modulator

Modulator object

Description

Use the modulator object to create a modulator element. A modulator is a 2-port RF circuit object. You can use this element in the rfbudget object and the circuit object.

Creation

Description

example

mod = modulator creates a modulator object, mod, with default property values.

example

mod = modulator(Name,Value) creates a modulator object with additional properties specified by one or more name-value pair arguments. Name is the property name and Value is the corresponding value. You can specify several name-value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties

expand all

Name of modulator, specified as the comma-separated pair consisting of 'Name' and a character vector. All names must be valid MATLAB® variable names.

Example: 'Name','mod'

Available power gain, specified as a nonnegative scalar in dB.

Example: 'Gain',10

Noise figure, specified as a real finite nonnegative scalar in dB.

Example: 'NF',-10

Output third-order intercept, specified as a scalar in dBm

Example: 'OIP3',10

Local oscillator frequency, specified as a real finite positive scalar in Hz.

Example: 'LO',2e9

Type of modulator, specified as 'Down' or 'Up'

Example: 'ConverterType','Up'

Input impedance, specified as a positive real part finite scalar in ohms. You can also use a complex value with a positive real part.

Example: 'Zin',40

Output impedance, specified as a scalar in ohms. You can also use a complex value with a positive real part.

Example: 'Zout',40

Number of ports, specified as a scalar integer. This property is read-only.

Names of port terminals, specified as a cell vector. This property is read-only.

Examples

collapse all

Create a downconverter modulator with a local oscillator (LO) frequency of 100 MHz.

m = modulator('ConverterType','Down','LO',100e6)
m = 
  modulator: Modulator element

             Name: 'Modulator'
             Gain: 0
               NF: 0
             OIP3: Inf
               LO: 100000000
    ConverterType: 'Down'
              Zin: 50
             Zout: 50
         NumPorts: 2
        Terminals: {'p1+'  'p2+'  'p1-'  'p2-'}

Create a modulator object with a gain of 4 dB and local oscillator (LO) frequency of 2.9 GHz. Create another modulator object that is an upconverter and has an output third-order intercept (OIP3) of 13 dBm.

mod1 = modulator('Gain',4,'LO',2e9);
mod2 = modulator('OIP3',13,'ConverterType','Up');

Build a 2-port circuit using the modulators.

c = circuit([mod1 mod2])
c = 
  circuit: Circuit element

    ElementNames: {'Modulator'  'Modulator_1'}
        Elements: [1x2 modulator]
           Nodes: [0 1 2 3]
            Name: 'unnamed'
        NumPorts: 2
       Terminals: {'p1+'  'p2+'  'p1-'  'p2-'}

Create an amplifier with a gain of 4 dB.

a = amplifier('Gain',4);

Create a modulator with an OIP3 of 13 dBm.

m = modulator('OIP3',13);

Create an nport using passive.s2p.

n = nport('passive.s2p');

Create an rf element with a gain of 10 dB.

r = rfelement('Gain',10);

Calculate the rf budget of a series of rf elements at an input frequency of 2.1 GHz, an available input power of -30 dB, and a bandwidth of 10 MHz.

b = rfbudget([a m r n],2.1e9,-30,10e6)
b = 
  rfbudget with properties:

               Elements: [1x4 rf.internal.rfbudget.Element]
         InputFrequency: 2.1 GHz
    AvailableInputPower: -30 dBm
        SignalBandwidth:  10 MHz
             AutoUpdate: true

   Analysis Results
        OutputFrequency: (GHz) [  2.1    3.1    3.1     3.1]
            OutputPower: (dBm) [  -26    -26    -16   -20.6]
         TransducerGain: (dB)  [    4      4     14     9.4]
                     NF: (dB)  [    0      0      0  0.1392]
                   OIP3: (dBm) [  Inf     13     23    18.4]
                   IIP3: (dBm) [  Inf      9      9       9]
                    SNR: (dB)  [73.98  73.98  73.98   73.84]

Show the analysis in the RF Budget Analyzer app.

show(b)

Introduced in R2017a