This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Modulator object


Use the modulator object to create a modulator element. A modulator is a 2-port RF circuit object. You can use this element in the rfbudget object and the circuit object.



mod = modulator
mod = modulator(Name,Value)



mod = modulator creates a modulator object, mod, with default property values.


mod = modulator(Name,Value) creates a modulator object with additional properties specified by one or more name-value pair arguments. Name is the property name and Value is the corresponding value. You can specify several name-value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.


expand all

Name of modulator, specified as the comma-separated pair consisting of 'Name' and a character vector. All names must be valid MATLAB® variable names.

Example: 'Name','mod'

Available power gain, specified as a nonnegative scalar in dB.

Example: 'Gain',10

Noise figure, specified as a real finite nonnegative scalar in dB.

Example: 'NF',-10

Output third-order intercept, specified as a scalar in dBm

Example: 'OIP3',10

Local oscillator frequency, specified as a real finite positive scalar in Hz.

Example: 'LO',2e9

Type of modulator, specified as 'Down' or 'Up'

Example: 'ConverterType','Up'

Input impedance, specified as a positive real part finite scalar in ohms. You can also use a complex value with a positive real part.

Example: 'Zin',40

Output impedance, specified as a scalar in ohms. You can also use a complex value with a positive real part.

Example: 'Zout',40

Number of ports, specified as a scalar integer. This property is read-only.

Names of port terminals, specified as a cell vector. This property is read-only.


collapse all

Create a downconverter modulator with a local oscillator (LO) frequency of 100 MHz.

m = modulator('ConverterType','Down','LO',100e6)
m = 
  modulator: Modulator element

             Name: 'Modulator'
             Gain: 0
               NF: 0
             OIP3: Inf
               LO: 100000000
    ConverterType: 'Down'
              Zin: 50
             Zout: 50
         NumPorts: 2
        Terminals: {'p1+'  'p2+'  'p1-'  'p2-'}

Create a modulator object with a gain of 4 dB and local oscillator (LO) frequency of 2.9 GHz. Create another modulator object that is an upconverter and has an output third-order intercept (OIP3) of 13 dBm.

mod1 = modulator('Gain',4,'LO',2e9);
mod2 = modulator('OIP3',13,'ConverterType','Up');

Build a 2-port circuit using the modulators.

c = circuit([mod1 mod2])
c = 
  circuit: Circuit element

    ElementNames: {'Modulator'  'Modulator_1'}
        Elements: [1x2 modulator]
           Nodes: [0 1 2 3]
            Name: 'unnamed'
        NumPorts: 2
       Terminals: {'p1+'  'p2+'  'p1-'  'p2-'}

Create an amplifier with a gain of 4 dB.

a = amplifier('Gain',4);

Create a modulator with an OIP3 of 13 dBm.

m = modulator('OIP3',13);

Create an nport using passive.s2p.

n = nport('passive.s2p');

Create an rf element with a gain of 10 dB.

r = rfelement('Gain',10);

Calculate the rf budget of a series of rf elements at an input frequency of 2.1 GHz, an available input power of -30 dB, and a bandwidth of 10 MHz.

b = rfbudget([a m r n],2.1e9,-30,10e6)
b = 
  rfbudget with properties:

               Elements: [1x4 rf.internal.rfbudget.Element]
         InputFrequency: 2.1 GHz
    AvailableInputPower: -30 dBm
        SignalBandwidth:  10 MHz
             AutoUpdate: true

   Analysis Results
        OutputFrequency: (GHz) [  2.1    3.1    3.1     3.1]
            OutputPower: (dBm) [  -26    -26    -16   -20.6]
         TransducerGain: (dB)  [    4      4     14     9.4]
                     NF: (dB)  [    0      0      0  0.1392]
                   OIP3: (dBm) [  Inf     13     23    18.4]
                   IIP3: (dBm) [  Inf      9      9       9]
                    SNR: (dB)  [73.98  73.98  73.98   73.84]

Show the analysis in the RF Budget Analyzer app.


Introduced in R2017a