(x)^2, 0.5*\text{norm}(x:([2; -1]))^2+2];
\]
The linear constraint is \(x(1) + x(2) \leq \frac{1}{2} \).

\[
A = [1,1];
\]
\[
b = \frac{1}{2};
\]

Find the Pareto front.

```matlab
rng default % For reproducibility
x = gamultiobj(fitnessfcn,2,A,b);
```

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

Plot the constrained solution and the linear constraint.

```matlab
plot(x(:,1),x(:,2),'ko')
t = linspace(-1/2,2);
y = 1/2 - t;
hold on
plot(t,y,'b--')
xlabel('x(1)')
ylabel('x(2)')
title('Pareto Points in Parameter Space')
hold off
```
To see the effect of removing the linear constraint from this problem, see “Simple Multiobjective Problem” on page 12-44.

Multiobjective Optimization with Bound Constraints

Find the Pareto front for the two fitness functions $\sin(x)$ and $\cos(x)$ on the interval $0 \leq x \leq 2\pi$.

```matlab
fitnessfcn = @(x)[sin(x),cos(x)];
nvars = 1;
lb = 0;
```
ub = 2*pi;
rng default % for reproducibility
x = gamultiobj(fitnessfcn,nvars,[],[],[],[],lb,ub)

Optimization terminated: average change in the spread of Pareto solutions less than option.FunctionTolerance.

x = 18×1

4.7124
4.7124
3.1415
3.6733
3.9845
3.4582
3.9098
4.4409
4.0846
3.8686

Plot the solution. gamultiobj finds points along the entire Pareto front.

plot(sin(x),cos(x),'r*')
xlabel('sin(x)')
ylabel('cos(x)')
title('Pareto Front')
legend('Pareto front')
Disconnected Pareto Front

Find and plot the Pareto front for the two-objective Schaffer's second function. This function has a disconnected Pareto front.

Copy this code to a function file on your MATLAB® path.

```matlab
function y = schaffer2(x) % y has two columns
% Initialize y for two objectives and for all x
```
y = zeros(length(x),2);

% Evaluate first objective.
% This objective is piecewise continuous.
for i = 1:length(x)
 if x(i) <= 1
 y(i,1) = -x(i);
 elseif x(i) <= 3
 y(i,1) = x(i) -2;
 elseif x(i) <= 4
 y(i,1) = 4 - x(i);
 else
 y(i,1) = x(i) - 4;
 end
end

% Evaluate second objective
y(:,2) = (x -5).^2;

Plot the two objectives.

x = -1:0.1:8;
y = schaffer2(x);
plot(x,y(:,1), 'r', x,y(:,2), 'b');
xlabel 'x'
ylabel 'schaffer2(x)'
legend('Objective 1', 'Objective 2')
The two objective functions compete for x in the ranges $[1, 3]$ and $[4, 5]$. But, the Pareto-optimal front consists of only two disconnected regions, corresponding to the x in the ranges $[1, 2]$ and $[4, 5]$. There are disconnected regions because the region $[2, 3]$ is inferior to $[4, 5]$. In that range, objective 1 has the same values, but objective 2 is smaller.

Set bounds to keep population members in the range $-5 \leq x \leq 10$.

```matlab
lb = -5;
ub = 10;
```

Set options to view the Pareto front as `gamultiobj` runs.

```matlab
options = optimoptions('gamultiobj','PlotFcns',@gaplotpareto);
```
Call `gamultiobj`.

```matlab
rng default % For reproducibility
[x,fval,exitflag,output] = gamultiobj(@schaffer2,1,[],[],[],[],lb,ub,options);
```

Optimization terminated: maximum number of generations exceeded.

Obtain All Outputs from `gamultiobj`

Run a simple multiobjective problem and obtain all available outputs.

Set the random number generator for reproducibility.
rng default

Set the fitness functions to `kur_multiobjective`, a function that has three control variables and returns two fitness function values.

```matlab
global fitnessfcn nvars
fitnessfcn = @kur_multiobjective;
nvars = 3;
```

The `kur_multiobjective` function has the following code.

```matlab
function y = kur_multiobjective(x)
%KUR_MULTIOBJECTIVE Objective function for a multiobjective problem.
% The Pareto-optimal set for this two-objective problem is nonconvex as well as disconnected. The function KUR_MULTIOBJECTIVE computes two objectives and returns a vector y of size 2-by-1.
%
% Copyright 2007 The MathWorks, Inc.
%
% Initialize for two objectives
y = zeros(2,1);
% Compute first objective
for i = 1:2
   y(1) = y(1) - 10*exp(-0.2*sqrt(x(i)^2 + x(i+1)^2));
end
% Compute second objective
for i = 1:3
   y(2) = y(2) + abs(x(i))^0.8 + 5*sin(x(i)^3);
end
```

This function also appears in the example “Multiobjective Genetic Algorithm Options”.

Set lower and upper bounds on all variables.

```matlab
ub = [5 5 5];
lb = -ub;
```

Find the Pareto front and all other outputs for this problem.
[x,fval,exitflag,output,population,scores] = gamultiobj(fitnessfcn,nvars, ...
[],[],[],[],lb,ub);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

Examine the sizes of some of the returned variables.

sizex = size(x)
sizepopulation = size(population)
sizescores = size(scores)

sizex =
 18 3

sizepopulation =
 50 3

sizescores =
 50 2

The returned Pareto front contains 18 points. There are 50 members of the final population. Each population row has three dimensions, corresponding to the three decision variables. Each scores row has two dimensions, corresponding to the two fitness functions.

Input Arguments

fun — Fitness functions to optimize
function handle | function name

Fitness functions to optimize, specified as a function handle or function name.

fun is a function that accepts a real row vector of doubles x of length nvars and returns a real vector F(x) of objective function values. For details on writing fun, see “Compute Objective Functions” on page 2-2.
If you set the `UseVectorized` option to `true`, then `fun` accepts a matrix of size `n-by-nvars`, where the matrix represents `n` individuals. `fun` returns a matrix of size `n-by-m`, where `m` is the number of objective functions. See “Vectorize the Fitness Function” on page 5-139.

Example: `@(x)[
\sin(x),
\cos(x)
]`

Data Types: `char` | `function_handle` | `string`

nvars — Number of variables

positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length `nvars` to `fun`.

Example: `4`

Data Types: `double`

A — Linear inequality constraints

real matrix

Linear inequality constraints, specified as a real matrix. `A` is an `M-by-nvars` matrix, where `M` is the number of inequalities.

`A` encodes the `M` linear inequalities

\[A \times x \leq b, \]

where `x` is the column vector of `nvars` variables `x(:)`, and `b` is a column vector with `M` elements.

For example, give constraints `A = [1,2;3,4;5,6]` and `b = [10;20;30]` to specify these sums:

\[
\begin{align*}
 x_1 + 2x_2 & \leq 10 \\
 3x_1 + 4x_2 & \leq 20 \\
 5x_1 + 6x_2 & \leq 30.
\end{align*}
\]

Example: To set the sum of the x-components to 1 or less, take `A = \text{ones}(1,N)` and `b = 1`.

Data Types: `double`
b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. \(b \) is an \(M \)-element vector related to the \(A \) matrix. If you pass \(b \) as a row vector, solvers internally convert \(b \) to the column vector \(b(:) \).

\(b \) encodes the \(M \) linear inequalities

\[
A \times x \quad \leq \quad b,
\]

where \(x \) is the column vector of \(nvars \) variables \(x(:) \), and \(A \) is a matrix of size \(M \)-by-\(nvars \).

For example, give constraints \(A = \begin{bmatrix} 1 & 2; 3 & 4; 5 & 6 \end{bmatrix} \) and \(b = \begin{bmatrix} 10; 20; 30 \end{bmatrix} \) to specify these sums:

\[
\begin{align*}
x_1 & \quad + \quad 2x_2 \quad \leq \quad 10 \\
3x_1 & \quad + \quad 4x_2 \quad \leq \quad 20 \\
5x_1 & \quad + \quad 6x_2 \quad \leq \quad 30.
\end{align*}
\]

Example: To set the sum of the \(x \)-components to 1 or less, take \(A = \text{ones}(1,N) \) and \(b = 1 \).

Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. \(Aeq \) is an \(Me \)-by-\(nvars \) matrix, where \(Me \) is the number of equalities.

\(Aeq \) encodes the \(Me \) linear equalities

\[
Aeq \times x \quad = \quad beq,
\]

where \(x \) is the column vector of \(nvars \) variables \(x(:) \), and \(beq \) is a column vector with \(Me \) elements.

For example, give constraints \(Aeq = \begin{bmatrix} 1 & 2 & 3; 2 & 4 & 1 \end{bmatrix} \) and \(beq = \begin{bmatrix} 10; 20 \end{bmatrix} \) to specify these sums:

\[
\begin{align*}
x_1 & \quad + \quad 2x_2 \quad + \quad 3x_3 \quad = \quad 10 \\
\end{align*}
\]
\[2x_1 + 4x_2 + x_3 = 20. \]

Example: To set the sum of the x-components to 1, take \(\text{Aeq} = \text{ones}(1,N) \) and \(\text{beq} = 1 \).

Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. \(\text{beq} \) is an \(M_e \)-element vector related to the \(\text{Aeq} \) matrix. If you pass \(\text{beq} \) as a row vector, solvers internally convert \(\text{beq} \) to the column vector \(\text{beq}(:) \).

\(\text{beq} \) encodes the \(M_e \) linear equalities

\[
\text{Aeq} \cdot x = \text{beq},
\]

where \(x \) is the column vector of \(nvars \) variables \(x(:) \), and \(\text{Aeq} \) is a matrix of size \(M_e \times N \).

For example, give constraints \(\text{Aeq} = [1, 2, 3; 2, 4, 1] \) and \(\text{beq} = [10; 20] \) to specify these sums:

\[
x_1 + 2x_2 + 3x_3 = 10 \\
2x_1 + 4x_2 + x_3 = 20.
\]

Example: To set the sum of the x-components to 1, take \(\text{Aeq} = \text{ones}(1,N) \) and \(\text{beq} = 1 \).

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If \(\text{numel(lb)} = nvars \), then \(lb \) specifies that \(x(i) \geq lb(i) \) for all \(i \).

If \(\text{numel(lb)} < nvars \), then \(lb \) specifies that \(x(i) \geq lb(i) \) for \(1 \leq i \leq \text{numel(lb)} \).

In this case, solvers issue a warning.

Example: To specify all x-components as positive, set \(lb = \text{zeros}(nvars,1) \).

Data Types: double
ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If numel(ub) = nvars, then ub specifies that x(i) <= ub(i) for all i.

If numel(ub) < nvars, then ub specifies that x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.

Example: To specify all x-components as less than one, set ub = ones(nvars,1).
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that accepts a row vector x and returns two row vectors, c(x) and ceq(x).

- c(x) is the row vector of nonlinear inequality constraints at x. The gamultiobj function attempts to satisfy c(x) <= 0 for all entries of c.
- ceq(x) is the row vector nonlinear equality constraints at x. The gamultiobj function attempts to satisfy ceq(x) = 0 for all entries of ceq.

If you set the UseVectorized option to true, then nonlcon accepts a matrix of size n-by-nvars, where the matrix represents n individuals. nonlcon returns a matrix of size n-by-mc in the first argument, where mc is the number of nonlinear inequality constraints. nonlcon returns a matrix of size n-by-mceq in the second argument, where mceq is the number of nonlinear equality constraints. See “Vectorize the Fitness Function” on page 5-139.

For example, x = gamultiobj(@myfun,nvars,A,b,Aeq,beq,lb,ub,@mycon), where mycon is a MATLAB function such as the following:

```matlab
function [c,ceq] = mycon(x)
c = ...       % Compute nonlinear inequalities at x.
ceq = ...    % Compute nonlinear equalities at x.
```

For more information, see “Nonlinear Constraints” (Optimization Toolbox).

Data Types: char | function_handle | string
options — Optimization options
output of optimoptions | structure

Optimization options, specified as the output of optimoptions or a structure. See option
details in “Genetic Algorithm Options” on page 11-33.

Create options by using optimoptions (recommended) or by exporting options from
the Optimization app. For details, see “Importing and Exporting Your Work” (Optimization
Toolbox).

optimoptions hides the options listed in italics. See “Options that optimoptions Hides”
on page 11-87.

• Values in {} denote the default value.
• {}* represents the default when there are linear constraints, and for MutationFcn
 also when there are bounds.
• I* indicates that ga handles options for integer constraints differently; this notation
does not apply to gamultiobj.
• NM indicates that the option does not apply to gamultiobj.
Options for ga, Integer ga, and gamultiobj

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstraintTolerance</td>
<td>Determines the feasibility with respect to nonlinear constraints. Also, (\max(\sqrt{\text{eps}}, \text{ConstraintTolerance})) determines feasibility with respect to linear constraints. For an options structure, use TolCon.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CreationFcn</td>
<td>I* Function that creates the initial population. Specify as a name of a built-in creation function or a function handle. See “Population Options” on page 11-38.</td>
<td>{'gacreationuniform'}</td>
</tr>
<tr>
<td>CrossoverFcn</td>
<td>I* Function that the algorithm uses to create crossover children. Specify as a name of a built-in crossover function or a function handle. See “Crossover Options” on page 11-48.</td>
<td>{'crossoverscattered'} for ga, {'crossoverintermediate'}* for gamultiobj</td>
</tr>
<tr>
<td>CrossoverFraction</td>
<td>The fraction of the population at the next generation, not including elite children, that the crossover function creates.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display.</td>
<td>'off'</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>DistanceMeasureFcn</td>
<td>Function that computes distance measure of individuals. Specify as a name of a built-in distance measure function or a function handle. The value applies to decision variable or design space (genotype) or to function space (phenotype). The default 'distancecrowding' is in function space (phenotype). For gamultiobj only. See “Multiobjective Options” on page 11-54. For an options structure, use a function handle, not a name.</td>
<td>{'distancecrowding'} means the same as {@distancecrowding,'phenotype'}</td>
</tr>
<tr>
<td>EliteCount</td>
<td>NM Positive integer specifying how many individuals in the current generation are guaranteed to survive to the next generation. Not used in gamultiobj.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>FitnessLimit</td>
<td>NM If the fitness function attains the value of FitnessLimit, the algorithm halts.</td>
<td>Scalar</td>
</tr>
<tr>
<td>FitnessScalingFcn</td>
<td>Function that scales the values of the fitness function. Specify as a name of a built-in scaling function or a function handle. Option unavailable for gamultiobj.</td>
<td>{'fitscalingrank'}</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>The algorithm stops if the average relative change in the best fitness function value over <code>MaxStallGenerations</code> generations is less than or equal to <code>FunctionTolerance</code>. If <code>StallTest</code> is <code>'geometricWeighted'</code>, then the algorithm stops if the weighted average relative change is less than or equal to <code>FunctionTolerance</code>. For <code>gamultiobj</code>, the algorithm stops when the geometric average of the relative change in value of the spread over <code>options.MaxStallGenerations</code> generations is less than <code>options.FunctionTolerance</code>, and the final spread is less than the mean spread over the past <code>options.MaxStallGenerations</code> generations. See “<code>gamultiobj Algorithm</code>” on page 9-5. For an options structure, use <code>TolFun</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>HybridFcn</td>
<td>Function that continues the optimization after <code>ga</code> terminates. Specify as a name or a function handle. Alternatively, a cell array specifying the hybrid function and its options. See “<code>ga Hybrid Function</code>” on page 11-55. For <code>gamultiobj</code>, the only hybrid function is <code>@fgoalattain</code>. See “<code>gamultiobj Hybrid Function</code>” on page 11-56. See “When to Use a Hybrid Function” on page 5-161.</td>
<td>Function name or handle</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of penalty parameter</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>InitialPopulationMatrix</td>
<td>Initial population used to seed the genetic algorithm. Has up to PopulationSize rows and N columns, where N is the number of variables. You can pass a partial population, meaning one with fewer than PopulationSize rows. In that case, the genetic algorithm uses CreationFcn to generate the remaining population members. See “Population Options” on page 11-38. For an options structure, use InitialPopulation.</td>
<td>Matrix</td>
</tr>
<tr>
<td>InitialPopulationRange</td>
<td>Matrix or vector specifying the range of the individuals in the initial population. Applies to gacreationuniform creation function. ga shifts and scales the default initial range to match any finite bounds. For an options structure, use PopInitRange.</td>
<td>Matrix or vector</td>
</tr>
<tr>
<td>InitialScoresMatrix</td>
<td>Initial scores used to determine fitness. Has up to PopulationSize rows and has Nf columns, where Nf is the number of fitness functions (1 for ga, greater than 1 for gamultiobj). You can pass a partial scores matrix, meaning one with fewer than PopulationSize rows. In that case, the solver fills in the scores when it evaluates the fitness functions. For an options structure, use InitialScores.</td>
<td>Column vector for single objective</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>MaxGenerations</td>
<td>Maximum number of iterations before the algorithm halts.</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use Generations.</td>
<td></td>
</tr>
<tr>
<td>MaxStallGenerations</td>
<td>The algorithm stops if the average relative change in the best fitness function value over MaxStallGenerations generations is less than or equal to FunctionTolerance. If StallTest is 'geometricWeighted', then the algorithm stops if the weighted average relative change is less than or equal to FunctionTolerance. For gamultiobj, the algorithm stops when the geometric average of the relative change in value of the spread over options.MaxStallGenerations generations is less than options.FunctionTolerance, and the final spread is less than the mean spread over the past options.MaxStallGenerations generations. See “gamultiobj Algorithm” on page 9-5. For an options structure, use StallGenLimit.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxStallTime</td>
<td>NM The algorithm stops if there is no improvement in the objective function for MaxStallTime seconds, as measured by tic and toc. For an options structure, use StallTimeLimit.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>MaxTime</td>
<td>The algorithm stops after running after MaxTime seconds, as measured by tic and toc. This limit is enforced after each iteration, so ga can exceed the limit when an iteration takes substantial time. For an options structure, use TimeLimit.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MigrationDirection</td>
<td>Direction of migration. See “Migration Options” on page 11-51</td>
<td>'both'</td>
</tr>
<tr>
<td>MigrationFraction</td>
<td>Scalar from 0 through 1 specifying the fraction of individuals in each subpopulation that migrates to a different subpopulation. See “Migration Options” on page 11-51</td>
<td>Scalar</td>
</tr>
<tr>
<td>MigrationInterval</td>
<td>Positive integer specifying the number of generations that take place between migrations of individuals between subpopulations. See “Migration Options” on page 11-51</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MutationFcn</td>
<td>I* Function that produces mutation children. Specify as a name of a built-in mutation function or a function handle. See “Mutation Options” on page 11-45.</td>
<td>{'mutationgaussian'} for ga,</td>
</tr>
<tr>
<td></td>
<td>{mutationadaptfeasible} for gamultiobj</td>
<td>'mutationuniform'</td>
</tr>
<tr>
<td>NonlinearConstrain</td>
<td>Nonlinear constraint algorithm. See “Nonlinear Constraint Solver Algorithms” on page 5-72. Option unchangeable for gamultiobj. For an options structure, use NonlinConAlgorithm.</td>
<td>{'auglag'} for ga,</td>
</tr>
<tr>
<td>tAlgorithm</td>
<td></td>
<td>{'penalty'} for gamultiobj</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Functions that <code>ga</code> calls at each iteration. Specify as a function handle or a cell array of function handles. See “Output Function Options” on page 11-58.</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>ParetoFraction</td>
<td>Scalar from 0 through 1 specifying the fraction of individuals to keep on the first Pareto front while the solver selects individuals from higher fronts, for <code>gamultiobj</code> only. See “Multiobjective Options” on page 11-54.</td>
<td>Scalar</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>NM I Penalty update parameter.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Function that plots data computed by the algorithm. Specify as a name of a built-in plot function, a function handle, or a cell array of built-in names or function handles. See “Plot Options” on page 11-34.</td>
<td><code>ga</code> or <code>gamultiobj</code>: {[]}</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Positive integer specifying the number of generations between consecutive calls to the plot functions.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>PopulationSize</td>
<td>Size of the population.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>PopulationType</td>
<td>Data type of the population. Must be 'doubleVector' for mixed integer problems.</td>
<td>'bitstring'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ga ignores all constraints when PopulationType is set to 'bitstring' or 'custom'. See “Population Options” on page 11-38.</td>
</tr>
<tr>
<td>SelectionFcn</td>
<td>Function that selects parents of crossover and mutation children. Specify as a name of a built-in selection function or a function handle.</td>
<td>{'selectionstochunif'} for ga, {'selectiontournament'} for gamultiobj {'selectionremainder' ,'selectionuniform' ,'selectionroulette' ,Custom selection function on page 11-43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StallTest</td>
<td>NM Stopping test type.</td>
<td>'geometricWeighted'</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute fitness and nonlinear constraint functions in parallel. See “Vectorize and Parallel Options (User Function Evaluation)” on page 11-61 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
<td>true</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Specifies whether functions are vectorized. See “Vectorize and Parallel Options (User Function Evaluation)” on page 11-61 and “Vectorize the Fitness Function” on page 5-139. For an options structure, use Vectorized with the values 'on' or 'off'.</td>
<td>true</td>
</tr>
</tbody>
</table>

Example: `optimoptions('gamultiobj','PlotFcns',@gaplotpareto)`

problem — Problem description

structure

Problem description, specified as a structure containing these fields.

<table>
<thead>
<tr>
<th><code>fitnessfcn</code></th>
<th>Fitness functions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nvars</code></td>
<td>Number of design variables</td>
</tr>
<tr>
<td><code>Aineq</code></td>
<td>A matrix for linear inequality constraints</td>
</tr>
<tr>
<td><code>Bineq</code></td>
<td>b vector for linear inequality constraints</td>
</tr>
<tr>
<td><code>Aeq</code></td>
<td>Aeq matrix for linear equality constraints</td>
</tr>
<tr>
<td><code>Beq</code></td>
<td>beq vector for linear equality constraints</td>
</tr>
<tr>
<td><code>lb</code></td>
<td>Lower bound on x</td>
</tr>
<tr>
<td><code>ub</code></td>
<td>Upper bound on x</td>
</tr>
<tr>
<td><code>nonlcon</code></td>
<td>Nonlinear constraint function</td>
</tr>
<tr>
<td><code>rngstate</code></td>
<td>Optional field to reset the state of the random number generator</td>
</tr>
<tr>
<td><code>solver</code></td>
<td>'gamultiobj'</td>
</tr>
<tr>
<td><code>options</code></td>
<td>Options created using <code>optimoptions</code> or exported from the Optimization app</td>
</tr>
</tbody>
</table>

Create `problem` by exporting a problem from the Optimization app, as described in “Importing and Exporting Your Work” (Optimization Toolbox).

Data Types: `struct`
Output Arguments

x — Pareto points
\(m \)-by-\(nvars \) array

Pareto points, returned as an \(m \)-by-\(nvars \) array, where \(m \) is the number of points on the Pareto front. Each row of \(x \) represents one point on the Pareto front.

fval — Function values on Pareto front
\(m \)-by-\(nf \) array

Function values on the Pareto front, returned as an \(m \)-by-\(nf \) array. \(m \) is the number of points on the Pareto front, and \(nf \) is the number of fitness functions. Each row of \(fval \) represents the function values at one Pareto point in \(x \).

exitflag — Reason `gamultiobj` stopped
integer

Reason `gamultiobj` stopped, returned as an integer.

<table>
<thead>
<tr>
<th>exitflag Value</th>
<th>Stopping Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geometric average of the relative change in value of the spread over <code>options.MaxStallGenerations</code> generations is less than <code>options.FunctionTolerance</code>, and the final spread is less than the mean spread over the past <code>options.MaxStallGenerations</code> generations</td>
</tr>
<tr>
<td>0</td>
<td>Maximum number of generations exceeded</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization terminated by an output function or plot function</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point found</td>
</tr>
<tr>
<td>-5</td>
<td>Time limit exceeded</td>
</tr>
</tbody>
</table>

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields.
output Field	Meaning
problemtype | Type of problem:
• 'unconstrained' — No constraints
• 'boundconstraints' — Only bound constraints
• 'linearconstraints' — Linear constraints, with or without bound constraints
• 'nonlinearconstr' — Nonlinear constraints, with or without other types of constraints
rngstate | State of the MATLAB random number generator, just before the algorithm started. You can use the values in rngstate to reproduce the output of gamultiobj. See “Reproduce Results” on page 5-92.
generations | Total number of generations, excluding HybridFcn iterations.
funccount | Total number of function evaluations.
message | gamultiobj exit message.
averagedistance | Average “distance,” which by default is the standard deviation of the norm of the difference between Pareto front members and their mean.
spread | Combination of the “distance,” and a measure of the movement of the points on the Pareto front between the final two iterations.
maxconstraint | Maximum constraint violation at the final Pareto set.

population — Final population
n-by-nvars array

Final population, returned as an n-by-nvars array, where n is the number of members of the population.

scores — Scores of the final population
n-by-nf array

Scores of the final population, returned as an n-by-nf array. n is the number of members of the population, and nf is the number of fitness functions.

When there are nonlinear constraints, gamultiobj sets the scores of infeasible population members to Inf.
Definitions

Pareto Front

A Pareto front is a set of points in parameter space (the space of decision variables) that have noninferior fitness function values.

In other words, for each point on the Pareto front, you can improve one fitness function only by degrading another. For details, see “What Is Multiobjective Optimization?” on page 9-2.

As in “Local vs. Global Optima” (Optimization Toolbox), it is possible for a Pareto front to be local, but not global. “Local” means that the Pareto points can be noninferior compared to nearby points, but points farther away in parameter space could have lower function values in every component.

Algorithms

`gamultiobj` uses a controlled, elitist genetic algorithm (a variant of NSGA-II [1]). An elitist GA always favors individuals with better fitness value (rank). A controlled elitist GA also favors individuals that can help increase the diversity of the population even if they have a lower fitness value. It is important to maintain the diversity of population for convergence to an optimal Pareto front. Diversity is maintained by controlling the elite members of the population as the algorithm progresses. Two options, `ParetoFraction` and `DistanceMeasureFcn`, control the elitism. `ParetoFraction` limits the number of individuals on the Pareto front (elite members). The distance function, selected by `DistanceMeasureFcn`, helps to maintain diversity on a front by favoring individuals that
are relatively far away on the front. The algorithm stops if the spread, a measure of the movement of the Pareto front, is small. For details, see “gamultiobj Algorithm” on page 9-5.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

```matlab
options = optimoptions('solvername','UseParallel',true)
```

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also

ga | optimoptions | paretosearch

Topics

“Pareto Front for Two Objectives” on page 9-22
“Performing a Multiobjective Optimization Using the Genetic Algorithm”
“Multiobjective Genetic Algorithm Options”
“gamultiobj Options and Syntax: Differences from ga” on page 9-21

Introduced in R2007b
gaoptimget

(Not recommended) Obtain values of genetic algorithm options structure

Note gaoptimget is not recommended. Instead, query options using dot notation. For more information, see “Compatibility Considerations”.

Syntax

val = gaoptimget(options, 'name')
val = gaoptimget(options, 'name', default)

Description

val = gaoptimget(options, 'name') returns the value of the parameter name from the genetic algorithm options structure options. gaoptimget(options, 'name') returns an empty matrix [] if the value of name is not specified in options. It is only necessary to type enough leading characters of name to uniquely identify it. gaoptimget ignores case in parameter names.

val = gaoptimget(options, 'name', default) returns the 'name' parameter, but will return the default value if the name parameter is not specified (or is []) in options.

Compatibility Considerations

gaoptimget is not recommended

Not recommended starting in R2018b

To query options, the gaoptimget, psoptimget, and saoptimget functions are not recommended. Instead, use dot notation. For example, to see the setting of the Display option in opts,
displayopt = opts.Display
% instead of
displayopt = gaoptimget(opts,'Display')

Using automatic code completions, dot notation takes fewer keystrokes: displayopt = opts.D Tab.

There are no plans to remove gaoptimget, psoptimget, and saoptimget at this time.

See Also
ga | gamultiobj

Topics
“Genetic Algorithm Options” on page 11-33

Introduced before R2006a
gaoptimset

(Not recommended) Create genetic algorithm options structure

Note gaoptimset is not recommended. Use optimoptions instead. For more information, see “Compatibility Considerations”.

Syntax

```matlab
gaoptimset
options = gaoptimset
options = gaoptimset(@ga)
options = gaoptimset(@gamultiobj)
options = gaoptimset('param1',value1,'param2',value2,...)
options = gaoptimset(oldopts,'param1',value1,...)
options = gaoptimset(oldopts,newopts)
```

Description

`gaoptimset` with no input or output arguments displays a complete list of parameters with their valid values.

`options = gaoptimset` (with no input arguments) creates a structure called `options` that contains the options, or parameters, for the genetic algorithm and sets parameters to `[]`, indicating default values will be used.

`options = gaoptimset(@ga)` creates a structure called `options` that contains the default options for the genetic algorithm.

`options = gaoptimset(@gamultiobj)` creates a structure called `options` that contains the default options for `gamultiobj`.

`options = gaoptimset('param1',value1,'param2',value2,...)` creates a structure called `options` and sets the value of `'param1'` to `value1`, `'param2'` to `value2`, and so on. Any unspecified parameters are set to their default values. It is
sufficient to type only enough leading characters to define the parameter name uniquely. Case is ignored for parameter names.

options = gaoptimset(oldopts,'param1',value1,...) creates a copy of oldopts, modifying the specified parameters with the specified values.

options = gaoptimset(oldopts,newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite the corresponding old parameters in oldopts.

Options

The following table lists the options you can set with gaoptimset. See “Genetic Algorithm Options” on page 11-33 for a complete description of these options and their values. Values in {} denote the default value. {}* means the default when there are linear constraints, and for MutationFcn also when there are bounds. You can also view the optimization parameters and defaults by typing gaoptimset at the command line. I* indicates that ga ignores or overwrites the option for mixed integer optimization problems.

optimoptions hides the options listed in *italics*, but gaoptimset does not. See “Options that optimoptions Hides” on page 11-87.
Options for ga, Integer ga, and gamultiobj

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstraintTolerance</td>
<td>Determines the feasibility with respect to nonlinear constraints. Also, max(sqrt(eps),ConstraintTolerance) determines feasibility with respect to linear constraints. For an options structure, use TolCon.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CreationFcn</td>
<td>I* Function that creates the initial population. Specify as a name of a built-in creation function or a function handle. See “Population Options” on page 11-38.</td>
<td>{'gacreationuniform'}</td>
</tr>
<tr>
<td>CrossoverFcn</td>
<td>I* Function that the algorithm uses to create crossover children. Specify as a name of a built-in crossover function or a function handle. See “Crossover Options” on page 11-48.</td>
<td>{'crossoverscattered'} for ga, {'crossoverintermediate'}* for gamultiobj</td>
</tr>
<tr>
<td>CrossoverFraction</td>
<td>The fraction of the population at the next generation, not including elite children, that the crossover function creates.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display.</td>
<td>'off'</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DistanceMeasureFcn</td>
<td>Function that computes distance measure of individuals. Specify as a name of a built-in distance measure function or a function handle. The value applies to decision variable or design space (genotype) or to function space (phenotype). The default 'distancecrowding' is in function space (phenotype). For <code>gamultiobj</code> only. See “Multiobjective Options” on page 11-54. For an options structure, use a function handle, not a name.</td>
<td>{'distancecrowding'} means the same as {@distancecrowding,'phenotype'}</td>
</tr>
<tr>
<td>EliteCount</td>
<td>NM Positive integer specifying how many individuals in the current generation are guaranteed to survive to the next generation. Not used in <code>gamultiobj</code>.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>FitnessLimit</td>
<td>NM If the fitness function attains the value of FitnessLimit, the algorithm halts.</td>
<td>Scalar</td>
</tr>
<tr>
<td>FitnessScalingFcn</td>
<td>Function that scales the values of the fitness function. Specify as a name of a built-in scaling function or a function handle. Option unavailable for <code>gamultiobj</code>.</td>
<td>{'fitscalingrank'}</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>The algorithm stops if the average relative change in the best fitness function value over MaxStallGenerations generations is less than or equal to FunctionTolerance. If StallTest is 'geometricWeighted', then the algorithm stops if the weighted average relative change is less than or equal to FunctionTolerance. For gamultiobj, the algorithm stops when the geometric average of the relative change in value of the spread over options.MaxStallGenerations generations is less than options.FunctionTolerance, and the final spread is less than the mean spread over the past options.MaxStallGenerations generations. See “gamultiobj Algorithm” on page 9-5. For an options structure, use TolFun.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>HybridFcn</td>
<td>I* Function that continues the optimization after ga terminates. Specify as a name or a function handle. Alternatively, a cell array specifying the hybrid function and its options. See “ga Hybrid Function” on page 11-55. For gamultiobj, the only hybrid function is @goalattain. See “gamultiobj Hybrid Function” on page 11-56. See “When to Use a Hybrid Function” on page 5-161.</td>
<td>Function name or handle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 1-by-2 cell array</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>NM I* Initial value of penalty parameter</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>InitialPopulationMatrix</td>
<td>Initial population used to seed the genetic algorithm. Has up to <code>PopulationSize</code> rows and <code>N</code> columns, where <code>N</code> is the number of variables. You can pass a partial population, meaning one with fewer than <code>PopulationSize</code> rows. In that case, the genetic algorithm uses <code>CreationFcn</code> to generate the remaining population members. See “Population Options” on page 11-38. For an options structure, use <code>InitialPopulation</code>.</td>
<td>Matrix</td>
</tr>
<tr>
<td>InitialPopulationRange</td>
<td>Matrix or vector specifying the range of the individuals in the initial population. Applies to <code>gacreationuniform</code> creation function. <code>ga</code> shifts and scales the default initial range to match any finite bounds. For an options structure, use <code>PopInitRange</code>.</td>
<td>Matrix or vector</td>
</tr>
<tr>
<td>InitialScoresMatrix</td>
<td>Initial scores used to determine fitness. Has up to <code>PopulationSize</code> rows and has <code>Nf</code> columns, where <code>Nf</code> is the number of fitness functions (1 for <code>ga</code>, greater than 1 for <code>gamultiobj</code>). You can pass a partial scores matrix, meaning one with fewer than <code>PopulationSize</code> rows. In that case, the solver fills in the scores when it evaluates the fitness functions. For an options structure, use <code>InitialScores</code>.</td>
<td>Column vector for single objective</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MaxGenerations</td>
<td>Maximum number of iterations before the algorithm halts.</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use Generations.</td>
<td></td>
</tr>
<tr>
<td>MaxStallGenerations</td>
<td>The algorithm stops if the average relative change in the best fitness function value over MaxStallGenerations generations is less than or equal to FunctionTolerance. If StallTest is 'geometricWeighted', then the algorithm stops if the weighted average relative change is less than or equal to FunctionTolerance.</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>For gamultiobj, the algorithm stops when the geometric average of the relative change in value of the spread over options.MaxStallGenerations generations is less than options.FunctionTolerance, and the final spread is less than the mean spread over the past options.MaxStallGenerations generations. See “gamultiobj Algorithm” on page 9-5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For an options structure, use StallGenLimit.</td>
<td></td>
</tr>
<tr>
<td>MaxStallTime</td>
<td>NM The algorithm stops if there is no improvement in the objective function for MaxStallTime seconds, as measured by tic and toc.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use StallTimeLimit.</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MaxTime</td>
<td>The algorithm stops after running after MaxTime seconds, as measured by tic and toc. This limit is enforced after each iteration, so ga can exceed the limit when an iteration takes substantial time. For an options structure, use TimeLimit.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MigrationDirection</td>
<td>Direction of migration. See “Migration Options” on page 11-51</td>
<td>'both'</td>
</tr>
<tr>
<td>MigrationFraction</td>
<td>Scalar from 0 through 1 specifying the fraction of individuals in each subpopulation that migrates to a different subpopulation. See “Migration Options” on page 11-51</td>
<td>Scalar</td>
</tr>
<tr>
<td>MigrationInterval</td>
<td>Positive integer specifying the number of generations that take place between migrations of individuals between subpopulations. See “Migration Options” on page 11-51</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MutationFcn</td>
<td>I* Function that produces mutation children. Specify as a name of a built-in mutation function or a function handle. See “Mutation Options” on page 11-45.</td>
<td>{'mutationgaussian'} for ga, {'mutationadaptfeasible'} for gamultiobj</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NonlinearConstraintAlgorithm</td>
<td>Nonlinear constraint algorithm. See “Nonlinear Constraint Solver Algorithms” on page 5-72. Option unchangeable for gamultiobj. For an options structure, use NonlinConAlgorithm.</td>
<td>{'auglag'} for ga, {'penalty'} for gamultiobj</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Functions that ga calls at each iteration. Specify as a function handle or a cell array of function handles. See “Output Function Options” on page 11-58. For an options structure, use OutputFcns.</td>
<td>Function handle or cell array of function handles</td>
</tr>
<tr>
<td>ParetoFraction</td>
<td>Scalar from 0 through 1 specifying the fraction of individuals to keep on the first Pareto front while the solver selects individuals from higher fronts, for gamultiobj only. See “Multiobjective Options” on page 11-54.</td>
<td>Scalar</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>NM I Penalty update parameter.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Function that plots data computed by the algorithm. Specify as a name of a built-in plot function, a function handle, or a cell array of built-in names or function handles. See “Plot Options” on page 11-34. For an options structure, use PlotFcns.</td>
<td>ga or gamultiobj:{{[]}}</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Positive integer specifying the number of generations between consecutive calls to the plot functions.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PopulationSize</td>
<td>Size of the population.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>PopulationType</td>
<td>Data type of the population. Must be 'doubleVector' for mixed integer problems.</td>
<td>'bitstring'</td>
</tr>
<tr>
<td>SelectionFcn</td>
<td>Function that selects parents of crossover and mutation children. Specify as a name of a built-in selection function or a function handle. gamultiobj uses only 'selectiontournament'.</td>
<td>{'selectionstochunif'} for ga, {'selectiontournament'} for gamultiobj</td>
</tr>
<tr>
<td>StallTest</td>
<td>Stopping test type.</td>
<td>'geometricWeighted'</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute fitness and nonlinear constraint functions in parallel. See “Vectorize and Parallel Options (User Function Evaluation)” on page 11-61 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
<td>true</td>
</tr>
</tbody>
</table>

gaoptimset

12-85
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseVectorized</td>
<td>Specifies whether functions are vectorized. See “Vectorize and Parallel Options (User Function Evaluation)” on page 11-61 and “Vectorize the Fitness Function” on page 5-139. For an options structure, use Vectorized with the values 'on' or 'off'.</td>
<td>true</td>
</tr>
</tbody>
</table>

Compatibility Considerations

gaoptimset is not recommended

Not recommended starting in R2018b

To set options, the `gaoptimset`, `psoptimset`, and `saoptimset` functions are not recommended. Instead, use `optimoptions`.

The only difference between using `optimoptions` and the other functions is, for `optimoptions`, you include the solver name as the first argument. For example, to set iterative display in `ga`,

```matlab
options = optimoptions('ga','Display','iter');
% instead of
options = gaoptimset('Display','iter');
```

`optimoptions` has several advantages over the other functions.

- `optimoptions` has better automatic code suggestions and completions, especially in the Live Editor.
- You can use a single option-setting function instead of a variety of functions.

There are no plans to remove `gaoptimset`, `psoptimset`, and `saoptimset` at this time.

See Also

- `ga`
- `gamultiobj`
- `optimoptions`
Topics
“Genetic Algorithm Options” on page 11-33

Introduced before R2006a
GlobalOptimSolution

Optimization solution

Description

A GlobalOptimSolution object contains information on a local minimum, including location, objective function value, and start point or points that lead to the minimum.

GlobalSearch and MultiStart generate a vector of GlobalOptimSolution objects. The vector is ordered by objective function value, from lowest (best) to highest (worst). GlobalSearch and MultiStart combine solutions that coincide with previously found solutions to within tolerances. For GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 3-53. For MultiStart details, see “Create GlobalOptimSolution Object” on page 3-57.

Creation

When you execute run and request the “solutions” on page 12-0 output, GlobalSearch and MultiStart create GlobalOptimSolution objects as output.

Properties

Exitflag — Exit condition of local solver

integer

Exit condition of the local solver, returned as an integer. Generally, a positive Exitflag corresponds to a local optimum, and a zero or negative Exitflag corresponds to an unsuccessful search for a local minimum.

For the exact meaning of each Exitflag, see the exitflag description in the appropriate local solver function reference page:

- fmincon exitflag
- fminunc exitflag
• `lsqcurvefit` exitflag
• `lsqnonlin` exitflag

Data Types: double

Fval — Objective function value
real scalar

Objective function value, returned as a real scalar. For the `lsqnonlin` and `lsqcurvefit` solvers, `Fval` is the sum of squares of the residual.

Data Types: double

Output — Output structure returned by the local solver
structure

Output structure returned by the local solver. For details, see the output description in the appropriate local solver function reference page:

- `fmincon` output
- `fminunc` output
- `lsqcurvefit` output
- `lsqnonlin` output

Data Types: struct

X — Local solution
array

Local solution, returned as an array with the same dimensions as `problem.x0`.

Data Types: double

X0 — Start points that lead to current solution

Start points that lead to current solution, returned as a cell array. Control the distance between points considered as distinct by setting the `FunctionTolerance` and `XTolerance` properties of the global solver.

Data Types: cell
Examples

Obtain Multiple Local Solutions

Use MultiStart to create a vector of GlobalOptimSolution objects for a problem with multiple local minima.

rng default % For reproducibility
ms = MultiStart;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
+ x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
[xmin,fmin,flag,outpt,allmins] = run(ms,problem,30);

MultiStart completed the runs from all start points.

All 30 local solver runs converged with a positive local solver exit flag.

allmins is a vector of GlobalOptimSolution objects.

disp(allmins)

1x6 GlobalOptimSolution array with properties:

 X
 Fval
 Exitflag
 Output
 X0

Plot the objective function values at the returned solutions.

plot(arrayfun(@(x)x.Fval,allmins),'k*')
xlabel('Solution number')
ylabel('Function value')
title('Solution Function Values')
To examine the initial points that lead to the various solutions, see “Visualize the Basins of Attraction” on page 3-37.

See Also
GlobalSearch | MultiStart | run

Topics
“Visualize the Basins of Attraction” on page 3-37
“How GlobalSearch and MultiStart Work” on page 3-49
Introduced in R2010a
GlobalSearch

Find global minimum

Description

A GlobalSearch object contains properties (options) that affect how run repeatedly runs a local solver to generate a GlobalOptimSolution object. When run, the solver attempts to locate a solution that has the lowest objective function value.

Creation

Syntax

gs = GlobalSearch
gs = GlobalSearch(Name,Value)
gs = GlobalSearch(oldGS,Name,Value)
gs = GlobalSearch(ms)

Description

gs = GlobalSearch creates gs, a GlobalSearch solver with its properties set to the defaults.

gs = GlobalSearch(Name,Value) sets properties using name-value pairs.

gs = GlobalSearch(oldGS,Name,Value) creates a copy of the oldGS GlobalSearch solver, and sets properties using name-value pairs.

gs = GlobalSearch(ms) creates gs, a GlobalSearch solver, with common property values from the ms MultiStart solver.
Properties

BasinRadiusFactor — Basin radius decrease factor

0.2 (default) | scalar from 0 through 1

Basin radius decrease factor, specified as a scalar from 0 through 1. A basin radius decreases after `MaxWaitCycle` consecutive start points are within the basin. The basin radius decreases by a factor of 1 - `BasinRadiusFactor`.

Set `BasinRadiusFactor` to 0 to disable updates of the basin radius.

Example: 0.5

Data Types: double

Display — Level of display to the Command Window

'final' (default) | 'iter' | 'off'

Level of display to the Command Window, specified as one of the following character vectors or strings:

- 'final' - Report summary results after run finishes.
- 'iter' - Report results after the initial `fmincon` run, after Stage 1, after every 200 start points, and after every run of `fmincon`, in addition to the final summary.
- 'off' - No display.

Example: 'iter'

Data Types: char | string

DistanceThresholdFactor — Multiplier for determining trial point is in existing basin

0.75 (default) | nonnegative scalar

Multiplier for determining whether a trial point is in an existing basin of attraction, specified as a nonnegative scalar. For details, see “Examine Stage 2 Trial Point to See if `fmincon` Runs” on page 3-53.

Example: 0.5

Data Types: double
FunctionTolerance — Tolerance on function values for considering solutions equal

1e-6 (default) | nonnegative scalar

Tolerance on function values for considering solutions equal, specified as a nonnegative scalar. Solvers consider two solutions identical if they are within XTolerance relative distance of each other and have objective function values within FunctionTolerance relative difference of each other. If both conditions are not met, solvers report the solutions as distinct. Set FunctionTolerance to 0 to obtain the results of every local solver run. Set FunctionTolerance to a larger value to have fewer results. For GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 3-53. For MultiStart details, see “Create GlobalOptimSolution Object” on page 3-57.

Example: 1e-4

Data Types: double

MaxTime — Maximum time in seconds that GlobalSearch runs

Inf (default) | positive scalar

Maximum time in seconds that GlobalSearch runs, specified as a positive scalar. GlobalSearch and its local solvers halt when MaxTime seconds have passed since the beginning of the run, as measured by tic and toc.

MaxTime does not interrupt local solvers during a run, so the total time can exceed MaxTime.

Example: 180 stops the solver the first time a local solver call finishes after 180 seconds.

Data Types: double

MaxWaitCycle — Algorithm control parameter

20 (default) | positive integer

Algorithm control parameter, specified as a positive integer.

- If the observed penalty function of MaxWaitCycle consecutive trial points is at least the penalty threshold, then raise the penalty threshold (see PenaltyThresholdFactor).
- If MaxWaitCycle consecutive trial points are in a basin, then update that basin's radius (see BasinRadiusFactor).

Example: 40

Data Types: double
NumStageOnePoints — Number of Stage 1 points
200 (default) | positive integer

Number of Stage 1 points, specified as a positive integer. For details, see "Obtain Stage 1 Start Point, Run" on page 3-52.

Example: 1000

Data Types: double

NumTrialPoints — Number of potential start points
1000 (default) | positive integer

Number of potential start points, specified as a positive integer.

Example: 3e4

Data Types: double

OutputFcn — Report on solver progress or halt solver
[] (default) | function handle | cell array of function handles

Report on solver progress or halt solver, specified as a function handle or cell array of function handles. Output functions run after each local solver call. They also run when the global solver starts and ends. Write output functions using the syntax described in “OutputFcn” on page 11-4. See “GlobalSearch Output Function” on page 3-40.

Data Types: cell | function_handle

PenaltyThresholdFactor — Increase in penalty threshold
0.2 (default) | positive scalar

Increase in the penalty threshold, specified as a positive scalar. For details, see React to Large Counter Values on page 3-55.

Example: 0.4

Data Types: double

PlotFcn — Plot solver progress
[] (default) | function handle | cell array of function handles

Plot solver progress, specified as a function handle or cell array of function handles. Plot functions run after each local solver call. They also run when the global solver starts and ends. Write plot functions using the syntax described in “OutputFcn” on page 11-4.
There are two built-in plot functions:

- @gsplotbestf plots the best objective function value.
- @gsplotfunccount plots the number of function evaluations.

See “MultiStart Plot Function” on page 3-45.

Example: @gsplotbestf

Data Types: cell | function_handle

StartPointsToRun — Start points to run

all (default) | 'bounds' | 'bounds-ineqs'

Start points to run, specified as:

- 'all' — Run all start points.
- 'bounds' — Run only start points that satisfy bounds.
- 'bounds-ineqs' — Run only start points that satisfy bounds and inequality constraints.

GlobalSearch checks the StartPointsToRun property only during Stage 2 of the GlobalSearch algorithm (the main loop). For more information, see “GlobalSearch Algorithm” on page 3-51.

Example: 'bounds' runs only points that satisfy all bounds.

Data Types: char | string

XTolerance — Tolerance on distance for considering solutions equal

1e-6 (default) | nonnegative scalar

Tolerance on distance for considering solutions equal, specified as a nonnegative scalar. Solvers consider two solutions identical if they are within XTolerance relative distance of each other and have objective function values within FunctionTolerance relative difference of each other. If both conditions are not met, solvers report the solutions as distinct. Set XTolerance to 0 to obtain the results of every local solver run. Set XTolerance to a larger value to have fewer results. For GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 3-53. For MultiStart details, see “Create GlobalOptimSolution Object” on page 3-57.

Example: 2e-4

Data Types: double
Object Functions
run Run multiple-start solver

Examples

Run GlobalSearch on Multidimensional Problem

Create an optimization problem that has several local minima, and try to find the global minimum using GlobalSearch. The objective is the six-hump camel back problem (see “Run the Solver” on page 3-21).

rng default % For reproducibility
gs = GlobalSearch;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
 + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
x = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

All 8 local solver runs converged with a positive local solver exit flag.

x = 1×2
 -0.0898 0.7127

You can request the objective function value at x when you call run by using the following syntax:

[x,fval] = run(gs,problem)

However, if you neglected to request fval, you can still compute the objective function value at x.

fval = sixmin(x)

fval = -1.0316
Run GlobalSearch on 1-D Problem

Consider a function with several local minima.

fun = @(x) x.^2 + 4*sin(5*x);
fplot(fun,[-5,5])

To search for the global minimum, run GlobalSearch using the fmincon 'sqp' algorithm.

rng default % For reproducibility
opts = optimoptions(@fmincon,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',...
 fun,'x0',3,'lb',-5,'ub',5,'options',opts);
gs = GlobalSearch;
[x,f] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.
All 23 local solver runs converged with a positive local solver exit flag.
x = -0.3080
f = -3.9032

GlobalSearch Using Common Properties from MultiStart

Create a nondefault MultiStart object.

ms = MultiStart('FunctionTolerance',2e-4,'UseParallel',true)

ms =
 MultiStart with properties:

 UseParallel: 1
 Display: 'final'
 FunctionTolerance: 2.0000e-04
 MaxTime: Inf
 OutputFcn: []
 PlotFcn: []
 StartPointsToRun: 'all'
 XTolerance: 1.0000e-06

Create a GlobalSearch object that uses the available properties from ms.

gs = GlobalSearch(ms)

gs =
 GlobalSearch with properties:

 NumTrialPoints: 1000
 BasinRadiusFactor: 0.2000
 DistanceThresholdFactor: 0.7500
 MaxWaitCycle: 20
 NumStageOnePoints: 200
 PenaltyThresholdFactor: 0.2000
gs has the same nondefault value of FunctionTolerance as ms. But gs does not use the UseParallel property.

Update GlobalSearch Properties

Create a GlobalSearch object with a FunctionTolerance of 1e-4.

```matlab
gs = GlobalSearch('FunctionTolerance',1e-4)
```

```matlab
gs =
   GlobalSearch with properties:

   NumTrialPoints: 1000
   BasinRadiusFactor: 0.2000
   DistanceThresholdFactor: 0.7500
   MaxWaitCycle: 20
   NumStageOnePoints: 200
   PenaltyThresholdFactor: 0.2000
   Display: 'final'
   FunctionTolerance: 1.0000e-04
   MaxTime: Inf
   OutputFcn: []
   PlotFcn: []
   StartPointsToRun: 'all'
   XTolerance: 1.0000e-06
```

Update the XTolerance property to 1e-3 and the StartPointsToRun property to 'bounds'.

```matlab
gs = GlobalSearch(gs,'XTolerance',1e-3,'StartPointsToRun','bounds')
```

```matlab
gs =
   GlobalSearch with properties:
```

12-101
You can also update properties one at a time by using dot notation.

```
gs.MaxTime = 1800
```

```
gs =
    GlobalSearch with properties:

    NumTrialPoints: 1000
    BasinRadiusFactor: 0.2000
    DistanceThresholdFactor: 0.7500
    MaxWaitCycle: 20
    NumStageOnePoints: 200
    PenaltyThresholdFactor: 0.2000
    Display: 'final'
    FunctionTolerance: 1.0000e-04
    MaxTime: 1800
    OutputFcn: []
    PlotFcn: []
    StartPointsToRun: 'bounds'
    XTolerance: 1.0000e-03
```

Algorithms

For a detailed description of the algorithm, see “GlobalSearch Algorithm” on page 3-51. Ugray et al. [1] describe both the algorithm and the scatter-search method of generating trial points.
References

See Also
GlobalOptimSolution | MultiStart | run

Topics
“Example of Run with GlobalSearch” on page 3-22
“Workflow for GlobalSearch and MultiStart” on page 3-3

Introduced in R2010a
list

List start points

Syntax

```plaintext
points = list(tpoints)
points = list(rs,problem)
```

Description

`points = list(tpoints)` returns the points inside the `tpoints` CustomStartPointSet object.

`points = list(rs,problem)` generates and returns points described by the `rs` RandomStartPointSet object and `problem`.

Examples

Create CustomStartPointSet

Create a CustomStartPointSet object with 64 three-dimensional points.

```plaintext
[x,y,z] = meshgrid(1:4);
ptmatrix = [x(:),y(:),z(:)] + [10,20,30];
tpoints = CustomStartPointSet(ptmatrix);
```

`tpoints` is the `ptmatrix` matrix contained in a CustomStartPointSet object.

Extract the original matrix from the `tpoints` object by using `list`.

```plaintext
tpts = list(tpoints);
```

Check that the `tpts` output is identical to `ptmatrix`.

```plaintext
isequal(ptmatrix,tpts)
```
ans = logical
 1

Create RandomStartPointSet

Create a RandomStartPointSet object for 40 points.

rs = RandomStartPointSet('NumStartPoints',40);

Create a problem with 3-D variables, lower bounds of 0, and upper bounds of [10,20,30].

problem = createOptimProblem('fmincon','x0',rand(3,1),'lb',zeros(3,1),'ub',[10,20,30]);

Generate a random set of 40 points consistent with the problem.

points = list(rs,problem);

Examine the maximum and minimum generated components.

largest = max(max(points))
largest = 29.8840

smallest = min(min(points))
smallest = 0.1390

Input Arguments

tpoints — Start points
CustomStartPointSet object

Start points, specified as a CustomStartPointSet object. list extracts the points into a matrix where each row is one start point.

Example: tpoints = CustomStartPointSet([1:5;4:8].^2)

rs — Start points description
RandomStartPointSet object
Start points description, specified as a RandomStartPointSet object. list generates start points using the NumStartPoints (number of points) and ArtificialBound (artificial bounds) properties of rs. list uses the x0 field in problem to determine the number of variables in the start points. list uses the bounds in problem as follows:

- list generates points uniformly within bounds.
- If a component has no bounds, list uses a lower bound of -ArtificialBound and an upper bound of ArtificialBound.
- If a component has a lower bound lb but no upper bound, list uses an upper bound of lb + 2*ArtificialBound.
- Similarly, if a component has an upper bound ub but no lower bound, list uses a lower bound of ub - 2*ArtificialBound.

problem — Problem description
problem structure

Problem description, specified as a problem structure. Create a problem structure using createOptimProblem. list uses only the lower and upper bounds in problem, as described in rs, and uses the x0 field in problem to determine the number of variables.

Data Types: struct

Output Arguments

points — Start points
k-by-n matrix

Start points, returned as a k-by-n matrix. Each row of the matrix represents one start point.

- If you list a CustomStartPointSet, then k is the NumStartPoints property, and n is the StartPointsDimension property.
- If you list a RandomStartPointSet, then k is the NumStartPoints property, and n is inferred from the x0 field of the problem structure.

See Also

CustomStartPointSet | MultiStart | RandomStartPointSet
Topics
“Workflow for GlobalSearch and MultiStart” on page 3-3

Introduced in R2010a
MultiStart

Find multiple local minima

Description

A MultiStart object contains properties (options) that affect how run repeatedly runs a local solver to generate a GlobalOptimSolution object. When run, the solver attempts to find multiple local solutions to a problem by starting from various points.

Creation

Syntax

\[
\begin{align*}
ms &= \text{MultiStart} \\
ms &= \text{MultiStart}(\text{Name}, \text{Value}) \\
ms &= \text{MultiStart}(\text{oldMS}, \text{Name}, \text{Value}) \\
ms &= \text{MultiStart}(\text{gs})
\end{align*}
\]

Description

\[
\begin{align*}
ms &= \text{MultiStart} \text{ creates } ms, \text{ a MultiStart solver with its properties set to the defaults.} \\
ms &= \text{MultiStart}(\text{Name}, \text{Value}) \text{ sets properties using name-value pairs.} \\
ms &= \text{MultiStart}(\text{oldMS}, \text{Name}, \text{Value}) \text{ creates a copy of the oldMS MultiStart solver, and sets properties using name-value pairs.} \\
ms &= \text{MultiStart}(\text{gs}) \text{ creates } ms, \text{ a MultiStart solver, with common parameter values from the gs GlobalSearch solver.}
\end{align*}
\]
Properties

Display — Level of display to Command Window
'final' (default) | 'iter' | 'off'

Level of display to the Command Window, specified as one of the following character arrays or strings:

- 'final' - Report summary results after run finishes.
- 'iter' - Report results after each local solver run, in addition to the final summary.
- 'off' - No display.

Example: 'iter'

Data Types: char | string

FunctionTolerance — Tolerance on function values for considering solutions equal
1e-6 (default) | nonnegative scalar

Tolerance on function values for considering solutions equal, specified as a nonnegative scalar. Solvers consider two solutions identical if they are within XTolerance relative distance of each other and have objective function values within FunctionTolerance relative difference of each other. If both conditions are not met, solvers report the solutions as distinct. Set FunctionTolerance to 0 to obtain the results of every local solver run. Set FunctionTolerance to a larger value to have fewer results. For GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 3-53. For MultiStart details, see “Create GlobalOptimSolution Object” on page 3-57.

Example: 1e-4

Data Types: double

MaxTime — Maximum time in seconds that MultiStart runs
Inf (default) | positive scalar

Maximum time in seconds that MultiStart runs, specified as a positive scalar. MultiStart and its local solvers halt when MaxTime seconds have passed since the beginning of the run, as measured by tic and toc.

MaxTime does not interrupt local solvers during a run, so the total time can exceed MaxTime.
Example: 180 stops the solver the first time a local solver call finishes after 180 seconds.

Data Types: double

OutputFcn — Report on solver progress or halt solver

[] (default) | function handle | cell array of function handles

Report on solver progress or halt solver, specified as a function handle or cell array of function handles. Output functions run after each local solver call. They also run when the global solver starts and ends. Write output functions using the syntax described in “OutputFcn” on page 11-4. See “GlobalSearch Output Function” on page 3-40.

Data Types: cell | function_handle

PlotFcn — Plot solver progress

[] (default) | function handle | cell array of function handles

Plot solver progress, specified as a function handle or cell array of function handles. Plot functions run after each local solver call. They also run when the global solver starts and ends. Write plot functions using the syntax described in “OutputFcn” on page 11-4.

There are two built-in plot functions:

- @gsplotbestf plots the best objective function value.
- @gsplotfunccount plots the number of function evaluations.

See “MultiStart Plot Function” on page 3-45.

Example: @gsplotbestf

Data Types: cell | function_handle

StartPointsToRun — Start points to run

'all' (default) | 'bounds' | 'bounds-ineqs'

Start points to run, specified as:

- 'all' — Run all start points.
- 'bounds' — Run only start points that satisfy bounds.
- 'bounds-ineqs' — Run only start points that satisfy bounds and inequality constraints.

Example: 'bounds' runs only points that satisfy all bounds.
Data Types: char | string

UseParallel — Distribute local solver calls to multiple processors
false (default) | true

Distribute local solver calls to multiple processors, specified as false or true.

- **false** — Do not run in parallel.
- **true** — Distribute the local solver calls to multiple processors.

Example: true

Data Types: logical

XTolerance — Tolerance on distance for considering solutions equal
1e-6 (default) | nonnegative scalar

Tolerance on distance for considering solutions equal, specified as a nonnegative scalar. Solvers consider two solutions identical if they are within XTolerance relative distance of each other and have objective function values within FunctionTolerance relative difference of each other. If both conditions are not met, solvers report the solutions as distinct. Set XTolerance to 0 to obtain the results of every local solver run. Set XTolerance to a larger value to have fewer results. For GlobalSearch details, see **Update Solution Set** in “When fmincon Runs” on page 3-53. For MultiStart details, see “Create GlobalOptimSolution Object” on page 3-57.

Example: 2e-4

Data Types: double

Object Functions

run Run multiple-start solver

Examples

Run MultiStart

Consider a function with several local minima.
fun = @(x) x.^2 + 4*sin(5*x);
fplot(fun,[-5,5])

To search for the global minimum, run MultiStart on 20 instances of the problem using the fmincon 'sqp' algorithm.

rng default % For reproducibility
opts = optimoptions(@fmincon,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',...
 fun,'x0',3,'lb',-5,'ub',5,'options',opts);
ms = MultiStart;
[x,f] = run(ms,problem,20)
MultiStart completed the runs from all start points.
All 20 local solver runs converged with a positive local solver exit flag.
x = -0.3080
f = -3.9032

Default MultiStart Object

Create a `MultiStart` object with default properties.

```matlab
ms = MultiStart
ms =
    MultiStart with properties:
        UseParallel: 0
        Display: 'final'
        FunctionTolerance: 1.0000e-06
        MaxTime: Inf
        OutputFcn: []
        PlotFcn: []
        StartPointsToRun: 'all'
        XTolerance: 1.0000e-06
```

Nondefault MultiStart Object

Create a `MultiStart` object with looser tolerances than default, so the solver returns fewer solutions that are close to each other. Also, have `MultiStart` run only initial points that are feasible with respect to bounds and inequality constraints.

```matlab
ms = MultiStart('FunctionTolerance',2e-4,'XTolerance',5e-3,...
                 'StartPointsToRun','bounds-ineqs')
ms =
    MultiStart with properties:
        UseParallel: 0
```
MultiStart Using Common Properties from GlobalSearch

Create a nondefault GlobalSearch object.

\[
gs = \text{GlobalSearch}('\text{FunctionTolerance}',2e-4,'\text{NumTrialPoints}',2000)
\]

\[
gs =
\begin{align*}
\text{GlobalSearch with properties:} \\
\text{NumTrialPoints:} & \quad 2000 \\
\text{BasinRadiusFactor:} & \quad 0.2000 \\
\text{DistanceThresholdFactor:} & \quad 0.7500 \\
\text{MaxWaitCycle:} & \quad 20 \\
\text{NumStageOnePoints:} & \quad 200 \\
\text{PenaltyThresholdFactor:} & \quad 0.2000 \\
\text{Display:} & \quad '\text{final}' \\
\text{FunctionTolerance:} & \quad 2.0000\text{e-04} \\
\text{MaxTime:} & \quad \text{Inf} \\
\text{OutputFcn:} & \quad [] \\
\text{PlotFcn:} & \quad [] \\
\text{StartPointsToRun:} & \quad 'all' \\
\text{XTolerance:} & \quad 1.0000\text{e-06}
\end{align*}
\]

Create a MultiStart object that uses the available properties from \(\text{gs} \).

\[
ms = \text{MultiStart}(\text{gs})
\]

\[
ms =
\begin{align*}
\text{MultiStart with properties:} \\
\text{UseParallel:} & \quad 0 \\
\text{Display:} & \quad '\text{final}'
\end{align*}
\]
FunctionTolerance: 2.0000e-04
MaxTime: Inf
OutputFcn: []
PlotFcn: []
StartPointsToRun: 'all'
XTolerance: 1.0000e-06

ms has the same nondefault value of FunctionTolerance as gs. But ms does not use the NumTrialPoints property.

Update MultiStart Properties

Create a MultiStart object with a FunctionTolerance of 1e-4.

```matlab
ms = MultiStart('FunctionTolerance',1e-4)
```

```matlab
ms =
    MultiStart with properties:

    UseParallel: 0
    Display: 'final'
    FunctionTolerance: 1.0000e-04
    MaxTime: Inf
    OutputFcn: []
    PlotFcn: []
    StartPointsToRun: 'all'
    XTolerance: 1.0000e-06
```

Update the XTolerance property to 1e-3, and the StartPointsToRun property to 'bounds'.

```matlab
ms = MultiStart(ms,'XTolerance',1e-3,'StartPointsToRun','bounds')
```

```matlab
ms =
    MultiStart with properties:

    UseParallel: 0
    Display: 'final'
    FunctionTolerance: 1.0000e-04
    MaxTime: Inf
    OutputFcn: []
    PlotFcn: []
    StartPointsToRun: 'bounds'
```
You can also update properties one at a time by using dot notation.

```matlab
ms.MaxTime = 1800
ms = MultiStart with properties:
    UseParallel: 0
    Display: 'final'
    FunctionTolerance: 1.0000e-04
    MaxTime: 1800
    OutputFcn: []
    PlotFcn: []
    StartPointsToRun: 'bounds'
    XTolerance: 1.0000e-03
```

Algorithms

For a detailed description of the algorithm, see “MultiStart Algorithm” on page 3-55.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

```matlab
options = optimoptions('solvername','UseParallel',true)
```
For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also
CustomStartPointSet | GlobalOptimSolution | GlobalSearch | RandomStartPointSet | run

Topics
“Global or Multiple Starting Point Search”
“Parallel Computing”
“Workflow for GlobalSearch and MultiStart” on page 3-3

Introduced in R2010a
paretosearch

Find points in Pareto set

Syntax

x = paretoshow(fun,nvars)
x = paretoshow(fun,nvars,A,b)
x = paretoshow(fun,nvars,A,b,Aeq,beq)
x = paretoshow(fun,nvars,A,b,Aeq,beq,lb,ub)
x = paretoshow(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon)
x = paretoshow(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = paretoshow(problem)
[x,fval] = paretoshow(____)
[x,fval,exitflag,output] = paretoshow(____)
[x,fval,exitflag,output,residuals] = paretoshow(____)

Description

x = paretoshow(fun,nvars) finds nondominated points of the multiobjective function fun. The nvars argument is the dimension of the optimization problem (number of decision variables).

x = paretoshow(fun,nvars,A,b) finds nondominated points subject to the linear inequalities A*x ≤ b. See “Linear Inequality Constraints” (Optimization Toolbox).

x = paretoshow(fun,nvars,A,b,Aeq,beq) finds nondominated points subject to the linear constraints Aeq*x = beq and A*x ≤ b. If no linear inequalities exist, set A = [] and b = [].

x = paretoshow(fun,nvars,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design variables in x, so that x is always in the range lb ≤ x ≤ ub. If no linear equalities exist, set Aeq = [] and beq = []. If x(i) has no lower bound, set lb(i) = -Inf. If x(i) has no upper bound, set ub(i) = Inf.

x = paretoshow(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon) applies the nonlinear inequalities c(x) defined in nonlcon. The paretoshow function finds
nondominated points such that \(c(x) \leq 0 \). If no bounds exist, set \(lb = [] \), \(ub = [] \), or both.

Note Currently, `paretosearch` does not support nonlinear equality constraints \(ceq(x) = 0 \).

\[
x = \text{paretosearch}(\text{fun}, nvars, A, b, Aeq, beq, lb, ub, nonlcon, options)\]
finds nondominated points with the optimization options specified in `options`. Use `optimoptions` to set these options. If there are no nonlinear inequality or equality constraints, set `nonlcon = []`.

\[
x = \text{paretosearch(problem)}\]
finds the nondominated points for `problem`, where `problem` is a structure described in `problem`.

\[
[x, fval] = \text{paretosearch}(__), \text{for any input variables, returns the matrix } fval, \text{the value of all the fitness functions in } f \text{ for all the solutions (rows) in } x. \text{ The output } fval \text{ has } nf \text{ columns, where } nf \text{ is the number of objectives, and has the same number of rows as } x.
\]

\[
[x, fval, exitflag, output] = \text{paretosearch}(__), \text{also returns } exitflag, \text{ an integer identifying the reason the algorithm stopped, and output, a structure that contains information about the solution process.}
\]

\[
[x, fval, exitflag, output, residuals] = \text{paretosearch}(__), \text{also returns residuals, a structure containing the constraint values at the solution points } x.
\]

Examples

Find Pareto Front

Find points on the Pareto front of a two-objective function of a two-dimensional variable.

```matlab
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
rng default % For reproducibility
x = paretosearch(fun,2);
Pareto set found that satisfies the constraints.
```
Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Plot the solution as a scatter plot.

```
plot(x(:,1),x(:,2),'m*')
xlabel('x(1)')
ylabel('x(2)')
```

Theoretically, the solution of this problem is a straight line from [-2,-1] to [1,2]. `paretosearch` returns evenly-spaced points close to this line.
Create Pareto Front with Linear Constraints

Create a Pareto front for a two-objective problem in two dimensions subject to the linear constraint \(x(1) + x(2) \leq 1 \).

```matlab
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
A = [1,1];
b = 1;
rng default % For reproducibility
x = paretosearch(fun,2,A,b);

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Plot the solution as a scatter plot.

```
Theoretically, the solution of this problem is a straight line from \([-2, -1]\) to \([0, 1]\). \texttt{paretosearch} returns evenly-spaced points close to this line.

Create Pareto Front with Bounds

Create a Pareto front for a two-objective problem in two dimensions subject to the bounds \(x(1) \geq 0\) and \(x(2) \leq 1\).

```matlab
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [0,-Inf]; % x(1) >= 0
ub = [Inf,1]; % x(2) <= 1
```
rng default % For reproducibility
x = paretosearch(fun,2,[],[],[],[],lb,ub);

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Plot the solution as a scatter plot.

plot(x(:,1),x(:,2),'m*')
xlabel('x(1)')
ylabel('x(2)')
All of the solution points are on the constraint boundaries \(x(1) = 0 \) or \(x(2) = 1 \).

Create Pareto Front with Nonlinear Constraints

Create a Pareto front for a two-objective problem in two dimensions subject to bounds
\[-1.1 \leq x(i) \leq 1.1 \] and the nonlinear constraint \(\|x\|^2 \leq 1.2 \). The nonlinear constraint function appears at the end of this example, and works if you run this example as a live script. To run this example otherwise, include the nonlinear constraint function as a file on your MATLAB® path.

To better see the effect of the nonlinear constraint, set options to use a large Pareto set size.

```matlab
rng default % For reproducibility
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [-1.1,-1.1];
ub = [1.1,1.1];
options = optimoptions('paretosearch','ParetoSetSize',200);
x = paretosearch(fun,2,[],[],[],[],lb,ub,@circlecons,options);
```

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Plot the solution as a scatter plot. Include a plot of the circular constraint boundary.

```matlab
figure
plot(x(:,1),x(:,2),'k*')
xlabel('x(1)')
ylabel('x(2)')
hold on
rectangle('Position',[-1.2 -1.2 2.4 2.4],'Curvature',1,'EdgeColor','r')
xlim([-1.2,0.5])
ylim([-0.5,1.2])
axis square
hold off
```
The solution points that have positive $x(1)$ values or negative $x(2)$ values are close to the nonlinear constraint boundary.

```matlab
function [c,ceq] = circlecons(x)
    ceq = [];
    c = norm(x)^2 - 1.2;
end
```

Find Pareto Front Using Options

To monitor the progress of `paretosearch`, specify the `'psplotparetof'` plot function.
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
options = optimoptions('paretosearch','PlotFcns','psplotparetof');
lb = [-4,-4];
ub = -lb;
x = paretosearch(fun,2,[],[],[],[],lb,ub,[],options);

Pareto set found that satisfies the constraints.
Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

The solution looks like a quarter-circular arc with radius 18, which can be shown to be the analytical solution.
Find Pareto Front in Function Space and Parameter Space

Obtain the Pareto front in both function space and parameter space by calling `paretosearch` with both the `x` and `fval` outputs. Set options to plot the Pareto set in both function space and parameter space.

```matlab
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [-4,-4];
ub = -lb;
options = optimoptions('paretosearch','PlotFcns',{'psplotparetof' 'psplotparetox'});
rng default % For reproducibility
[x,fval] = paretosearch(fun,2,[],[],[],[],lb,ub,[],options);
```
Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

The analytical solution in objective function space is a quarter-circular arc of radius 18. In parameter space, the analytical solution is a straight line from \([-2, -1]\) to \([1, 2]\). The solution points are close to the analytical curves.
Monitor Pareto Set Solution

Set options to monitor the Pareto set solution process. Also, obtain more outputs from `paretosearch` to enable you to understand the solution process.

```matlab
options = optimoptions('paretosearch','Display','iter',... 'PlotFcn',{@psplotparetof,'psplotparetox'});
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [-4,-4];
ub = -lb;
rng default % For reproducibility
[x,fval,exitflag,output] = paretosearch(fun,2,[],[],[],[],lb,ub,[],options);
```
Iter F-count NumSolutions Spread Volume
0 60 11 - 3.7872e+02
1 386 12 - 3.4654e+02
2 702 27 9.4324e-01 2.9452e+02
3 1029 27 - 2.9904e+02
4 1357 40 0.0000e+00 3.0154e+02
5 1697 60 1.4903e-01 3.0369e+02
6 1841 60 1.4515e-01 3.0439e+02
7 1961 60 1.7716e-01 3.0465e+02
8 2075 60 1.6123e-01 3.0475e+02
9 2189 60 1.7419e-01 3.0449e+02

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

Examine the additional outputs.

fprintf('Exit flag %d.\n',exitflag)

Exit flag 1.

disp(output)

 iterations: 10
 funcCount: 2189
 volume: 304.4256
 averagedistance: 0.0215
 spread: 0.1742
 maxconstraint: 0
 message: 'Pareto set found that satisfies the constraints. ...'
 rngstate: [1x1 struct]

Obtain Pareto Front Residuals

Obtain and examine the Pareto front constraint residuals. Create a problem with the linear inequality constraint \(\text{sum}(x) \leq -1/2 \) and the nonlinear inequality constraint \(\text{norm}(x)^2 \leq 1.2 \). For improved accuracy, use 200 points on the Pareto front, and a ParetoSetChangeTolerance of 1e-7, and give the natural bounds \(-1.2 \leq x(i) \leq 1.2\).
The nonlinear constraint function appears at the end of this example, and works if you run this example as a live script. To run this example otherwise, include the nonlinear constraint function as a file on your MATLAB® path.

fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
A = [1,1];
b = -1/2;
lb = [-1.2,-1.2];
ub = -lb;
nonlcon = @circlecons;
rng default % For reproducibility
options = optimoptions('paretosearch','ParetoSetChangeTolerance',1e-7,...
 'PlotFcn',{@psplotparetof 'psplotparetox'},'ParetoSetSize',200);

Call paretosearch using all outputs.

[x,fval,exitflag,output,residuals] = paretosearch(fun,2,A,b,[],[],lb,ub,nonlcon,options)
Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 'options.ConstraintTolerance'.

The inequality constraints reduce the size of the Pareto set compared to an unconstrained set. Examine the returned residuals.

\[
\text{fprintf('The maximum linear inequality constraint residual is } \%f.\n', \max(\text{residuals.ineqlin})
\]

The maximum linear inequality constraint residual is 0.000000.

\[
\text{fprintf('The maximum nonlinear inequality constraint residual is } \%f.\n', \max(\text{residuals.ineqnonlin})
\]
The maximum nonlinear inequality constraint residual is -0.000244.

The maximum returned residuals are negative, meaning that all the returned points are feasible. The maximum returned residuals are close to zero, meaning that each constraint is active for some points.

```matlab
function [c,ceq] = circlecons(x)
ceq = [];
c = norm(x)^2 - 1.2;
end
```

Input Arguments

fun — Fitness functions to optimize
function handle | function name

Fitness functions to optimize, specified as a function handle or function name.

fun is a function that accepts a real row vector of doubles x of length nvars and returns a real vector F(x) of objective function values. For details on writing fun, see “Compute Objective Functions“ on page 2-2.

If you set the **UseVectorized** option to **true**, then fun accepts a matrix of size n-by-nvars, where the matrix represents n individuals. fun returns a matrix of size n-by-m, where m is the number of objective functions. See “Vectorize the Fitness Function” on page 5-139.

Example: @(x)[sin(x),cos(x)]

Data Types: char | function_handle | string

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length nvars to fun.

Example: 4

Data Types: double

A — Linear inequality constraints
real matrix
Linear inequality constraints, specified as a real matrix. \(A \) is an \(M \)-by-\(nvars \) matrix, where \(M \) is the number of inequalities.

\(A \) encodes the \(M \) linear inequalities

\[
Ax \\leq b,
\]

where \(x \) is the column vector of \(nvars \) variables \(x(:) \), and \(b \) is a column vector with \(M \) elements.

For example, to specify

\[
\begin{align*}
2x_2 & \leq 10 \\
4x_2 & \leq 20 \\
6x_2 & \leq 30,
\end{align*}
\]

give these constraints:

\[
A = \begin{bmatrix} 1 & 2; 3 & 4; 5 & 6 \end{bmatrix};
\]
\[
b = \begin{bmatrix} 10; 20; 30 \end{bmatrix};
\]

Example: To specify that the control variables sum to 1 or less, give the constraints \(A = \text{ones}(1,N) \) and \(b = 1 \).

Data Types: double

\(\textbf{b} \) — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. \(b \) is an \(M \)-element vector related to the \(A \) matrix. If you pass \(b \) as a row vector, solvers internally convert \(b \) to the column vector \(b(:) \).

\(b \) encodes the \(M \) linear inequalities

\[
Ax \\leq b,
\]

where \(x \) is the column vector of \(N \) variables \(x(:) \), and \(A \) is a matrix of size \(M \)-by-\(N \).

For example, to specify

\[
\begin{align*}
2x_2 & \leq 10 \\
4x_2 & \leq 20
\end{align*}
\]
5x_1 + 6x_2 \leq 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N) and b = 1.

Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an M_e-by-$nvars$ matrix, where M_e is the number of equalities.

Aeq encodes the M_e linear equalities

$$Aeq \cdot x = beq,$$

where x is the column vector of N variables $x(:)$, and beq is a column vector with M_e elements.

For example, to specify

$$x_1 + 2x_2 + 3x_3 = 10$$
$$2x_1 + 4x_2 + x_3 = 20,$$

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints $Aeq = \text{ones}(1,N)$ and $beq = 1$.

Data Types: double

beq — Linear equality constraints
real vector
Linear equality constraints, specified as a real vector. `beq` is an M_e-element vector related to the A_{eq} matrix. If you pass `beq` as a row vector, solvers internally convert `beq` to the column vector `beq(:)`.

`beq` encodes the M_e linear equalities

$$A_{eq} \times x = beq,$$

where x is the column vector of N variables $x(:)$, and A_{eq} is a matrix of size M_{eq}-by-N.

For example, to specify

$$x_1 + 2x_2 + 3x_3 = 10 \quad 2x_1 + 4x_2 + x_3 = 20,$$

give these constraints:

```matlab
Aeq = [1,2,3;2,4,1]; beq = [10;20];
```

Example: To specify that the control variables sum to 1, give the constraints $A_{eq} = \text{ones}(1,N)$ and $beq = 1$.

Data Types: `double`

lb — Lower bounds

`[]` (default) | real vector or array

Lower bounds, specified as a real vector or array of doubles. `lb` represents the lower bounds element-wise in $lb \leq x \leq ub$.

Internally, `paretosearch` converts an array `lb` to the vector `lb(:)`.

Example: `lb = [0;-Inf;4]` means $x(1) \geq 0$, $x(3) \geq 4$.

Data Types: `double`

ub — Upper bounds

`[]` (default) | real vector or array

Upper bounds, specified as a real vector or array of doubles. `ub` represents the upper bounds element-wise in $lb \leq x \leq ub$.

Internally, `paretosearch` converts an array `ub` to the vector `ub(:)`.
Example: \(\text{ub} = [\text{Inf}; 4; 10] \) means \(x(2) \leq 4, x(3) \leq 10 \).

Data Types: double

nonlcon — Nonlinear constraints

function handle | function name

Nonlinear constraints, specified as a function handle or function name. \(\text{nonlcon} \) is a function that accepts a row vector \(x \) and returns two row vectors, \(c(x) \) and \(\text{ceq}(x) \).

- \(c(x) \) is the row vector of nonlinear inequality constraints at \(x \). The \text{paretosearch} function attempts to satisfy \(c(x) \leq 0 \) for all entries of \(c \).
- \(\text{ceq}(x) \) must return \([\,]\), because currently \text{paretosearch} does not support nonlinear equality constraints.

If you set the UseVectorized option to true, then \(\text{nonlcon} \) accepts a matrix of size \(n \)-by-\(nvars \), where the matrix represents \(n \) individuals. \(\text{nonlcon} \) returns a matrix of size \(n \)-by-\(mc \) in the first argument, where \(mc \) is the number of nonlinear inequality constraints. See “Vectorize the Fitness Function” on page 5-139.

For example, \(x = \text{paretosearch}(@\text{myfun}, nvars, A, b, Aeq, beq, lb, ub, @\text{mycon}) \), where \(\text{mycon} \) is a MATLAB function such as the following:

```matlab
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = [] % No nonlinear equalities at x.
```

For more information, see “Nonlinear Constraints” (Optimization Toolbox).

Data Types: char | function_handle | string

options — Optimization options

output of optimoptions | structure

Optimization options, specified as the output of \text{optimoptions} or as a structure.

\text{optimoptions} hides the options listed in \textit{italics}; see “Options that \text{optimoptions} Hides” on page 11-87.

\{\} denotes the default value. See option details in “Pattern Search Options” on page 11-9.
Options for `patternsearch` and `paretosearch`

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstraintTolerance</td>
<td>Tolerance on constraints. For an options structure, use TolCon.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display.</td>
<td>'off'</td>
</tr>
<tr>
<td>MaxFunctionEvaluations</td>
<td>Maximum number of objective function evaluations. For an options structure, use MaxFunEvals.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>MaxIterations</td>
<td>Maximum number of iterations. For an options structure, use MaxIter.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Total time (in seconds) allowed for optimization. For an options structure, use TimeLimit.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshTolerance</td>
<td>Tolerance on the mesh size. For an options structure, use TolMesh.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Function that an optimization function calls at each iteration. Specify as a function handle or a cell array of function handles.</td>
<td>Function handle or cell array of function handles on page 11-25</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Plots of output from the pattern search. Specify as the name of a built-in plot function, a function handle, or a cell array of names of built-in plot functions or function handles. For an options structure, use <code>PlotFcns</code>.</td>
<td><code>{{}}</code></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>PollMethod</td>
<td>Polling strategy used in the pattern search.</td>
<td>{'GPSPositiveBasis 2N'}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For paretosearch only:</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute objective and nonlinear constraint functions in parallel. See “Vectorized and Parallel Options (User Function Evaluation)” on page 11-28 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
<td>true</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Specifies whether functions are vectorized. See “Vectorized and Parallel Options (User Function Evaluation)” on page 11-28 and “Vectorize the Objective and Constraint Functions” on page 4-111.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For an options structure, use Vectorized = 'on' or 'off'.</td>
</tr>
</tbody>
</table>
Options for `paretosearch` Only

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>InitialPoints</code></td>
<td>Initial points for <code>paretosearch</code>. Use one of these data types:</td>
<td>Matrix with <code>nvars</code> columns</td>
</tr>
<tr>
<td></td>
<td>• Matrix with <code>nvars</code> columns, where each row represents one initial point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Structure containing the following fields (all fields are optional except <code>X0</code>):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>X0</code> — Matrix with <code>nvars</code> columns, where each row represents one initial point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>Fvals</code> — Matrix with <code>numObjectives</code> columns, where each row represents the objective function values at the corresponding point in <code>X0</code>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>Cineq</code> — Matrix with <code>numIneq</code> columns, where each row represents the nonlinear inequality constraint values at the corresponding point in <code>X0</code>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>paretosearch</code> computes any missing values in the <code>Fvals</code> and <code>Cineq</code> fields.</td>
<td></td>
</tr>
<tr>
<td><code>MinPollFraction</code></td>
<td>Minimum fraction of the pattern to poll.</td>
<td>Scalar from 0 through 1</td>
</tr>
<tr>
<td><code>ParetoSetSize</code></td>
<td>Number of points in the Pareto set.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>ParetoSetChangeTolerance</td>
<td>The solver stops when the relative change in any applicable measure is less than ParetoSetChangeTolerance, or the maximum of the squared Fourier transforms of the time series of these measures is relatively small. See “paretosearch Algorithm” on page 9-10.</td>
<td>Positive scalar</td>
</tr>
</tbody>
</table>

Note Setting ParetoSetChangeTolerance < \sqrt{\text{eps}} \sim 1.5e-8 is not recommended.
Options for `patternsearch` Only

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>With <code>Cache</code> set to 'on', <code>patternsearch</code> keeps a history of the mesh points it polls. At subsequent iterations, <code>patternsearch</code> does not poll points close to those already polled. Use this option if <code>patternsearch</code> runs slowly while computing the objective function. If the objective function is stochastic, do not use this option.</td>
<td>'on'</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the history.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Largest distance from the current mesh point to any point in the history in order for <code>patternsearch</code> to avoid polling the current point. Use if <code>Cache</code> option is set to 'on'.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>Tolerance on the function. Iterations stop if the change in function value is less than <code>FunctionTolerance</code> and the mesh size is less than <code>StepTolerance</code>. This option does not apply to MADS polling. For an options structure, use <code>TolFun</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialMeshSize</td>
<td>Initial mesh size for the algorithm. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of the penalty parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-55.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll or search step. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshContractionFactor</td>
<td>Mesh contraction factor for unsuccessful iteration. For an options structure, use <code>MeshContraction</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshExpansionFactor</td>
<td>Mesh expansion factor for successful iteration. For an options structure, use <code>MeshExpansion</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum. See “Mesh Options” on page 11-21.</td>
<td>'off'</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-55.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Specifies that plot functions are called at every interval.</td>
<td>positive integer</td>
</tr>
<tr>
<td>PollOrderAlgorithm</td>
<td>Order of poll directions in pattern search.</td>
<td>'Random'</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use PollingOrder.</td>
<td></td>
</tr>
<tr>
<td>ScaleMesh</td>
<td>Automatic scaling of variables.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use ScaleMesh = 'on' or 'off'.</td>
<td></td>
</tr>
<tr>
<td>SearchFcn</td>
<td>Type of search used in pattern search. Specify as a name or a function handle.</td>
<td>'GPSPositiveBasis2N'</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use SearchMethod.</td>
<td></td>
</tr>
<tr>
<td>StepTolerance</td>
<td>Tolerance on the variable. Iterations stop if both the change in position and the mesh size are less than StepTolerance. This option does not apply to MADS polling.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance. See “Constraint Parameters” on page 11-23.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>UseCompletePoll</td>
<td>Complete poll around the current point. See “How Pattern Search Polling Works” on page 4-30. For an options structure, use CompletePoll = 'on' or 'off'.</td>
<td>true</td>
</tr>
<tr>
<td>UseCompleteSearch</td>
<td>Complete search around current point when the search method is a poll method. See “Searching and Polling” on page 4-43. For an options structure, use CompleteSearch = 'on' or 'off'.</td>
<td>true</td>
</tr>
</tbody>
</table>

Example: options = optimoptions('paretosearch','Display','none','UseParallel',true)

problem — Problem structure

Problem structure, specified as a structure with the following fields:

- **objective** — Objective function
- **x0** — Starting point
- **Aineq** — Matrix for linear inequality constraints
- **bineq** — Vector for linear inequality constraints
- **Aeq** — Matrix for linear equality constraints
- **beq** — Vector for linear equality constraints
- **lb** — Lower bound for x
- **ub** — Upper bound for x
- **nonlcon** — Nonlinear constraint function
- **solver** — 'paretosearch'
- **options** — Options created with optimoptions
- **rngstate** — Optional field to reset the state of the random number generator
Note All fields in problem are required, except for rngstate, which is optional.

Data Types: struct

Output Arguments

x — Pareto points
m-by-nvars array

Pareto points, returned as an m-by-nvars array, where m is the number of points on the Pareto front. Each row of x represents one point on the Pareto front.

fval — Function values on Pareto front
m-by-nf array

Function values on the Pareto front, returned as an m-by-nf array. m is the number of points on the Pareto front, and nf is the number of fitness functions. Each row of fval represents the function values at one Pareto point in x.

exitflag — Reason paretosearch stopped
integer

Reason paretosearch stopped, returned as one of the integer values in this table.
<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Stopping Condition</th>
</tr>
</thead>
</table>
| 1 | One of the following conditions is met.
 • Mesh size of all incumbents is less than `options.MeshTolerance` and constraints (if any) are satisfied to within `options.ConstraintTolerance`.
 • Relative change in the spread of the Pareto set is less than `options.ParetoSetChangeTolerance` and constraints (if any) are satisfied to within `options.ConstraintTolerance`. |
<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Stopping Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Number of iterations exceeds <code>options.MaxIterations</code>, or the number of function evaluations exceeds <code>options.MaxFunctionEvaluations</code>.</td>
</tr>
<tr>
<td></td>
<td>Tolerance.</td>
</tr>
<tr>
<td></td>
<td>• Relative change in the volume of the Pareto set is less than options.ParetoSetChangeTolerance and constraints (if any) are satisfied to within options.ConstraintTolerance.</td>
</tr>
<tr>
<td>Exit Flag</td>
<td>Stopping Condition</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization is stopped by an output function or plot function.</td>
</tr>
<tr>
<td>-2</td>
<td>Solver cannot find a point satisfying all the constraints.</td>
</tr>
<tr>
<td>-5</td>
<td>Optimization time exceeds options.Max Time.</td>
</tr>
</tbody>
</table>

output — Information about the optimization process

Information about the optimization process, returned as a structure with these fields:

- **iterations** — Total number of iterations.
- **funcCount** — Total number of function evaluations.
- **volume** — Hyper-volume of the set formed from the Pareto points in function space. See “Definitions for paretosearch Algorithm” on page 9-10.
- **averagedistance** — Average distance measure of the Pareto points in function space. See “Definitions for paretosearch Algorithm” on page 9-10.
- **spread** — Average spread measure of the Pareto points. See “Definitions for paretosearch Algorithm” on page 9-10.
- **maxconstraint** — Maximum constraint violation, if any.
- **message** — Reason why the algorithm terminated.
- **rngstate** — State of the MATLAB random number generator just before the algorithm starts. You can use the values in rngstate to reproduce the output when you use a random poll method such as 'MADSPositiveBasis2N' or when you use the default quasirandom method of creating the initial population. See “Reproduce Results” on page 5-92, which discusses the identical technique for ga.
residuals — Constraint residuals at x
structure

Constraint residuals at x, returned as a structure with these fields (a glossary of the field size terms and entries follows the table).

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Size</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>m-by-nvars</td>
<td>lb - x</td>
</tr>
<tr>
<td>upper</td>
<td>m-by-nvars</td>
<td>x - ub</td>
</tr>
<tr>
<td>ineqlin</td>
<td>m-by-ncon</td>
<td>A*x - b</td>
</tr>
<tr>
<td>eqlin</td>
<td>m-by-ncon</td>
<td></td>
</tr>
<tr>
<td>ineqnonlin</td>
<td>m-by-ncon</td>
<td>c(x)</td>
</tr>
</tbody>
</table>

- m — Number of returned points x on the Pareto front
- nvars — Number of control variables
- ncon — Number of constraints of the relevant type (such as number of rows of A or number of returned nonlinear equalities)
- c(x) — Numeric values of the nonlinear constraint functions

Definitions

Nondominated

Nondominated points, also called noninferior points, are points for which no other point has lower values of all objective functions. In other words, for nondominated points, none of the objective function values can be improved (lowered) without raising other objective function values. See “What Is Multiobjective Optimization?” on page 9-2.

Algorithms

paretosearch uses a pattern search to search for points on the Pareto front. For details, see “paretosearch Algorithm” on page 9-10.
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also

gamultiobj | patternsearch

Topics

“Multiobjective Optimization”

Introduced in R2018b
particleswarm

Particle swarm optimization

Syntax

\[
x = \text{particleswarm}(\text{fun}, \text{nvars})
\]

\[
x = \text{particleswarm}(\text{fun}, \text{nvars}, \text{lb}, \text{ub})
\]

\[
x = \text{particleswarm}(\text{fun}, \text{nvars}, \text{lb}, \text{ub}, \text{options})
\]

\[
x = \text{particleswarm}(\text{problem})
\]

\[
[x, fval, exitflag, output] = \text{particleswarm}(__)
\]

Description

\[
x = \text{particleswarm}(\text{fun}, \text{nvars})\] attempts to find a vector \(x \) that achieves a local minimum of \(\text{fun} \). \(\text{nvars} \) is the dimension (number of design variables) of \(\text{fun} \).

Note “Passing Extra Parameters” (Optimization Toolbox) explains how to pass extra parameters to the objective function, if necessary.

\[
x = \text{particleswarm}(\text{fun}, \text{nvars}, \text{lb}, \text{ub})\] defines a set of lower and upper bounds on the design variables, \(x \), so that a solution is found in the range \(\text{lb} \leq x \leq \text{ub} \).

\[
x = \text{particleswarm}(\text{fun}, \text{nvars}, \text{lb}, \text{ub}, \text{options})\] minimizes with the default optimization parameters replaced by values in \(\text{options} \). Set \(\text{lb} = [\] \) and \(\text{ub} = [\] \) if no bounds exist.

\[
x = \text{particleswarm}(\text{problem})\] finds the minimum for \(\text{problem} \), where \(\text{problem} \) is a structure.

\[
[x, fval, exitflag, output] = \text{particleswarm}(__),\] for any input arguments described above, returns:

- A scalar \(fval \), which is the objective function value \(\text{fun}(x) \)
• A value exitflag describing the exit condition
• A structure output containing information about the optimization process

Examples

Minimize a Simple Function

Minimize a simple function of two variables.

Define the objective function.

\[
\text{fun} = @(x)x(1)\times\exp(-\text{norm}(x)^2);
\]

Call \texttt{particleswarm} to minimize the function.

\[
\text{rng default} \quad \% \text{For reproducibility}
\text{nvars} = 2;
\text{x} = \text{particleswarm}(\text{fun,nvars})
\]

Optimization ended: relative change in the objective value
over the last \texttt{OPTIONS.MaxStallIterations} iterations is less than \texttt{OPTIONS.FunctionTolerance}.

\[
\text{x} =
\]

629.4474 311.4814

This solution is far from the true minimum, as you see in a function plot.

\texttt{fsurf(@(x,y)x.*exp(-(x.^2+y.^2))}
Usually, it is best to set bounds. See “Minimize a Simple Function with Bounds” on page 12-155.

Minimize a Simple Function with Bounds

Minimize a simple function of two variables with bound constraints.

Define the objective function.

```matlab
fun = @(x)x(1)*exp(-norm(x)^2);
```

Set bounds on the variables.
lb = [-10,-15];
ub = [15,20];

Call `particleswarm` to minimize the function.

rng default % For reproducibility
nvars = 2;
x = particleswarm(fun,nvars,lb,ub)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2
 -0.7071 -0.0000

Minimize Using Nondefault Options

Use a larger population and a hybrid function to try to get a better solution.

Specify the objective function and bounds.

fun = @(x)x(1)*exp(-norm(x)^2);
lb = [-10,-15];
ub = [15,20];

Specify the options.

options = optimoptions('particleswarm','SwarmSize',100,'HybridFcn',@fmincon);

Call `particleswarm` to minimize the function.

rng default % For reproducibility
nvars = 2;
x = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2
 -0.7071 -0.0000
Examine the Solution Process

Return the optional output arguments to examine the solution process in more detail.

Define the problem.

```matlab
fun = @(x)x(1)*exp(-norm(x)^2);
lb = [-10,-15];
ub = [15,20];
options = optimoptions('particleswarm','SwarmSize',50,'HybridFcn',@fmincon);
```

Call `particleswarm` with all outputs to minimize the function and get information about the solution process.

```matlab
rng default  % For reproducibility
nvars = 2;
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options)
```

Optimization ended: relative change in the objective value over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

```matlab
x = 1×2
   -0.7071   -0.0000
```

```matlab
fval = -0.4289
exitflag = 1
output = struct with fields:
    rngstate: [1x1 struct]
    iterations: 43
    funccount: 2203
    message: 'Optimization ended: relative change in the objective value ...'
```
Input Arguments

fun — Objective function
function handle | function name

Objective function, specified as a function handle or function name. Write the objective function to accept a row vector of length nvars and return a scalar value.

When the 'UseVectorized' option is true, write fun to accept a pop-by-nvars matrix, where pop is the current population size. In this case, fun returns a vector the same length as pop containing the fitness function values. Ensure that fun does not assume any particular size for pop, since particleswarm can pass a single member of a population even in a vectorized calculation.

Example: fun = @(x)(x-[4,2]).^2

Data Types: char | function_handle | string

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length nvars to fun.

Example: 4

Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a real vector or array of doubles. lb represents the lower bounds element-wise in lb ≤ x ≤ ub.

Internally, particleswarm converts an array lb to the vector lb(:).

Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.

Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a real vector or array of doubles. ub represents the upper bounds element-wise in lb ≤ x ≤ ub.
Internally, `particleswarm` converts an array `ub` to the vector `ub(:)`.

Example: `ub = [Inf;4;10]` means $x(2) \leq 4$, $x(3) \leq 10$.

Data Types: `double`

options — Options for `particleswarm`

`options` created using `optimoptions`

Options for `particleswarm`, specified as the output of the `optimoptions` function.

Some options are absent from the `optimoptions` display. These options are listed in italics. For details, see “View Options” (Optimization Toolbox).

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>CreationFcn</code></td>
<td>Function that creates the initial swarm. Specify as 'pswcreationuniform' or a function handle. Default is 'pswcreationuniform'. See “Swarm Creation” on page 11-63.</td>
</tr>
<tr>
<td><code>Display</code></td>
<td>Level of display returned to the command line.</td>
</tr>
<tr>
<td></td>
<td>• 'off' or 'none' displays no output.</td>
</tr>
<tr>
<td></td>
<td>• 'final' displays just the final output (default).</td>
</tr>
<tr>
<td></td>
<td>• 'iter' gives iterative display.</td>
</tr>
<tr>
<td><code>DisplayInterval</code></td>
<td>Interval for iterative display. The iterative display prints one line for every <code>DisplayInterval</code> iterations. Default is 1.</td>
</tr>
<tr>
<td><code>FunctionTolerance</code></td>
<td>Nonnegative scalar with default 1e-6. Iterations end when the relative change in best objective function value over the last <code>MaxStallIterations</code> iterations is less than <code>options.FunctionTolerance</code>.</td>
</tr>
<tr>
<td><code>FunValCheck</code></td>
<td>Check whether objective function and constraints values are valid. 'on' displays an error when the objective function or constraints return a value that is complex, <code>Inf</code>, or <code>NaN</code>. The default, 'off', displays no error.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>HybridFcn</td>
<td>Function that continues the optimization after <code>particleswarm</code> terminates. Specify as a name or a function handle. Possible values: * 'fmincon' * 'fminsearch' * 'fminunc' * 'patternsearch' Can also be a cell array specifying the hybrid function and its options, such as <code>{@fmincon,fminconopts}</code>. Default is <code>[]</code>. See “Hybrid Function” on page 11-66. See “When to Use a Hybrid Function” on page 5-161.</td>
</tr>
<tr>
<td>InertiaRange</td>
<td>Two-element real vector with same sign values in increasing order. Gives the lower and upper bound of the adaptive inertia. To obtain a constant (nonadaptive) inertia, set both elements of <code>InertiaRange</code> to the same value. Default is <code>[0.1,1.1]</code>. See “Particle Swarm Optimization Algorithm” on page 6-10.</td>
</tr>
<tr>
<td>InitialSwarmMatrix</td>
<td>Initial population or partial population of particles. M-by-nvars matrix, where each row represents one particle. If M < SwarmSize, then <code>particleswarm</code> creates more particles so that the total number is SwarmSize. If M > SwarmSize, then <code>particleswarm</code> uses the first SwarmSize rows.</td>
</tr>
<tr>
<td>InitialSwarmSpan</td>
<td>Initial range of particle positions that <code>@pswcreationuniform</code> creates. Can be a positive scalar or a vector with nvars elements, where nvars is the number of variables. The range for any particle component is <code>-InitialSwarmSpan/2,InitialSwarmSpan/2</code>, shifted and scaled if necessary to match any bounds. Default is 2000. <code>InitialSwarmSpan</code> also affects the range of initial particle velocities. See “Initialization” on page 6-10.</td>
</tr>
<tr>
<td>MaxIterations</td>
<td>Maximum number of iterations <code>particleswarm</code> takes. Default is 200*nvars, where nvars is the number of variables.</td>
</tr>
<tr>
<td>MaxStallIterations</td>
<td>Positive integer with default 20. Iterations end when the relative change in best objective function value over the last <code>MaxStallIterations</code> iterations is less than <code>options.FunctionTolerance</code>.</td>
</tr>
<tr>
<td>MaxStallTime</td>
<td>Maximum number of seconds without an improvement in the best known objective function value. Positive scalar with default Inf.</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Maximum time in seconds that particleswarm runs. Default is Inf.</td>
</tr>
<tr>
<td>MinNeighborsFraction</td>
<td>Minimum adaptive neighborhood size, a scalar from 0 to 1. Default is 0.25. See “Particle Swarm Optimization Algorithm” on page 6-10.</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Minimum objective value, a stopping criterion. Scalar, with default -Inf.</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Function handle or cell array of function handles. Output functions can read iterative data, and stop the solver. Default is ‘[]. See “Output Function and Plot Function” on page 11-67.</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Function name, function handle, or cell array of function handles. For custom plot functions, pass function handles. Plot functions can read iterative data, plot each iteration, and stop the solver. Default is ‘[]. Available built-in plot function: ‘pswplotbestf’. See “Output Function and Plot Function” on page 11-67.</td>
</tr>
<tr>
<td>SelfAdjustmentWeight</td>
<td>Weighting of each particle’s best position when adjusting velocity. Finite scalar with default 1.49. See “Particle Swarm Optimization Algorithm” on page 6-10.</td>
</tr>
<tr>
<td>SocialAdjustmentWeight</td>
<td>Weighting of the neighborhood’s best position when adjusting velocity. Finite scalar with default 1.49. See “Particle Swarm Optimization Algorithm” on page 6-10.</td>
</tr>
<tr>
<td>SwarmSize</td>
<td>Number of particles in the swarm, an integer greater than 1. Default is (\min(100, 10^nvars)), where (nvars) is the number of variables.</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute objective function in parallel when true. Default is false. See “Parallel or Vectorized Function Evaluation” on page 11-69.</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Compute objective function in vectorized fashion when true. Default is false. See “Parallel or Vectorized Function Evaluation” on page 11-69.</td>
</tr>
</tbody>
</table>

problem — Optimization problem

structure

Optimization problem, specified as a structure with the following fields.

- **solver** 'particleswarm'
objective Function handle to the objective function, or name of the objective function.

nvars Number of variables in problem.

lb Vector or array of lower bounds.

ub Vector or array of upper bounds.

options Options created by `optimoptions`.

rngstate Optional state of the random number generator at the beginning of the solution process.

Data Types: `struct`

Output Arguments

x — Solution
real vector

Solution, returned as a real vector that minimizes the objective function subject to any bound constraints.

fval — Objective value
real scalar

Objective value, returned as the real scalar `fun(x)`.

exitflag — Algorithm stopping condition
integer

Algorithm stopping condition, returned as an integer identifying the reason the algorithm stopped. The following lists the values of `exitflag` and the corresponding reasons `particleswarm` stopped.

- **1** Relative change in the objective value over the last `options.MaxStallIterations` iterations is less than `options.FunctionTolerance`.
- **0** Number of iterations exceeded `options.MaxIterations`.
- **-1** Iterations stopped by output function or plot function.
-2 Bounds are inconsistent: for some i, lb(i) > ub(i).
-3 Best objective function value is at or below options.ObjectiveLimit.
-4 Best objective function value did not change within options.MaxStallTime seconds.
-5 Run time exceeded options.MaxTime seconds.

output — Solution process summary
structure

Solution process summary, returned as a structure containing information about the optimization process.

iterations Number of solver iterations
funccount Number of objective function evaluations.
message Reason the algorithm stopped.
 rngstate State of the default random number generator just before the algorithm started.

Algorithms

For a description of the particle swarm optimization algorithm, see “Particle Swarm Optimization Algorithm” on page 6-10.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)
For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also

`ga` | `patternsearch`

Topics

“Optimize Using Particle Swarm” on page 6-3
“Particle Swarm Output Function” on page 6-6
“What Is Particle Swarm Optimization?” on page 6-2
“Optimization Problem Setup”

Introduced in R2014b
patternsearch

Find minimum of function using pattern search

Syntax

\[
x = \text{patternsearch}(\text{fun},x0)
\]

\[
x = \text{patternsearch}(\text{fun},x0,A,b)
\]

\[
x = \text{patternsearch}(\text{fun},x0,A,b,Aeq,beq)
\]

\[
x = \text{patternsearch}(\text{fun},x0,A,b,Aeq,beq,lb,ub)
\]

\[
x = \text{patternsearch}(\text{fun},x0,A,b,Aeq,beq,lb,ub,\text{nonlcon})
\]

\[
x = \text{patternsearch}(\text{fun},x0,A,b,Aeq,beq,lb,ub,\text{nonlcon},\text{options})
\]

\[
x = \text{patternsearch}(\text{problem})
\]

\[
[x,\text{fval}] = \text{patternsearch}(\text{___})
\]

\[
[x,\text{fval},\text{exitflag},\text{output}] = \text{patternsearch}(\text{___})
\]

Description

\[
x = \text{patternsearch}(\text{fun},x0)
\] finds a local minimum, \(x\), to the function handle \(\text{fun}\) that computes the values of the objective function. \(x0\) is a real vector specifying an initial point for the pattern search algorithm.

Note “Passing Extra Parameters” (Optimization Toolbox) explains how to pass extra parameters to the objective function and nonlinear constraint functions, if necessary.

\[
x = \text{patternsearch}(\text{fun},x0,A,b)
\] minimizes \(\text{fun}\) subject to the linear inequalities \(A^x \leq b\). See “Linear Inequality Constraints” (Optimization Toolbox).

\[
x = \text{patternsearch}(\text{fun},x0,A,b,Aeq,beq)
\] minimizes \(\text{fun}\) subject to the linear equalities \(Aeq^x = beq\) and \(A^x \leq b\). If no linear inequalities exist, set \(A = []\) and \(b = []\).

\[
x = \text{patternsearch}(\text{fun},x0,A,b,Aeq,beq,lb,ub)
\] defines a set of lower and upper bounds on the design variables in \(x\), so that the solution is always in the range.
\[\text{lb} \leq x \leq \text{ub}. \text{ If no linear equalities exist, set } A_{eq} = [] \text{ and } b_{eq} = []. \text{ If } x(i) \text{ has no lower bound, set } lb(i) = -\infty. \text{ If } x(i) \text{ has no upper bound, set } ub(i) = \infty. \]

\[x = \text{patternsearch}(\text{fun}, x0, A, b, A_{eq}, b_{eq}, lb, ub, \text{nonlcon}) \] subjects the minimization to the nonlinear inequalities \(c(x) \) or equalities \(ceq(x) \) defined in \(\text{nonlcon} \). \(\text{patternsearch} \) optimizes \(\text{fun} \) such that \(c(x) \leq 0 \) and \(ceq(x) = 0 \). If no bounds exist, set \(lb = [], ub = [] \), or both.

\[x = \text{patternsearch}(\text{fun}, x0, A, b, A_{eq}, b_{eq}, lb, ub, \text{nonlcon}, \text{options}) \] minimizes \(\text{fun} \) with the optimization options specified in \(\text{options} \). Use \(\text{optimoptions} \) to set these options. If there are no nonlinear inequality or equality constraints, set \(\text{nonlcon} = [] \).

\[x = \text{patternsearch}(\text{problem}) \] finds the minimum for \(\text{problem} \), where \(\text{problem} \) is a structure described in “Input Arguments” on page 12-174. Create the \(\text{problem} \) structure by exporting a problem from Optimization app, as described in “Exporting Your Work” (Optimization Toolbox).

\[[x, fval] = \text{patternsearch}(__) \], for any syntax, returns the value of the objective function \(\text{fun} \) at the solution \(x \).

\[[x, fval, \text{exitflag}, \text{output}] = \text{patternsearch}(__) \] additionally returns \(\text{exitflag}, \text{a value that describes the exit condition of patternsearch, and a structure output with information about the optimization process.} \)

Examples

Unconstrained Pattern Search Minimization

Minimize an unconstrained problem using the \(\text{patternsearch} \) solver.

Create the following two-variable objective function. On your MATLAB® path, save the following code to a file named \text{psobj.m}.

\[
\begin{align*}
\text{function } & y = \text{psobj}(x) \\
y & = \exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*\cos(x(2)));
\end{align*}
\]

Set the objective function to @psobj.
fun = @psobj;

Find the minimum, starting at the point $[0,0]$.

$x0 = [0,0];$
$x = \text{patternsearch}(\text{fun},x0)$

Optimization terminated: mesh size less than options.MeshTolerance.

$x =
-0.7037 \quad -0.1860$

Pattern Search with a Linear Inequality Constraint

Minimize a function subject to some linear inequality constraints.

Create the following two-variable objective function. On your MATLAB® path, save the following code to a file named `psobj.m`.

```matlab
function y = psobj(x)

y = \exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*\cos(x(2)));

end
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Set the two linear inequality constraints.

```matlab
A = [-3,-2;
    -4,-7];
b = [-1;-8];
```

Find the minimum, starting at the point $[0.5,-0.5]$.

```matlab
x0 = [0.5,-0.5];
x = \text{patternsearch}(\text{fun},x0,A,b)
```

Optimization terminated: mesh size less than options.MeshTolerance.
Pattern Search with Bounds

Find the minimum of a function that has only bound constraints.

Create the following two-variable objective function. On your MATLAB® path, save the following code to a file named `psobj.m`.

```matlab
function y = psobj(x)
y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Find the minimum when \(0 \leq x(1) \leq \infty\) and \(-\infty \leq x(2) \leq -3\).

```matlab
lb = [0,-Inf];
ub = [Inf,-3];
A = [];
b = [];
Aeq = [];
beq = [];

Find the minimum, starting at the point \([1,-5]\).

```matlab
x0 = [1,-5];
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub)
```

Optimization terminated: mesh size less than options.MeshTolerance.

```matlab
x =
 0.1880 -3.0000
```
Pattern Search with Nonlinear Constraints

Find the minimum of a function subject to a nonlinear inequality constraint.

Create the following two-variable objective function. On your MATLAB® path, save the following code to a file named `psobj.m`.

```matlab
function y = psobj(x)
 y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Create the nonlinear constraint

\[
\frac{xy}{2} + (x + 2)^2 + \frac{(y - 2)^2}{2} \leq 2.
\]

To do so, on your MATLAB path, save the following code to a file named `ellipsetilt.m`.

```matlab
function [c,ceq] = ellipsetilt(x)
 ceq = [];
 c = x(1)*x(2)/2 + (x(1)+2)^2 + (x(2)-2)^2/2 - 2;
end
```

Start `patternsearch` from the initial point `[-2,-2]`.

```matlab
x0 = [-2,-2];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @ellipsetilt;
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
```

Optimization terminated: mesh size less than options.MeshTolerance and constraint violation is less than options.ConstraintTolerance.
Pattern Search with Nondefault Options

Set options to observe the progress of the patternsearch solution process.

Create the following two-variable objective function. On your MATLAB path, save the following code to a file named psobj.m.

```matlab
function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)))

end
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Set options to give iterative display and to plot the objective function at each iteration.

```matlab
options = optimoptions('patternsearch','Display','iter','PlotFcn',@psplotbestf);
```

Find the unconstrained minimum of the objective starting from the point `[0,0]`.

```matlab
x0 = [0,0];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
```
Best Function Value: -7.02545

<table>
<thead>
<tr>
<th>Iter</th>
<th>f-count</th>
<th>f(x)</th>
<th>MeshSize</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>-5.88607</td>
<td>2</td>
<td>Successful Poll</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>-5.88607</td>
<td>1</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>-5.88607</td>
<td>0.5</td>
<td>Refine Mesh</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>-5.88607</td>
<td>0.25</td>
<td>Refine Mesh</td>
</tr>
</tbody>
</table>

(output trimmed)

63   218       -7.02545  1.907e-06  Refine Mesh
64   221       -7.02545  3.815e-06  Successful Poll
65   225       -7.02545  1.907e-06  Refine Mesh
66   229       -7.02545  9.537e-07  Refine Mesh

Optimization terminated: mesh size less than options.MeshTolerance.
Obtain Function Value And Minimizing Point

Find a minimum value of a function and report both the location and value of the minimum.

Create the following two-variable objective function. On your MATLAB® path, save the following code to a file named `psobj.m`.

```matlab
function y = psobj(x)
 y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Find the unconstrained minimum of the objective, starting from the point `[0,0]`. Return both the location of the minimum, `x`, and the value of `fun(x)`.

```matlab
x0 = [0,0];
[x,fval] = patternsearch(fun,x0)
```

Optimization terminated: mesh size less than options.MeshTolerance.

```matlab
x =
 -0.7037 -0.1860

fval =
 -7.0254
```
Obtain All Outputs

To examine the `patternsearch` solution process, obtain all outputs.

Create the following two-variable objective function. On your MATLAB® path, save the following code to a file named `psobj.m`.

```matlab
function y = psobj(x)
y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));
end
```

Set the objective function to `@psobj`.

```matlab
fun = @psobj;
```

Find the unconstrained minimum of the objective, starting from the point `[0, 0]`. Return the solution, `x`, the objective function value at the solution, `fun(x)`, the exit flag, and the output structure.

```matlab
x0 = [0,0];
[x,fval,exitflag,output] = patternsearch(fun,x0)
```

Optimization terminated: mesh size less than options.MeshTolerance.

```matlab
x =
 -0.7037 -0.1860

fval =
 -7.0254

exitflag =
 1

output =
 struct with fields:
The exitflag is 1, indicating convergence to a local minimum.

The output structure includes information such as how many iterations patternsearch took, and how many function evaluations. Compare this output structure with the results from “Pattern Search with Nondefault Options” on page 12-170. In that example, you obtain some of this information, but did not obtain, for example, the number of function evaluations.

Input Arguments

fun — Function to be minimized
function handle | function name

Function to be minimized, specified as a function handle or function name. The fun function accepts a vector \(x \) and returns a real scalar \(f \), which is the objective function evaluated at \(x \).

You can specify fun as a function handle for a file

\[
x =
\]

Here, myfun is a MATLAB function such as

\[
\text{function } f = \text{myfun}(x) \\
f = ... \quad \% \text{ Compute function value at } x
\]

fun can also be a function handle for an anonymous function

\[
x = \text{patternsearch}(@(x)\text{norm}(x)^2, x0, A, b) ;
\]

Example: \(\text{fun} = @(x)\text{sin}(x(1))\text{cos}(x(2)) \)
Data Types: char | function_handle | string

x0 — Initial point
real vector

Initial point, specified as a real vector. `patternsearch` uses the number of elements in `x0` to determine the number of variables that `fun` accepts.

Example: `x0 = [1,2,3,4]`

Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. `A` is an M-by-N matrix, where M is the number of inequalities, and N is the number of variables (number of elements in `x0`).

A encodes the M linear inequalities

\[A \times x \leq b, \]

where \(x \) is the column vector of N variables \(x(:, :) \), and \(b \) is a column vector with M elements.

For example, to specify

\[
\begin{align*}
 x_1 & \quad + \quad 2x_2 & \quad \leq & \quad 10 \\
 3x_1 & \quad + \quad 4x_2 & \quad \leq & \quad 20 \\
 5x_1 & \quad + \quad 6x_2 & \quad \leq & \quad 30,
\end{align*}
\]

give these constraints:

\[
A = [1,2;3,4;5,6];
\]
\[
b = [10;20;30];
\]

Example: To specify that the control variables sum to 1 or less, give the constraints \(A = \text{ones}(1,N) \) and \(b = 1 \)

Data Types: double

b — Linear inequality constraints
real vector
Linear inequality constraints, specified as a real vector. \(b \) is an \(M \)-element vector related to the \(A \) matrix. If you pass \(b \) as a row vector, solvers internally convert \(b \) to the column vector \(b(:) \).

\(b \) encodes the \(M \) linear inequalities

\[
A \times x \quad \leq \quad b,
\]

where \(x \) is the column vector of \(N \) variables \(x(:) \), and \(A \) is a matrix of size \(M \)-by-\(N \).

For example, to specify

\[
\begin{align*}
x_1 &\quad + \quad 2x_2 &\quad \leq &\quad 10 \\
3x_1 &\quad + \quad 4x_2 &\quad \leq &\quad 20 \\
5x_1 &\quad + \quad 6x_2 &\quad \leq &\quad 30,
\end{align*}
\]

give these constraints:

\[
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}; \\
b = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix};
\]

Example: To specify that the control variables sum to 1 or less, give the constraints \(A = \text{ones}(1,N) \) and \(b = 1 \).

Data Types: double

Aeq — Linear equality constraints

real matrix

Linear equality constraints, specified as a real matrix. \(Aeq \) is an \(Me \)-by-\(N \) matrix, where \(Me \) is the number of equalities, and \(N \) is the number of variables (number of elements in \(x0 \)).

\(Aeq \) encodes the \(Me \) linear equalities

\[
Aeq \times x \quad = \quad beq,
\]

where \(x \) is the column vector of \(N \) variables \(x(:) \), and \(beq \) is a column vector with \(Me \) elements.

For example, to specify

\[
\begin{align*}
x_1 &\quad + \quad 2x_2 &\quad + \quad 3x_3 &\quad \leq &\quad 10 \\
2x_1 &\quad + \quad 4x_2 &\quad + \quad x_3 &\quad \leq &\quad 20,
\end{align*}
\]
give these constraints:

\[
A = \begin{bmatrix} 1,2,3;2,4,1 \end{bmatrix}; \\
b = \begin{bmatrix} 10;20 \end{bmatrix};
\]

Example: To specify that the control variables sum to 1, give the constraints \(Aeq = \text{ones}(1,N) \) and \(beq = 1 \)

Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. \(beq \) is an \(Me \)-element vector related to the \(Aeq \) matrix. If you pass \(beq \) as a row vector, solvers internally convert \(beq \) to the column vector \(beq(:,:) \).

\(beq \) encodes the \(Me \) linear equalities

\[
Aeq*x = beq,
\]

where \(x \) is the column vector of \(N \) variables \(x(:,:) \), and \(Aeq \) is a matrix of size \(Meq \)-by-\(N \).

For example, to specify

\[
x_1 + 2x_2 + 3x_3 = 10 \\
2x_1 + 4x_2 + x_3 = 20,
\]

give these constraints:

\[
Aeq = \begin{bmatrix} 1,2,3;2,4,1 \end{bmatrix}; \\
beq = \begin{bmatrix} 10;20 \end{bmatrix};
\]

Example: To specify that the control variables sum to 1, give the constraints \(Aeq = \text{ones}(1,N) \) and \(beq = 1 \).

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in \(x0 \) is equal to that of \(lb \), then \(lb \) specifies that

\[
x(i) >= lb(i)
\]
for all i.

If $\text{numel}(\text{lb}) < \text{numel}(\text{x0})$, then lb specifies that

$$x(i) \geq \text{lb}(i)$$

for

$$1 \leq i \leq \text{numel}(\text{lb})$$

In this case, solvers issue a warning.

Example: To specify that all control variables are positive, $\text{lb} = \text{zeros(size(x0))}$

Data Types: double

ub — Upper bounds

real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to that of ub, then ub specifies that

$$x(i) \leq \text{ub}(i)$$

for all i.

If $\text{numel}(\text{ub}) < \text{numel}(\text{x0})$, then ub specifies that

$$x(i) \leq \text{ub}(i)$$

for

$$1 \leq i \leq \text{numel}(\text{ub})$$

In this case, solvers issue a warning.

Example: To specify that all control variables are less than one, $\text{ub} = \text{ones(size(x0))}$

Data Types: double

nonlcon — Nonlinear constraints

function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that accepts a vector or array x and returns two arrays, $c(x)$ and $ceq(x)$.

12-178
• $c(x)$ is the array of nonlinear inequality constraints at x. `patternsearch` attempts to satisfy

$$c(x) \leq 0$$

for all entries of c.

• $ceq(x)$ is the array of nonlinear equality constraints at x. `patternsearch` attempts to satisfy

$$ceq(x) = 0$$

for all entries of ceq.

For example,

```matlab
x = patternsearch(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)
```

where `mycon` is a MATLAB function such as

```matlab
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.
```

For more information, see “Nonlinear Constraints” (Optimization Toolbox).

Data Types: `char` | `function_handle` | `string`

options — Optimization options

Object returned by `optimoptions` | `structure`

Optimization options, specified as an object returned by `optimoptions` (recommended), or a structure. You can also use options exported from the Optimization app. For details, see “Pattern Search Options” on page 11-9.

`optimoptions` hides the options listed in *italics*; see “Options that `optimoptions` Hides” on page 11-87.

`{}` denotes the default value. See option details in “Pattern Search Options” on page 11-9.
Options for `patternsearch` and `paretosearch`

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ConstraintTolerance</code></td>
<td>Tolerance on constraints.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use <code>TolCon</code>.</td>
<td></td>
</tr>
<tr>
<td><code>Display</code></td>
<td>Level of display.</td>
<td>`'off'</td>
</tr>
<tr>
<td><code>MaxFunctionEvaluations</code></td>
<td>Maximum number of objective function evaluations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MaxIterations</td>
<td>Maximum number of iterations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Total time (in seconds) allowed for optimization.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshTolerance</td>
<td>Tolerance on the mesh size.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Function that an optimization function calls at each iteration. Specify as a function handle or a cell array of function handles.</td>
<td>Function handle or cell array of function handles on page 11-25</td>
</tr>
</tbody>
</table>

For an options structure, use MaxIter, TimeLimit, TolMesh, or OutputFcns.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
</table>
| PlotFcn | Plots of output from the pattern search. Specify as the name of a built-in plot function, a function handle, or a cell array of names of built-in plot functions or function handles. For an options structure, use PlotFcns. | {[]} | For both patternsearch and paretosearch: 'psplotfuncount' | custom plot function on page 11-10
For paretosearch only with multiple objectives:
'psplotdistance' |
'psplotmaxconstr' |
'psplotparetof' |
'psplotparetox' |
'psplotspread' |
'psplotvolume'
For patternsearch only or paretosearch with a single objective:
'psplotbestf' |
'psplotmeshsize' |
'psplotbestx' |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PollMethod</td>
<td>Polling strategy used in the pattern search.</td>
<td>{'GPSPositiveBasis2N'}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For paretosearch only:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{'GSSPositiveBasis2np2'}</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute objective and nonlinear constraint functions in parallel.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See “Vectorized and Parallel Options (User Function Evaluation)” on page 11-28 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Specifies whether functions are vectorized.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See “Vectorized and Parallel Options (User Function Evaluation)” on page 11-28 and “Vectorize the Objective and Constraint Functions” on page 4-111.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For an options structure, use <code>Vectorized = 'on'</code> or 'off'.</td>
</tr>
</tbody>
</table>
Options for paretosearch Only

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>InitialPoints</td>
<td>Initial points for paretosearch. Use one of these data types:</td>
<td>Matrix with nvars columns</td>
</tr>
<tr>
<td></td>
<td>• Matrix with nvars columns, where each row represents one initial point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Structure containing the following fields (all fields are optional except X0):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• X0 — Matrix with nvars columns, where each row represents one initial point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fvals — Matrix with numObjectives columns, where each row represents the objective function values at the corresponding point in X0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cineq — Matrix with numIneq columns, where each row represents the nonlinear inequality constraint values at the corresponding point in X0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paretosearch computes any missing values in the Fvals and Cineq fields.</td>
<td></td>
</tr>
<tr>
<td>MinPollFraction</td>
<td>Minimum fraction of the pattern to poll.</td>
<td>Scalar from 0 through 1</td>
</tr>
<tr>
<td>ParetoSetSize</td>
<td>Number of points in the Pareto set.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| ParetoSetChangeTolerance | The solver stops when the relative change in a stopping measure over a window of iterations is less than or equal to ParetoSetChangeTolerance.
 - For three or fewer objectives, `paretosearch` uses the volume and spread measures.
 - For four or more objectives, `paretosearch` uses the spread and distance measures.
 See “Definitions for paretosearch Algorithm” on page 9-10.
 The solver stops when the relative change in any applicable measure is less than ParetoSetChangeTolerance, or the maximum of the squared Fourier transforms of the time series of these measures is relatively small. See “paretosearch Algorithm” on page 9-10. | Positive scalar | {1e-4} |

Note Setting `ParetoSetChangeTolerance < sqrt(eps) ~ 1.5e-8` is not recommended.
Options for `patternsearch` Only

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>With Cache set to 'on', <code>patternsearch</code> keeps a history of the mesh points it polls. At subsequent iterations, <code>patternsearch</code> does not poll points close to those already polled. Use this option if <code>patternsearch</code> runs slowly while computing the objective function. If the objective function is stochastic, do not use this option.</td>
<td>'on'</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the history.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Largest distance from the current mesh point to any point in the history in order for <code>patternsearch</code> to avoid polling the current point. Use if Cache option is set to 'on'.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>Tolerance on the function. Iterations stop if the change in function value is less than <code>FunctionTolerance</code> and the mesh size is less than <code>StepTolerance</code>. This option does not apply to MADS polling. For an options structure, use TolFun.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialMeshSize</td>
<td>Initial mesh size for the algorithm. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of the penalty parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-55.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll or search step. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshContractionFactor</td>
<td>Mesh contraction factor for unsuccessful iteration. For an options structure, use MeshContraction.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshExpansionFactor</td>
<td>Mesh expansion factor for successful iteration. For an options structure, use MeshExpansion.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum. See “Mesh Options” on page 11-21.</td>
<td>`'off'</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-55.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Specifies that plot functions are called at every interval.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>PollOrderAlgorithm</td>
<td>Order of poll directions in pattern search. For an options structure, use <code>PollingOrder</code>.</td>
<td>{'Random'}</td>
</tr>
<tr>
<td>ScaleMesh</td>
<td>Automatic scaling of variables. For an options structure, use <code>ScaleMesh = 'on'</code> or 'off'.</td>
<td>{true}</td>
</tr>
<tr>
<td>SearchFcn</td>
<td>Type of search used in pattern search. Specify as a name or a function handle. For an options structure, use <code>SearchMethod</code>.</td>
<td>{'GPSPositiveBasis2N'}</td>
</tr>
<tr>
<td>StepTolerance</td>
<td>Tolerance on the variable. Iterations stop if both the change in position and the mesh size are less than StepTolerance. This option does not apply to MADS polling. For an options structure, use <code>TolX</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance. See “Constraint Parameters” on page 11-23.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>UseCompletePoll</td>
<td>Complete poll around the current point. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use CompletePoll = 'on' or 'off'.</td>
<td></td>
</tr>
<tr>
<td>UseCompleteSearch</td>
<td>Complete search around current point when the search method is a poll method. See “Searching and Polling” on page 4-43.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use CompleteSearch = 'on' or 'off'.</td>
<td></td>
</tr>
</tbody>
</table>

Example: options = optimoptions('patternsearch','MaxIterations',150,'MeshTolerance',1e-4)

Data Types: struct

Problem — Problem structure

Structure

Problem structure, specified as a structure with the following fields:

- **objective** — Objective function
- **x0** — Starting point
- **Aineq** — Matrix for linear inequality constraints
- **bineq** — Vector for linear inequality constraints
- **Aeq** — Matrix for linear equality constraints
- **beq** — Vector for linear equality constraints
- **lb** — Lower bound for x
- **ub** — Upper bound for x
- **nonlcon** — Nonlinear constraint function
- **solver** — 'patternsearch'
- **options** — Options created with optimoptions or psoptimset
• **rngstate** — Optional field to reset the state of the random number generator

Create the structure `problem` by exporting a problem from the Optimization app, as described in “Importing and Exporting Your Work” (Optimization Toolbox).

Note All fields in `problem` are required.

Data Types: `struct`

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. The size of `x` is the same as the size of `x0`. When `exitflag` is positive, `x` is typically a local solution to the problem.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, `fval = fun(x)`.

exitflag — Reason `patternsearch` stopped
integer

Reason `patternsearch` stopped, returned as an integer.

<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Without nonlinear constraints — The magnitude of the mesh size is less than the specified tolerance, and the constraint violation is less than <code>ConstraintTolerance</code>.</td>
</tr>
<tr>
<td></td>
<td>With nonlinear constraints — The magnitude of the complementarity measure (defined after this table) is less than <code>sqrt(ConstraintTolerance)</code>, the subproblem is solved using a mesh finer than <code>MeshTolerance</code>, and the constraint violation is less than <code>ConstraintTolerance</code>.</td>
</tr>
</tbody>
</table>
Exit Flag | Meaning
--- | ---
2 | The change in \(x \) and the mesh size are both less than the specified tolerance, and the constraint violation is less than `ConstraintTolerance`.
3 | The change in \(fval \) and the mesh size are both less than the specified tolerance, and the constraint violation is less than `ConstraintTolerance`.
4 | The magnitude of the step is smaller than machine precision, and the constraint violation is less than `ConstraintTolerance`.
0 | The maximum number of function evaluations or iterations is reached.
-1 | Optimization terminated by an output function or plot function.
-2 | No feasible point found.

In the nonlinear constraint solver, the complementarity measure is the norm of the vector whose elements are \(c_i \lambda_i \), where \(c_i \) is the nonlinear inequality constraint violation, and \(\lambda_i \) is the corresponding Lagrange multiplier.

output — Information about the optimization process

Information about the optimization process, returned as a structure with these fields:

- `function` — Objective function.
- `problemtype` — Problem type, one of:
 - 'unconstrained'
 - 'boundconstraints'
 - 'linearconstraints'
 - 'nonlinearconstr'
- `pollmethod` — Polling technique.
- `searchmethod` — Search technique used, if any.
- `iterations` — Total number of iterations.
- `funcccount` — Total number of function evaluations.
- `meshsize` — Mesh size at \(x \).
- `maxconstraint` — Maximum constraint violation, if any.
- `rngstate` — State of the MATLAB random number generator, just before the algorithm started. You can use the values in `rngstate` to reproduce the output when...
you use a random search method or random poll method. See “Reproduce Results” on page 5-92, which discusses the identical technique for ga.

- **message** — Reason why the algorithm terminated.

Algorithms

By default, **patternsearch** looks for a minimum based on an adaptive mesh that, in the absence of linear constraints, is aligned with the coordinate directions. See “What Is Direct Search?” on page 4-2 and “How Pattern Search Polling Works” on page 4-30.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

```
options = optimoptions('solvername','UseParallel',true)
```

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also
ga | optimoptions | paretosearch

Topics
“Optimize Using the GPS Algorithm” on page 4-3
“Coding and Minimizing an Objective Function Using Pattern Search”
“Constrained Minimization Using Pattern Search”
“Effects of Some Pattern Search Options”
“Optimize an ODE in Parallel” on page 4-116
“Pattern Search Climbs Mount Washington”
“Optimization Workflow” on page 1-28
“What Is Direct Search?” on page 4-2
“Pattern Search Terminology” on page 4-27
“How Pattern Search Polling Works” on page 4-30
“Polling Types” on page 4-73
“Search and Poll” on page 4-49

Introduced before R2006a
psoptimget

(Not recommended) Obtain values of pattern search options structure

Note psoptimget is not recommended. Instead, query options using dot notation. For more information, see “Compatibility Considerations”.

Syntax

```matlab
val = psoptimget(options,'name')
val = psoptimget(options,'name',default)
```

Description

val = psoptimget(options,'name') returns the value of the parameter name from the pattern search options structure options. psoptimget(options,'name') returns an empty matrix [] if the value of name is not specified in options. It is only necessary to type enough leading characters of name to uniquely identify it. psoptimget ignores case in parameter names.

val = psoptimget(options,'name',default) returns the value of the parameter name from the pattern search options structure options, but returns default if the parameter is not specified (as in []) in options.

Examples

```matlab
opts = psoptimset('TolX',1e-4);
val = psoptimget(opts,'TolX')
```

returns val = 1e-4.
Compatibility Considerations

psoptimget is not recommended
Not recommended starting in R2018b

To query options, the `gaoptimget`, `psoptimget`, and `saoptimget` functions are not recommended. Instead, use dot notation. For example, to see the setting of the Display option in `opts`,

```matlab
displayopt = opts.Display
% instead of
displayopt = gaoptimget(opts,'Display')
```

Using automatic code completions, dot notation takes fewer keystrokes: `displayopt = opts.D Tab`.

There are no plans to remove `gaoptimget`, `psoptimget`, and `saoptimget` at this time.

See Also

`patternsearch`

Topics

“Pattern Search Options” on page 11-9

Introduced before R2006a
psoptimset

(Not recommended) Create pattern search options structure

Note *psoptimset* is not recommended. Use *optimoptions* instead. For more information, see “Compatibility Considerations”.

Syntax

```
psoptimset
options = psoptimset
options = psoptimset(@patternsearch)
options = psoptimset('param1',value1,'param2',value2,...)
options = psoptimset(oldopts,'param1',value1,...)
options = psoptimset(oldopts,newopts)
```

Description

psoptimset with no input or output arguments displays a complete list of parameters with their valid values.

```
options = psoptimset (with no input arguments) creates a structure called options
that contains the options, or parameters, for patternsearch, and sets parameters to [],
indicating patternsearch uses the default values.
```

```
options = psoptimset(@patternsearch) creates a structure called options that
contains the default values for patternsearch.
```

```
options = psoptimset('param1',value1,'param2',value2,...) creates a
structure options and sets the value of 'param1' to value1, 'param2' to value2, and
so on. Any unspecified parameters are set to their default values. It is sufficient to type
only enough leading characters to define the parameter name uniquely. Case is ignored
for parameter names.
```

```
options = psoptimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.
```
options = psoptimset(oldopts,newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite the corresponding old parameters in oldopts.

Options

The following table lists the options you can set with psoptimset. See “Pattern Search Options” on page 11-9 for a complete description of the options and their values. Values in {} denote the default value. You can also view the optimization parameters and defaults by typing psoptimset at the command line.

optimoptions hides the options listed in italics, but psoptimset does not. See “Options that optimoptions Hides” on page 11-87.
Options for patternsearch and paretosearch

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstraintTolerance</td>
<td>Tolerance on constraints.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use TolCon.</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Level of display.</td>
<td>'off'</td>
</tr>
<tr>
<td>MaxFunctionEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>MaxIterations</td>
<td>Maximum number of iterations.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Total time (in seconds) allowed for optimization.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshTolerance</td>
<td>Tolerance on the mesh size.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Function that an optimization function calls at each iteration. Specify as</td>
<td>Function handle or cell array of function handles on page 11-25</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| PlotFcns | Plots of output from the pattern search. Specify as the name of a built-in plot function, a function handle, or a cell array of names of built-in plot functions or function handles. For an options structure, use PlotFcns. | {[]} | For both patternsearch and paretosearch: 'psplotfcount' | custom plot function on page 11-10
For paretosearch only with multiple objectives: 'psplotdistance' | 'psplotmaxconstr' | 'psplotparetof' | 'psplotparetox' | 'psplotspread' | 'psplotvolume'
For patternsearch only or paretosearch with a single objective: 'psplotbestf' | 'psplotmeshsize' | 'psplotbestx' |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PollMethod</td>
<td>Polling strategy used in the pattern search.</td>
<td>{'GPSPositiveBasis2N'}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For paretosearch only:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{'GSSPositiveBasis2np2'}</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Compute objective and nonlinear constraint functions in parallel. See “Vectorized and Parallel Options (User Function Evaluation)” on page 11-28 and “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.</td>
<td>true</td>
</tr>
<tr>
<td>UseVectorized</td>
<td>Specifies whether functions are vectorized. See “Vectorized and Parallel Options (User Function Evaluation)” on page 11-28 and “Vectorize the Objective and Constraint Functions” on page 4-111.</td>
<td>true</td>
</tr>
</tbody>
</table>

For an options structure, use Vectorized = 'on' or 'off'.
Options for paretosearch Only

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>InitialPoints</td>
<td>Initial points for paretosearch. Use one of these data types:</td>
<td>Matrix with <code>nvars</code> columns</td>
</tr>
<tr>
<td></td>
<td>• Matrix with <code>nvars</code> columns, where each row represents one initial point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Structure containing the following fields (all fields are optional except <code>X0</code>):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>X0</code> — Matrix with <code>nvars</code> columns, where each row represents one initial point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>Fvals</code> — Matrix with <code>numObjectives</code> columns, where each row represents the objective function values at the corresponding point in <code>X0</code>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>Cineq</code> — Matrix with <code>numIneq</code> columns, where each row represents the nonlinear inequality constraint values at the corresponding point in <code>X0</code>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paretosearch computes any missing values in the <code>Fvals</code> and <code>Cineq</code> fields.</td>
<td></td>
</tr>
<tr>
<td>MinPollFraction</td>
<td>Minimum fraction of the pattern to poll.</td>
<td>Scalar from 0 through 1</td>
</tr>
<tr>
<td>ParetoSetSize</td>
<td>Number of points in the Pareto set.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| ParetoSetChangeTolerance | The solver stops when the relative change in a stopping measure over a window of iterations is less than or equal to **ParetoSetChangeTolerance**.
 - For three or fewer objectives, **paretosearch** uses the volume and spread measures.
 - For four or more objectives, **paretosearch** uses the spread and distance measures.
 See “Definitions for paretosearch Algorithm” on page 9-10.
 The solver stops when the relative change in any applicable measure is less than **ParetoSetChangeTolerance**, or the maximum of the squared Fourier transforms of the time series of these measures is relatively small. See “paretosearch Algorithm” on page 9-10. | Positive scalar | {1e-4} |
| **Note** Setting **ParetoSetChangeTolerance** < $\sqrt{\text{eps}} \sim 1.5e-8$ is not recommended. | | |
Options for `patternsearch` Only

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>With <code>Cache</code> set to <code>'on'</code>, <code>patternsearch</code> keeps a history of the mesh points it polls. At subsequent iterations, <code>patternsearch</code> does not poll points close to those already polled. Use this option if <code>patternsearch</code> runs slowly while computing the objective function. If the objective function is stochastic, do not use this option.</td>
<td>`'on'</td>
</tr>
<tr>
<td>CacheSize</td>
<td>Size of the history.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>CacheTol</td>
<td>Largest distance from the current mesh point to any point in the history in order for <code>patternsearch</code> to avoid polling the current point. Use if <code>Cache</code> option is set to <code>'on'</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>Tolerance on the function. Iterations stop if the change in function value is less than <code>FunctionTolerance</code> and the mesh size is less than <code>StepTolerance</code>. This option does not apply to MADS polling.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialMeshSize</td>
<td>Initial mesh size for the algorithm. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>Initial value of the penalty parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-55.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MaxMeshSize</td>
<td>Maximum mesh size used in a poll or search step. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshContractionFactor</td>
<td>Mesh contraction factor for unsuccessful iteration. For an options structure, use <code>MeshContraction</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>MeshExpansionFactor</td>
<td>Mesh expansion factor for successful iteration. For an options structure, use <code>MeshExpansion</code>.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>MeshRotate</td>
<td>Rotate the pattern before declaring a point to be optimum. See “Mesh Options” on page 11-21.</td>
<td>'off'</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>Penalty update parameter. See “Nonlinear Constraint Solver Algorithm” on page 4-55.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Specifies that plot functions are called at every interval.</td>
<td>positive integer</td>
</tr>
<tr>
<td>PollOrderAlgorithm</td>
<td>Order of poll directions in pattern search. For an options structure, use PollingOrder.</td>
<td>'Random'</td>
</tr>
<tr>
<td>ScaleMesh</td>
<td>Automatic scaling of variables. For an options structure, use ScaleMesh = 'on' or 'off'.</td>
<td>{true}</td>
</tr>
<tr>
<td>SearchFcn</td>
<td>Type of search used in pattern search. Specify as a name or a function handle. For an options structure, use SearchMethod.</td>
<td>'GPSPositiveBasisN'</td>
</tr>
<tr>
<td>StepTolerance</td>
<td>Tolerance on the variable. Iterations stop if both the change in position and the mesh size are less than StepTolerance. This option does not apply to MADS polling. For an options structure, use TolX.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>TolBind</td>
<td>Binding tolerance. See “Constraint Parameters” on page 11-23.</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>UseCompletePoll</td>
<td>Complete poll around the current point. See “How Pattern Search Polling Works” on page 4-30.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use CompletePoll = 'on' or 'off'.</td>
<td></td>
</tr>
<tr>
<td>UseCompleteSearch</td>
<td>Complete search around current point when the search method is a poll method. See “Searching and Polling” on page 4-43.</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use CompleteSearch = 'on' or 'off'.</td>
<td></td>
</tr>
</tbody>
</table>

Compatibility Considerations

psoptimset is not recommended

Not recommended starting in R2018b

To set options, the `gaoptimset`, `psoptimset`, and `saoptimset` functions are not recommended. Instead, use `optimoptions`.

The only difference between using `optimoptions` and the other functions is, for `optimoptions`, you include the solver name as the first argument. For example, to set iterative display in `ga`,

```matlab
options = optimoptions('ga','Display','iter');
% instead of
options = gaoptimset('Display','iter');
```

`optimoptions` has several advantages over the other functions.

- `optimoptions` has better automatic code suggestions and completions, especially in the Live Editor.
- You can use a single option-setting function instead of a variety of functions.

There are no plans to remove `gaoptimset`, `psoptimset`, and `saoptimset` at this time.
See Also
optimoptions | patternsearch

Introduced before R2006a
RandomStartPointSet

Random start points

Description

A RandomStartPointSet object describes how to generate a set of pseudorandom points for use with MultiStart. A RandomStartPointSet object does not contain points. It contains parameters for generating the points when MultiStart runs or when you use the list function.

Creation

Syntax

rs = RandomStartPointSet
rs = RandomStartPointSet(Name,Value)
rs = RandomStartPointSet(oldrs,Name,Value)

Description

rs = RandomStartPointSet creates a default RandomStartPointSet object.

rs = RandomStartPointSet(Name,Value) sets properties using name-value pairs.

rs = RandomStartPointSet(oldrs,Name,Value) creates a copy of the oldrs RandomStartPointSet object, and sets properties using name-value pairs.

Properties

ArtificialBound — Absolute value of default bounds for unbounded components
1000 (default) | positive scalar
Absolute value of the default bounds for unbounded components, specified as a positive scalar.

Example: 1e2
Data Types: double

NumStartPoints — Number of start points
10 (default) | positive integer

Number of start points, specified as a positive integer.

Example: 40
Data Types: double

Object Functions

list List start points

Examples

Create Default RandomStartPointSet

Create a default RandomStartPointSet object.

```matlab
rs = RandomStartPointSet;
rs =
    RandomStartPointSet with properties:
        NumStartPoints: 10
        ArtificialBound: 1000
```

Create RandomStartPointSet

Create a RandomStartPointSet object for 40 points.

```matlab
rs = RandomStartPointSet('NumStartPoints',40);
```
Create a problem with 3-D variables, lower bounds of 0, and upper bounds of
\([10,20,30]\).

```plaintext
createOptimProblem('fmincon','x0',rand(3,1),'lb',zeros(3,1),'ub',[10,20,30]);
```

Generate a random set of 40 points consistent with the problem.

```plaintext
points = list(rs,problem);
```

Examine the maximum and minimum generated components.

```plaintext
largest = max(max(points))  
largest = 29.8840  
smallest = min(min(points))  
smallest = 0.1390
```

Update RandomStartPointSet

Create a `RandomStartPointSet` object that generates 50 points.

```plaintext
rs = RandomStartPointSet('NumStartPoints',50)
```

```plaintext
rs =  
RandomStartPointSet with properties:  
   NumStartPoints: 50  
   ArtificialBound: 1000
```

Update `rs` to use 100 points and an artificial bound of 1e4.

```plaintext
rs = RandomStartPointSet(rs,'NumStartPoints',100,'ArtificialBound',1e4)
```

```plaintext
rs =  
RandomStartPointSet with properties:  
   NumStartPoints: 100  
   ArtificialBound: 10000
```

You can also update properties using dot notation.
rs.ArtificialBound = 500

rs =
 RandomStartPointSet with properties:

 NumStartPoints: 100
 ArtificialBound: 500

See Also
CustomStartPointSet | MultiStart | list

Topics
“Workflow for GlobalSearch and MultiStart” on page 3-3

Introduced in R2010a
run

Run multiple-start solver

Syntax

\[
x = \text{run}(\text{gs}, \text{problem})
\]
\[
x = \text{run}(\text{ms}, \text{problem}, k)
\]
\[
x = \text{run}(\text{ms}, \text{problem}, \text{startpts})
\]
\[
[x, fval] = \text{run}(__)
\]
\[
[x, fval, exitflag, output] = \text{run}(__)
\]
\[
[x, fval, exitflag, output, solutions] = \text{run}(__)
\]

Description

\[
x = \text{run}(\text{gs}, \text{problem}) \text{ runs GlobalSearch to find a solution or multiple local solutions to problem.}
\]
\[
x = \text{run}(\text{ms}, \text{problem}, k) \text{ runs MultiStart on } k \text{ start points to find a solution or multiple local solutions to problem.}
\]
\[
x = \text{run}(\text{ms}, \text{problem}, \text{startpts}) \text{ runs MultiStart on problem from the start points described in startpts.}
\]
\[
[x, fval] = \text{run}(__) \text{ returns the objective function value at } x, \text{ the best point found, using any of the arguments in the previous syntaxes. For the lsqcurvefit and lsqnonlin local solvers, } fval \text{ contains the squared norm of the residual.}
\]
\[
[x, fval, exitflag, output] = \text{run}(__) \text{ also returns an exit flag describing the return condition, and an output structure describing the iterations of the run.}
\]
\[
[x, fval, exitflag, output, solutions] = \text{run}(__) \text{ also returns a vector of solutions containing the distinct local minima found during the run.}
\]

Examples
Run GlobalSearch on Multidimensional Problem

Create an optimization problem that has several local minima, and try to find the global minimum using GlobalSearch. The objective is the six-hump camel back problem (see “Run the Solver” on page 3-21).

```matlab
rng default % For reproducibility
gs = GlobalSearch;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
x = run(gs,problem)
```

GlobalSearch stopped because it analyzed all the trial points.

All 8 local solver runs converged with a positive local solver exit flag.

```matlab
x = 1x2
    -0.0898    0.7127
```

You can request the objective function value at `x` when you call `run` by using the following syntax:

```matlab
[x,fval] = run(gs,problem)
```

However, if you neglected to request `fval`, you can still compute the objective function value at `x`.

```matlab
fval = sixmin(x)
```

```matlab
fval = -1.0316
```

Run a Multiple Start Solver

Use a default `MultiStart` object to solve the six-hump camel back problem (see “Run the Solver” on page 3-21).

```matlab
rng default % For reproducibility
ms = MultiStart;
```
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3])
[x,fval,exitflag,outpt,solutions] = run(ms,problem,30);

MultiStart completed the runs from all start points.

All 30 local solver runs converged with a positive local solver exit flag.

Examine the best function value and the location where the best function value is attained.

fprintf('The best function value is %f
',fval)
The best function value is -1.031628.

fprintf('The location where this value is attained is [%f,%f].',x)
The location where this value is attained is [-0.089842,0.712656].

Run MultiStart from a Regular Array

Create a set of initial 2-D points for MultiStart in the range [-3,3] for each component.

v = -3:0.5:3;
[X,Y] = meshgrid(v);
ptmatrix = [X(:),Y(:)];
tpoints = CustomStartPointSet(ptmatrix);

Find the point that minimizes the six-hump camel back problem (see “Run the Solver” on page 3-21) by starting MultiStart at the points in tpoints.

rng default % For reproducibility
ms = MultiStart;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
 'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
x = run(ms,problem,tpoints)
MultiStart completed the runs from all start points.
All 169 local solver runs converged with a positive local solver exit flag.
\[x = 1 \times 2 \]
\[-0.0898 \quad 0.7127 \]

Examine GlobalSearch Process

Create an optimization problem that has several local minima, and try to find the global minimum using GlobalSearch. The objective is the six-hump camel back problem (see “Run the Solver“ on page 3-21).

```matlab
rng default % For reproducibility
gs = GlobalSearch;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
[x,fval,exitflag,output,solutions] = run(gs,problem);
```

GlobalSearch stopped because it analyzed all the trial points.
All 8 local solver runs converged with a positive local solver exit flag.

To understand what GlobalSearch did to solve this problem, examine the output structure and solutions object.

```matlab
disp(output)
```

```
funcCount: 2261
localSolverTotal: 8
localSolverSuccess: 8
localSolverIncomplete: 0
localSolverNoSolution: 0
message: 'GlobalSearch stopped because it analyzed all the trial points....'
```

- GlobalSearch evaluated the objective function 2261 times.
- GlobalSearch ran fmincon starting from eight different points.
- All of the fmincon runs converged successfully to a local solution.

```matlab
disp(solutions)

1x4 GlobalOptimSolution array with properties:

  X
  Fval
  Exitflag
  Output
  X0

arrayfun(@(x)x.Output.funcCount, solutions)

ans = 1x4
    31    34    40     3
```

The eight local solver runs found four solutions. The `funcCount` output shows that fmincon took no more than 40 function evaluations to reach each of the four solutions. The output does not show how many function evaluations four of the fmincon runs took.

Most of the 2261 function evaluations seem to be for GlobalSearch to evaluate trial points, not for fmincon to run starting from those points.

Input Arguments

- **gs** — GlobalSearch solver
 GlobalSearch object

 GlobalSearch solver, specified as a GlobalSearch object. Create `gs` using the GlobalSearch command.

- **ms** — MultiStart solver
 MultiStart object

 MultiStart solver, specified as a MultiStart object. Create `ms` using the MultiStart command.

- **problem** — Optimization problem
 problem structure
Optimization problem, specified as a problem structure. Create problem using createOptimProblem. For further details, see “Create Problem Structure” on page 3-5.

Example: problem = createOptimProblem('fmincon','objective',fun,'x0',x0,'lb',lb)

Data Types: struct

\(k \) — Number of start points
positive integer

Number of start points, specified as a positive integer. MultiStart generates \(k - 1 \) start points using the same algorithm as for a RandomStartPointSet object. MultiStart also uses the \(x0 \) point from the problem structure.

Example: 50

Data Types: double

\(\text{startpts} \) — Start points for MultiStart
CustomStartPointSet object | RandomStartPointSet object | cell array of such objects

Start points for MultiStart, specified as a CustomStartPointSet object, as a RandomStartPointSet object, or as a cell array of such objects.

Example: \{custompts,randompts\}

Output Arguments

\(x \) — Best point found
real array

Best point found, returned as a real array. The best point is the one with lowest objective function value.

\(fval \) — Lowest objective function value encountered
real scalar

Lowest objective function value encountered, returned as a real scalar. For \text{lsqcurvefit} and \text{lsqnonlin}, the objective function is the sum of squares, also known as the squared norm of the residual.
exitflag — Exit condition summary
integer

Exit condition summary, returned as an integer.

2 At least one local minimum found. Some runs of the local solver converged.
1 At least one local minimum found. All runs of the local solver converged.
0 No local minimum found. Local solver called at least once, and at least one local solver exceeded the MaxIterations or MaxFunctionEvaluations tolerances.
-1 One or more local solver runs stopped by the local solver output or plot function.
-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
-8 No solution found. All runs had local solver exit flag -2 or smaller, not all equal -2.
-10 Failures encountered in user-provided functions.

output — Solution process details
structure

Solution process details, returned as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>funcCount</td>
<td>Number of function evaluations.</td>
</tr>
<tr>
<td>localSolverIncomplete</td>
<td>Number of local solver runs with 0 exit flag.</td>
</tr>
<tr>
<td>localSolverNoSolution</td>
<td>Number of local solver runs with negative exit flag.</td>
</tr>
<tr>
<td>localSolverSuccess</td>
<td>Number of local solver runs with positive exit flag.</td>
</tr>
<tr>
<td>localSolverTotal</td>
<td>Total number of local solver runs.</td>
</tr>
<tr>
<td>message</td>
<td>Exit message.</td>
</tr>
</tbody>
</table>

solutions — Distinct local solutions
vector of GlobalOptimSolution objects
Distinct local solutions, returned as a vector of `GlobalOptimSolution` objects.

See Also
- `GlobalOptimSolution`
- `GlobalSearch`
- `MultiStart`

Topics
- “Run the Solver“ on page 3-21
- “Workflow for GlobalSearch and MultiStart” on page 3-3

Introduced in R2010a
saoptimget

(Not recommended) Values of simulated annealing options structure

Note saoptimget is not recommended. Instead, query options using dot notation. For more information, see “Compatibility Considerations”.

Syntax

val = saoptimget(options, 'name')
val = saoptimget(options, 'name', default)

Description

val = saoptimget(options, 'name') returns the value of the parameter name from the simulated annealing options structure options. saoptimget(options, 'name') returns an empty matrix [] if the value of name is not specified in options. It is only necessary to type enough leading characters of name to uniquely identify the parameter. saoptimget ignores case in parameter names.

val = saoptimget(options, 'name', default) returns the 'name' parameter, but returns the default value if the 'name' parameter is not specified (or is []) in options.

Examples

opts = saoptimset('TolFun',1e-4);
val = saoptimget(opts,'TolFun');

returns val = 1e-4 for TolFun.
Compatibility Considerations

saoptimget is not recommended
Not recommended starting in R2018b

To query options, the `gaoptimget`, `psoptimget`, and `saoptimget` functions are not recommended. Instead, use dot notation. For example, to see the setting of the Display option in `opts`,

```matlab
displayopt = opts.Display
% instead of
displayopt = gaoptimget(opts,'Display')
```

Using automatic code completions, dot notation takes fewer keystrokes: `displayopt = opts.D` **Tab**.

There are no plans to remove `gaoptimget`, `psoptimget`, and `saoptimget` at this time.

See Also
simulannealbnd

Topics
“Simulated Annealing Options” on page 11-78

Introduced in R2007a
saoptimset

(Not recommended) Create simulated annealing options structure

Note saoptimset is not recommended. Use `optimoptions` instead. For more information, see “Compatibility Considerations”.

Syntax

```matlab
saoptimset
options = saoptimset
options = saoptimset('param1',value1,'param2',value2,...)
options = saoptimset(oldopts,'param1',value1,...)
options = saoptimset(oldopts,newopts)
options = saoptimset('simulannealbnd')
```

Description

`saoptimset` with no input or output arguments displays a complete list of parameters with their valid values.

```
options = saoptimset (with no input arguments) creates a structure called options that contains the options, or parameters, for the simulated annealing algorithm, with all parameters set to [].
```

```
options = saoptimset('param1',value1,'param2',value2,...) creates a structure options and sets the value of 'param1' to value1, 'param2' to value2, and so on. Any unspecified parameters are set to []. It is sufficient to type only enough leading characters to define the parameter name uniquely. Case is ignored for parameter names. Note that for character values, correct case and the complete value are required.
```

```
options = saoptimset(oldopts,'param1',value1,...) creates a copy of oldopts, modifying the specified parameters with the specified values.
```
options = saoptimset(oldopts,newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite the corresponding old parameters in oldopts.

options = saoptimset('simulannealbnd') creates an options structure with all the parameter names and default values relevant to 'simulannealbnd'. For example,

saoptimset('simulannealbnd')

ans =
 AnnealingFcn: @annealingfast
 TemperatureFcn: @temperatureexp
 AcceptanceFcn: @acceptancesa
 TolFun: 1.0000e-006
 StallIterLimit: '500*numberofvariables'
 MaxFunctionEvaluations: '3000*numberofvariables'
 TimeLimit: Inf
 MaxIterations: Inf
 ObjectiveLimit: -Inf
 Display: 'final'
 DisplayInterval: 10
 HybridFcn: []
 HybridInterval: 'end'
 PlotFcns: []
 PlotInterval: 1
 OutputFcns: []
 InitialTemperature: 100
 ReannealInterval: 100
 DataType: 'double'

Options

The following table lists the options you can set with saoptimset. See “Simulated Annealing Options” on page 11-78 for a complete description of these options and their values. Values in {} denote the default value. You can also view the options parameters by typing saoptimset at the command line.

optimoptions hides the options listed in *italics*, but saoptimset does not. See “Options that optimoptions Hides” on page 11-87.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcceptanceFcn</td>
<td>Function the algorithm uses to determine if a new point is accepted. Specify as 'acceptancesa' or a function handle.</td>
<td>Function handle</td>
</tr>
<tr>
<td>AnnealingFcn</td>
<td>Function the algorithm uses to generate new points. Specify as a name of a built-in annealing function or a function handle.</td>
<td>Function handle</td>
</tr>
<tr>
<td>DataType</td>
<td>Type of decision variable</td>
<td>'custom'</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display</td>
<td>'off'</td>
</tr>
<tr>
<td>DisplayInterval</td>
<td>Interval for iterative display</td>
<td>Positive integer</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>Termination tolerance on function value</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>HybridFcn</td>
<td>Automatically run HybridFcn (another optimization function) during or at the end of iterations of the solver. Specify as a name or a function handle. See “When to Use a Hybrid Function” on page 5-161.</td>
<td>'fminsearch'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 1-by-2 cell array</td>
</tr>
<tr>
<td>HybridInterval</td>
<td>Interval (if not 'end' or 'never') at which HybridFcn is called</td>
<td>Positive integer</td>
</tr>
<tr>
<td>InitialTemperature</td>
<td>Initial value of temperature</td>
<td>Positive scalar</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MaxFunctionEvaluations</td>
<td>Maximum number of objective function evaluations allowed</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use MaxFunEvals.</td>
<td></td>
</tr>
<tr>
<td>MaxIterations</td>
<td>Maximum number of iterations allowed</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use MaxIter.</td>
<td></td>
</tr>
<tr>
<td>MaxStallIterations</td>
<td>Number of iterations over which average change in fitness function value at current point is less than options.FunctionTolerance</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use StallIterLimit.</td>
<td></td>
</tr>
<tr>
<td>MaxTime</td>
<td>The algorithm stops after running for MaxTime seconds</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use TimeLimit.</td>
<td></td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Minimum objective function value desired</td>
<td>Scalar</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Function(s) get(s) iterative data and can change options at run time</td>
<td>Function handle</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use OutputFcns.</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Plot function(s) called during iterations</td>
<td>Function handle</td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Plot functions are called at every interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>ReannealInterval</td>
<td>Reannealing interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>TemperatureFcn</td>
<td>Function used to update temperature schedule</td>
<td>Function handle</td>
</tr>
</tbody>
</table>

Compatibility Considerations

saoptimset is not recommended

Not recommended starting in R2018b

To set options, the gaoptimset, psoptimset, and saoptimset functions are not recommended. Instead, use optimoptions.

The only difference between using optimoptions and the other functions is, for optimoptions, you include the solver name as the first argument. For example, to set iterative display in ga,

```matlab
options = optimoptions('ga','Display','iter');
% instead of
options = gaoptimset('Display','iter');
```

optimoptions has several advantages over the other functions:

- **optimoptions** has better automatic code suggestions and completions, especially in the Live Editor.
• You can use a single option-setting function instead of a variety of functions.

There are no plans to remove `gaoptimset`, `psoptimset`, and `saoptimset` at this time.

See Also
`optimoptions` | `simulannealbnd`

Topics
“Simulated Annealing Options” on page 11-78

Introduced in R2007a
simulannealbnd

Find minimum of function using simulated annealing algorithm

Syntax

\[
x = \text{simulannealbnd}(\text{fun},x0) \\
x = \text{simulannealbnd}(\text{fun},x0,lb,ub) \\
x = \text{simulannealbnd}(\text{fun},x0,lb,ub,options) \\
x = \text{simulannealbnd}([\text{ordERT}]) \\
[x,fval] = \text{simulannealbnd}([\text{ordERT}]) \\
[x,fval,exitflag,output] = \text{simulannealbnd}([\text{ordERT}])
\]

Description

\(x = \text{simulannealbnd}(\text{fun},x0) \) finds a local minimum, \(x \), to the function handle \(\text{fun} \) that computes the values of the objective function. \(x0 \) is an initial point for the simulated annealing algorithm, a real vector.

Note “Passing Extra Parameters” (Optimization Toolbox) explains how to pass extra parameters to the objective function, if necessary.

\(x = \text{simulannealbnd}(\text{fun},x0,lb,ub) \) defines a set of lower and upper bounds on the design variables in \(x \), so that the solution is always in the range \(lb \leq x \leq ub \). If \(x(i) \) is unbounded below, set \(lb(i) = -\text{Inf} \), and if \(x(i) \) is unbounded above, set \(ub(i) = \text{Inf} \).

\(x = \text{simulannealbnd}(\text{fun},x0,lb,ub,options) \) minimizes with the optimization options specified in \(\text{options} \). Create \(\text{options} \) using \(\text{optimoptions} \). If no bounds exist, set \(lb = [\] \) and/or \(ub = [\] \).

\(x = \text{simulannealbnd}([\text{ordERT}]) \) finds the minimum for \(\text{problem} \), where \(\text{problem} \) is a structure described in . Create the \(\text{problem} \) structure by exporting a problem from Optimization app, as described in “Exporting Your Work” (Optimization Toolbox).
[x,fval] = simulannealbnd(___), for any syntax, returns the value of the objective function fun at the solution x.

[x,fval,exitflag,output] = simulannealbnd(___) additionally returns a value exitflag that describes the exit condition of simulannealbnd, and a structure output with information about the optimization process.

Examples

Minimize a Function with Many Local Minima

Minimize De Jong's fifth function, a two-dimensional function with many local minima.

Plot De Jong's fifth function.

dejong5fcn
Minimize De Jong's fifth function using `simulannealbnd` starting from the point \([0,0]\).

```matlab
fun = @dejong5fcn;
x0 = [0 0];
x = simulannealbnd(fun,x0)
```

Optimization terminated: change in best function value less than options.FunctionTolerance.

```matlab
x = 1x2
    -32.0285   -0.1280
```

The `simulannealbnd` algorithm uses the MATLAB® random number stream, so you might obtain a different result.
Minimize Subject to Bounds

Minimize De Jong’s fifth function within a bounded region.

Plot De Jong’s fifth function.

dejong5fcn

Start simulannealbnd starting at the point \([0,0]\), and set lower bounds of -64 and upper bounds of 64 on each component.
fun = @dejong5fcn;
x0 = [0 0];
lb = [-64 -64];
ub = [64 64];
x = simulannealbnd(fun,x0,lb,ub)

Optimization terminated: change in best function value less than options.FunctionTolerance.
x = 1×2

 -15.9790 -31.9593

The `simulannealbnd` algorithm uses the MATLAB® random number stream, so you might obtain a different result.

Minimize Using Nondefault Options

Observe the progress of `simulannealbnd` by setting options to use some plot functions.

Set simulated annealing options to use several plot functions.

```matlab
options = optimoptions('simulannealbnd','PlotFcns',...    
                    {@saplotbestx,@saplotbestf,@saplotx,@saplotf});
```

Start `simulannealbnd` starting at the point `[0,0]`, and set lower bounds of -64 and upper bounds of 64 on each component.

```matlab
rng default % For reproducibility
fun = @dejong5fcn;
x0 = [0,0];
lb = [-64,-64];
ub = [64,64];
x = simulannealbnd(fun,x0,lb,ub,options)
```
Optimization terminated: change in best function value less than options.FunctionTolerance.

x = 1x2

-15.9790 -31.9593

Obtain All Outputs

Obtain all the outputs of a simulated annealing minimization.

Plot De Jong’s fifth function.
Start `simulannealbnd` starting at the point $[0,0]$, and set lower bounds of -64 and upper bounds of 64 on each component.

```matlab
fun = @dejong5fcn;
x0 = [0,0];
lb = [-64,-64];
ub = [64,64];
[x,fval,exitflag,output] = simulannealbnd(fun,x0,lb,ub)
```

Optimization terminated: change in best function value less than options.FunctionTolerance.

$x = 1 \times 2$
fval = 1.9920
exitflag = 1
output = struct with fields:
 iterations: 1762
 funccount: 1779
 message: 'Optimization terminated: change in best function value less than options.FunctionTolerance.'
 rngstate: [1x1 struct]
 problemtype: 'boundconstraints'
 temperature: [2x1 double]
 totaltime: 1.2653

The `simulannealbnd` algorithm uses the MATLAB® random number stream, so you might obtain a different result.

Input Arguments

fun — Function to be minimized

function handle | function name

Function to be minimized, specified as a function handle or function name. `fun` is a function that accepts a vector `x` and returns a real scalar `f`, the objective function evaluated at `x`.

`fun` can be specified as a function handle for a file:

```matlab
x = simulannealbnd(@myfun,x0)
```

where `myfun` is a MATLAB function such as

```matlab
function f = myfun(x)
    f = ...            % Compute function value at x
```

`fun` can also be a function handle for an anonymous function:

```matlab
x = simulannealbnd(@(x)norm(x)^2,x0,lb,ub);
```

Example: `fun = @(x)sin(x(1))*cos(x(2))`
Data Types: char | function_handle | string

x0 — Initial point
real vector

Initial point, specified as a real vector. `simulannealbnd` uses the number of elements in `x0` to determine the number of variables that `fun` accepts.

Example: `x0 = [1,2,3,4]`
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in `x0` is equal to that of `lb`, then `lb` specifies that

\[x(i) \geq lb(i) \text{ for all } i. \]

If `numel(lb) < numel(x0)`, then `lb` specifies that

\[x(i) \geq lb(i) \text{ for } 1 \leq i \leq \text{numel}(lb). \]

In this case, solvers issue a warning.

Example: To specify that all control variables are positive, `lb = zeros(size(x0))`
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in `x0` is equal to that of `ub`, then `ub` specifies that

\[x(i) \leq ub(i) \text{ for all } i. \]

If `numel(ub) < numel(x0)`, then `ub` specifies that

\[x(i) \leq ub(i) \text{ for } 1 \leq i \leq \text{numel}(ub). \]

In this case, solvers issue a warning.

Example: To specify that all control variables are less than one, `ub = ones(size(x0))`
Data Types: double

options — Optimization options
object returned by optimoptions | structure

Optimization options, specified as an object returned by optimoptions or a structure. For details, see “Simulated Annealing Options” on page 11-78.

optimoptions hides the options listed in *italics*; see “Options that optimoptions Hides” on page 11-87.

{} denotes the default value. See option details in “Simulated Annealing Options” on page 11-78.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcceptanceFcn</td>
<td>Function the algorithm uses to determine if a new point is accepted. Specify as 'acceptancesa' or a function handle.</td>
<td>Function handle</td>
</tr>
<tr>
<td>AnnealingFcn</td>
<td>Function the algorithm uses to generate new points. Specify as a name of a built-in annealing function or a function handle.</td>
<td>Function handle</td>
</tr>
<tr>
<td>DataType</td>
<td>Type of decision variable</td>
<td>'custom'</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display</td>
<td>'off'</td>
</tr>
<tr>
<td>DisplayInterval</td>
<td>Interval for iterative display</td>
<td>Positive integer</td>
</tr>
<tr>
<td>FunctionTolerance</td>
<td>Termination tolerance on function value</td>
<td>Positive scalar</td>
</tr>
</tbody>
</table>

For an options structure, use TolFun.
| **Option** | **Description** | **Values** |}
|-----------------|---|--|}
| HybridFcn | Automatically run HybridFcn (another optimization function) during or at the end of iterations of the solver. Specify as a name or a function handle. See “When to Use a Hybrid Function” on page 5-161. | 'fminsearch' | 'patternsearch' | 'fminunc' | 'fmincon' | {[]}
| | | 1-by-2 cell array | {@solver, hybridoptions}, where solver = fminsearch, patternsearch, fminunc, or fmincon {[]}
| HybridInterval | Interval (if not 'end' or 'never') at which HybridFcn is called | Positive integer | 'never' | {'end'}
| InitialTemperature | Initial value of temperature | Positive scalar | positive vector | {100}
| MaxFunctionEvaluations | Maximum number of objective function evaluations allowed For an options structure, use MaxFunEvals. | Positive integer | {3000*numberOfVariables}
| MaxIterations | Maximum number of iterations allowed For an options structure, use MaxIter. | Positive integer | {Inf}
| MaxStallIterations | Number of iterations over which average change in fitness function value at current point is less than options.FunctionTolerance For an options structure, use StallIterLimit. | Positive integer | {500*numberOfVariables}

12-237
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>The algorithm stops after running for MaxTime seconds</td>
<td>Positive scalar</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use TimeLimit.</td>
<td></td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Minimum objective function value desired</td>
<td>Scalar</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Function(s) get(s) iterative data and can change options at run time</td>
<td>Function handle</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use OutputFcns.</td>
<td></td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Plot function(s) called during iterations</td>
<td>Function handle</td>
</tr>
<tr>
<td></td>
<td>For an options structure, use PlotFcns.</td>
<td></td>
</tr>
<tr>
<td>PlotInterval</td>
<td>Plot functions are called at every interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>ReannealInterval</td>
<td>Reannealing interval</td>
<td>Positive integer</td>
</tr>
<tr>
<td>TemperatureFcn</td>
<td>Function used to update temperature schedule</td>
<td>Function handle</td>
</tr>
</tbody>
</table>
• **objective** — Objective function
• **x0** — Starting point
• **lb** — Lower bound for x
• **ub** — Upper bound for x
• **solver** — 'simulannealbnd'
• **options** — Options created with optimoptions or an options structure
• **rngstate** — Optional field to reset the state of the random number generator

Create the structure **problem** by exporting a problem from the Optimization app, as described in “Importing and Exporting Your Work” (Optimization Toolbox).

Note problem must have all the fields as specified above.

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. The size of x is the same as the size of x0. Typically, x is a local solution to the problem when **exitflag** is positive.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason simulannealbnd stopped
integer

Reason simulannealbnd stopped, returned as an integer.
<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average change in the value of the objective function over <code>options.MaxStallIterations</code> iterations is less than <code>options.FunctionTolerance</code>.</td>
</tr>
<tr>
<td>5</td>
<td><code>options.ObjectiveLimit</code> limit reached.</td>
</tr>
<tr>
<td>0</td>
<td>Maximum number of function evaluations or iterations reached.</td>
</tr>
<tr>
<td>-1</td>
<td>Optimization terminated by an output function or plot function.</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point found.</td>
</tr>
<tr>
<td>-5</td>
<td>Time limit exceeded.</td>
</tr>
</tbody>
</table>

output — Information about the optimization process

structure

Information about the optimization process, returned as a structure with fields:

- `problemtype` — Type of problem: unconstrained or bound constrained.
- `iterations` — The number of iterations computed.
- `funccount` — The number of evaluations of the objective function.
- `message` — The reason the algorithm terminated.
- `temperature` — Temperature when the solver terminated.
- `totaltime` — Total time for the solver to run.
- `rngstate` — State of the MATLAB random number generator, just before the algorithm started. You can use the values in `rngstate` to reproduce the output of `simulannealbnd`. See “Reproduce Your Results” on page 8-14.

See Also

`ga` | `optimoptions` | `patternsearch`

Topics

“Minimization Using Simulated Annealing Algorithm”
“Simulated Annealing Options”
“Multiprocessor Scheduling using Simulated Annealing with a Custom Data Type”
“Optimization Workflow” on page 1-28
“What Is Simulated Annealing?” on page 8-2
“Simulated Annealing Terminology” on page 8-8
“How Simulated Annealing Works” on page 8-10

Introduced in R2007a
surrogateopt

Surrogate optimization for global minimization of time-consuming objective functions

The `surrogateopt` function is a global solver for time-consuming objective functions.

The solver searches for the global minimum of a real-valued objective function in multiple dimensions, subject to bound constraints. `surrogateopt` is best suited to objective functions that take a long time to evaluate. The objective function can be nonsmooth. The solver requires finite bounds on all variables. The solver can optionally maintain a checkpoint file to enable recovery from crashes or partial execution, or optimization continuation after meeting a stopping condition.

Syntax

```matlab
x = surrogateopt(fun,lb,ub)
x = surrogateopt(fun,lb,ub,options)
x = surrogateopt(problem)
x = surrogateopt(checkpointFile)
x = surrogateopt(checkpointFile,opts)
[x,fval] = surrogateopt(__)
[x,fval,exitflag,output] = surrogateopt(__)
[x,fval,exitflag,output,trials] = surrogateopt(__)
```

Description

`x = surrogateopt(fun,lb,ub)` searches for a global minimum of `fun(x)` in the region `lb <= x <= ub`.

Note “Passing Extra Parameters” (Optimization Toolbox) explains how to pass extra parameters to the objective function, if necessary.

`x = surrogateopt(fun,lb,ub,options)` modifies the search procedure using the options in `options`.

12-242
\(x = \text{surrogateopt}(\text{problem}) \) searches for a minimum for \(\text{problem} \), a structure described in \(\text{problem} \).

\(x = \text{surrogateopt}(\text{checkpointFile}) \) continues running the optimization from the state in a saved checkpoint file. See “Work with Checkpoint Files” on page 7-64.

\(x = \text{surrogateopt}(\text{checkpointFile}, \text{opts}) \) continues running the optimization from the state in a saved checkpoint file, and replaces options in \(\text{checkpointFile} \) with those in \(\text{opts} \). See “Checkpoint File” on page 11-76.

\([x, fval] = \text{surrogateopt}(____)\) also returns the best (smallest) value of the objective function found by the solver, using any of the input argument combinations in the previous syntaxes.

\([x, fval, \text{exitflag}, \text{output}] = \text{surrogateopt}(____)\) also returns \(\text{exitflag} \), an integer describing the reason the solver stopped, and \(\text{output} \), a structure describing the optimization procedure.

\([x, fval, \text{exitflag}, \text{output}, \text{trials}] = \text{surrogateopt}(____)\) also returns a structure containing all of the evaluated points and the objective function values at those points.

Examples

Search for Global Minimum

Search for a minimum of the six-hump camel back function in the region \(-2.1 \leq x(i) \leq 2.1\). This function has two global minima with the objective function value \(-1.0316284\ldots\) and four local minima with higher objective function values.

```matlab
rng default % For reproducibility
fun = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
x = surrogateopt(fun,lb,ub)
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

\[x = 1 \times 2 \]

\[
\begin{array}{cc}
-0.0900 & 0.7129 \\
\end{array}
\]
Surrogate Optimization Using Nondefault Options

Minimize the six-hump camel back function in the region \(-2.1 \leq x(i) \leq 2.1\). This function has two global minima with the objective function value \(-1.0316284\ldots\) and four local minima with higher objective function values.

To search the region systematically, use a regular grid of starting points. Set 120 as the maximum number of function evaluations. Use the 'surrogateoptplot' plot function. To understand the 'surrogateoptplot' plot, see “Interpret surrogateoptplot” on page 7-28.

```matlab
rng default % For reproducibility
fun = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ... + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
[Xpts,Ypts] = meshgrid(-3:3);
startpts = [Xpts(:),Ypts(:)];
options = optimoptions('surrogateopt','PlotFcn','surrogateoptplot',... 'InitialPoints',startpts,'MaxFunctionEvaluations',120);
x = surrogateopt(fun,lb,ub,options)
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

\[x = 1 \times 2 \]
\[
-0.0899 \quad 0.7132
\]

Surrogate Optimization of Problem Structure

Create a problem structure representing the six-hump camel back function in the region
-2.1 <= x(i) <= 2.1. Set 120 as the maximum number of function evaluations.
rng default % For reproducibility
fun = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
 + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
options = optimoptions('surrogateopt','MaxFunctionEvaluations',120);
problem = struct('objective',fun,...
 'lb',[-2.1,-2.1],...
 'ub',[2.1,2.1],...
 'options',options,...
 'solver','surrogateopt');
x = surrogateopt(problem)

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

Return Surrogate Optimization Objective Function Value

Minimize the six-hump camel back function and return both the minimizing point and the objective function value. Set options to suppress all other display.

rng default % For reproducibility
fun = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
 + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
options = optimoptions('surrogateopt','Display','off','PlotFcn',[]);
[x,fval] = surrogateopt(fun,lb,ub,options)

x = 1x2
 -0.0900 0.7129
fval = -1.0316

Monitor Surrogate Optimization Process

Monitor the surrogate optimization process by requesting that surrogateopt return more outputs. Use the 'surrogateoptplot' plot function. To understand the 'surrogateoptplot' plot, see “Interpret surrogateoptplot” on page 7-28.

rng default % For reproducibility
fun = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
 + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
options = optimoptions('surrogateopt','PlotFcn','surrogateoptplot');
[x,fval,exitflag,output] = surrogateopt(fun,lb,ub,options)
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

\[x = 1 \times 2 \]
\[
\begin{array}{cc}
-0.0900 & 0.7129
\end{array}
\]

\[fval = -1.0316 \]

\[exitflag = 0 \]

\[output = \text{struct with fields:} \]
\[
\quad \text{rngstate: [1x1 struct]}
\quad \text{funcount: 200}
\]
Restart Surrogate Optimization

Conclude a surrogate optimization quickly by setting a small maximum number of function evaluations. To prepare for the possibility of restarting the optimization, request all solver outputs.

```matlab
rng default % For reproducibility
fun = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ... + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
options = optimoptions('surrogateopt','MaxFunctionEvaluations',20);
[x,fval,exitflag,output,trials] = surrogateopt(fun,lb,ub,options);
```
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

Optimize for another 20 function evaluations, starting from the previously evaluated points.

```matlab
options.InitialPoints = trials;
[x,fval,exitflag,output,trials] = surrogateopt(fun,lb,ub,options);
```
SurrogateOpt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

By comparing the plots of these 40 function evaluations to those in “Search for Global Minimum” on page 12-243, you see that restarting surrogate optimization is not the same as having the solver run continuously.

Restart Surrogate Optimization from Checkpoint File

To enable restarting surrogate optimization due to a crash or any other reason, set a checkpoint file name.
opts = optimoptions('surrogateopt','CheckpointFile','checkfile');

Create an optimization problem and set a small number of function evaluations.

rng default % For reproducibility
fun = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
 + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
opts.MaxFunctionEvaluations = 30;
[x,fval,exitflag,output] = surrogateopt(fun,lb,ub,opts)

Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.
\[x = 1 \times 2 \]
\[
0.2575 \quad -0.7963
\]

\[fval = -0.8771 \]
\[exitflag = 0 \]

\[output = struct with fields: \]
\[\quad \text{rngstate: [1\times1 struct]} \]
\[\quad \text{funcount: 30} \]
\[\quad \text{elapsedtime: 8.6254} \]
\[\quad \text{message: 'Surrogateopt stopped because it exceeded the function evaluation limit.'} \]

Set options to use 100 function evaluations (which means 70 more than already done) and restart the optimization.

\[\text{opts.MaxFunctionEvaluations} = 100; \]
\[[x2,fval2,exitflag2,output2] = surrogateopt('checkfile',opts) \]
Surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.

\[
x_2 = 1 \times 2
\]

\[
\begin{array}{cc}
0.0900 & -0.7130 \\
\end{array}
\]

\[
\text{fval2} = -1.0316
\]

\[
\text{exitflag2} = 0
\]

\[
\text{output2} = \text{struct with fields:}
\]
\[
\begin{array}{c}
\text{rngstate: [1×1 struct]} \\
\text{funccount: 100}
\end{array}
\]
Input Arguments

fun — Objective function
function handle | function name

Objective function, specified as a function handle or function name. fun accepts a single argument \(x \), where \(x \) is a row vector, and returns a real scalar \(fval = \text{fun}(x) \).

Data Types: function_handle | char | string

lb — Lower bounds
finite real vector

Lower bounds, specified as a finite real vector. \(lb \) represents the lower bounds element-wise in \(lb \leq x \leq ub \). The lengths of \(lb \) and \(ub \) must be equal to the number of variables that \(\text{fun} \) accepts.

Caution Although \(lb \) is optional for most solvers, \(ub \) is a required input for surrogateopt.

Note All entries in \(lb \) must be strictly less than the corresponding entries in \(ub \).

Example: \(lb = [0; -20; 4] \) means \(x(1) \geq 0, x(2) \geq -20, x(3) \geq 4 \).

Data Types: double

ub — Upper bounds
finite real vector

Upper bounds, specified as a finite real vector. \(ub \) represents the upper bounds element-wise in \(lb \leq x \leq ub \). The lengths of \(lb \) and \(ub \) must be equal to the number of variables that \(\text{fun} \) accepts.

Caution Although \(ub \) is optional for most solvers, \(ub \) is a required input for surrogateopt.
Note All entries in `lb` must be strictly less than the corresponding entries in `ub`.

Example: `ub = [10;-20;4]` means `x(1) ≤ 10`, `x(2) ≤ -20`, `x(3) ≤ 4`.

Data Types: `double`

options — Options

output of `optimoptions`

Options, specified as the output of `optimoptions`. For more information, see “Surrogate Optimization Options” on page 11-71.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckpointFile</td>
<td>File name for checkpointing and restarting optimization. The file has the <code>.mat</code> data type. See “Work with Checkpoint Files” on page 7-64. Checkpointing takes time. This overhead is especially noticeable for functions that otherwise take little time to evaluate.</td>
<td>File name or file path, given as a string or character array. The <code>.mat</code> extension is optional. If you specify a file name without a path, <code>surrogateopt</code> saves the checkpoint file in the current folder.</td>
</tr>
<tr>
<td>Display</td>
<td>Level of display returned at the command line.</td>
<td>• 'final' (default) — Exit message at the end of the iterations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 'off' or the equivalent 'none' — No display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 'iter' — Iterative display; see “Command-Line Display” on page 11-72.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>InitialPoints</td>
<td>Initial points for solver.</td>
<td>Matrix of initial points, where each row is one point. Or, a structure with field X, whose value is a matrix of initial points, and optionally the field Fval, whose value is a vector containing the values of the objective function at the initial points. See “Algorithm Control” on page 11-71. Default: [].</td>
</tr>
<tr>
<td>MaxFunctionEvaluations</td>
<td>Maximum number of objective function evaluations, a stopping criterion.</td>
<td>Positive integer. Default is max(200,50*nvar), where nvar is the number of problem variables.</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Maximum running time in seconds. The actual running time can exceed MaxTime because of the time required to evaluate an objective function or because of parallel processing delays.</td>
<td>Positive scalar. Default is Inf.</td>
</tr>
<tr>
<td>MinSampleDistance</td>
<td>Minimum distance between trial points generated by the adaptive sampler. See “Surrogate Optimization Algorithm” on page 7-4.</td>
<td>Positive scalar. Default is 1e-3.</td>
</tr>
<tr>
<td>MinSurrogatePoints</td>
<td>Minimum number of random sample points to create at the start of a surrogate creation phase. See “Surrogate Optimization Algorithm” on page 7-4.</td>
<td>Integer at least nvar + 1. Default is max(20,2*nvar), where nvar is the number of problem variables.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>ObjectiveLimit</td>
<td>Tolerance on the objective function value. If a calculated objective function value is less than or equal to ObjectiveLimit, the algorithm stops.</td>
<td>Double scalar value. Default is -Inf.</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Output function to report on solver progress or to stop the solver. See “Output Function” on page 11-73.</td>
<td>Function handle or cell array of function handles. Default: [].</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Plot function to display solver progress or to stop solver. See “Plot Function” on page 11-75.</td>
<td>Function handle or cell array of function handles. Built-in plot functions are:</td>
</tr>
<tr>
<td></td>
<td>• @optimplotfval (default) — Plot the best objective function value found as a line plot.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @optimplotx — Plot the best solution found as a bar chart.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @surrogateoptplot — Plot the objective function value at each iteration, showing which phase of the algorithm produces the value and the best value found both in this phase and overall. See “Interpret surrogateoptplot” on page 7-28.</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Boolean value indicating whether to compute objective function values in parallel.</td>
<td>Boolean. Default is false. For algorithmic details, see “Parallel surrogateopt Algorithm” on page 7-10.</td>
</tr>
</tbody>
</table>

Example: `options = optimoptions('surrogateopt','Display','iter','UseParallel',true)`

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

- `objective` — Objective function
- `lb` — Lower bounds for x
- `ub` — Upper bounds for x
- `solver` — 'surrogateopt'
- `options` — Options created with `optimoptions`
- `rngstate` — Optional field to reset the state of the random number generator

Note All fields in `problem` are required except `rngstate`.

Data Types: `struct`

checkpointFile — Path to checkpoint file
string | character vector

Path to a checkpoint file, specified as a string or character vector. If you specify a file name without a path, `surrogateopt` uses a checkpoint file in the current folder. The extension `.mat` is optional.

A checkpoint file stores the state of an optimization for resuming the optimization. `surrogateopt` updates the checkpoint file at each function evaluation, so you can resume the optimization even when `surrogateopt` halts prematurely. For an example, see “Restart Surrogate Optimization from Checkpoint File” on page 12-252.
surrogateopt creates a checkpoint file when it has a valid CheckpointFile option.

You can change some options when resuming from a checkpoint file. See opts.

The data in a checkpoint file is in .mat format. To avoid errors or other unexpected results, do not modify the data before calling surrogateopt.

Example: 'checkfile'
Example: "C:\Program Files\MATLAB\docs\checkpointNov2019.mat"

Data Types: char | string

opts — Options for resuming from checkpoint file
[] (default) | optimoptions options from a restricted set

Options for resuming optimization from the checkpoint file, specified as optimoptions options (from a restricted set) that you can change from the original options. The options you can change are:

- CheckpointFile
- Display
- MaxFunctionEvaluations
- MaxTime
- MinSurrogatePoints
- ObjectiveLimit
- OutputFcn
- PlotFcn
- UseParallel

Example: opts = optimoptions(options,'MaxFunctionEvaluations',400);

Output Arguments

x — Solution
real vector

Solution, returned as a real vector. x has the same length as lb and as ub.
fval — Objective function value at the solution

real number

Objective function value at the solution, returned as a real number. Generally, \(fval = \text{fun}(x) \).

exitflag — Reason surrogateopt stopped

integer

Reason surrogateopt stopped, returned as one of these integer values:

<table>
<thead>
<tr>
<th>Exit Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The objective function value is less than or equal to options.ObjectiveLimit.</td>
</tr>
<tr>
<td>0</td>
<td>The number of function evaluations exceeds options.MaxFunctionEvaluations or the elapsed time exceeds options.MaxTime.</td>
</tr>
<tr>
<td>-1</td>
<td>The optimization is terminated by an output function or plot function.</td>
</tr>
<tr>
<td>-2</td>
<td>No feasible point is found. A lower bound (lb(i)) exceeds a corresponding upper bound (ub(i)).</td>
</tr>
</tbody>
</table>

output — Information about the optimization process

structure

Information about the optimization process, returned as a structure with these fields:

- **funccount** — Total number of function evaluations.
- **elapsedtime** — Time spent running the solver in seconds, as measured by tic/toc.
- **message** — Reason why the algorithm stopped.
- **rngstate** — State of the MATLAB random number generator just before the algorithm starts. Use this field to reproduce your results. See “Reproduce Results” on page 5-92, which discusses using rngstate for ga.

trials — Points evaluated

structure

Points evaluated, returned as a structure with these fields:

- **X** — Matrix with nvars columns, where nvars is the length of lb or ub. Each row of X represents one point evaluated by surrogateopt.
• Fval — Column vector, where each entry is the objective function value of the corresponding row of X.

The trials structure has the same form as the options.InitialPoints structure. So, you can continue an optimization by passing the trials structure as the InitialPoints option.

Algorithms

surrogateopt repeatedly performs the following steps:

1. Create a set of trial points by sampling MinSurrogatePoints random points within the bounds, and evaluate the objective function at the trial points.
2. Create a surrogate model of the objective function by interpolating a radial basis function through all of the random trial points.
3. Create a merit function that gives some weight to the surrogate and some weight to the distance from trial points. Locate a small value of the merit function by randomly sampling the merit function in a region around the incumbent point (best point found since the last surrogate reset). Use this point, called the adaptive point, as a new trial point.
4. Evaluate the objective at the adaptive point, and update the surrogate based on this point and its value. Count a "success" if the objective function value is sufficiently lower than the previous best (lowest) value observed, and count a "failure" otherwise.
5. Update the dispersion of the sample distribution upwards if there are three successes before \(\max(nvar, 5) \) failures, where \(nvar \) is the number of dimensions. Update the dispersion downwards if there are \(\max(nvar, 5) \) failures before three successes.
6. Continue from step 3 until all trial points are within MinSampleDistance of the evaluated points. At that time, reset the surrogate by discarding all adaptive points from the surrogate, reset the scale, and go back to step 1 to create MinSurrogatePoints new random trial points for evaluation.

For details, see “Surrogate Optimization Algorithm” on page 7-4.
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

```matlab
options = optimoptions('solvername','UseParallel',true)
```

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 10-14.

See Also
optimoptions | patternsearch

Topics
“Surrogate Optimization”
“Local vs. Global Optima” (Optimization Toolbox)
“Surrogate Optimization Options” on page 11-71

Introduced in R2018b