Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Upsampling — Imaging Artifacts

This example shows how to upsample a signal and how upsampling can result in images. Upsampling a signal contracts the spectrum. For example, upsampling a signal by 2 results in a contraction of the spectrum by a factor of 2. Because the spectrum of a discrete-time signal is $2\pi$-periodic, contraction can cause replicas of the spectrum normally outside of the baseband to appear inside the interval $[-\pi,\pi]$.

Create a discrete-time signal whose baseband spectral support is $[-\pi,\pi]$. Plot the magnitude spectrum.

F = [0 0.250 0.500 0.7500 1];
A = [1.0000 0.5000 0 0 0];
Order = 511;
B = fir2(Order,F,A);
[Hx,W] = freqz(B,1,8192,'whole');
Hx = [Hx(4098:end) ; Hx(1:4097)];
omega = -pi+(2*pi/8192):(2*pi)/8192:pi;

plot(omega,abs(Hx))

Upsample the signal by 2. Plot the spectrum of the upsampled signal.

y = upsample(B,2);
[Hy,W] = freqz(y,1,8192,'whole');
Hy = [Hy(4098:end) ; Hy(1:4097)];

hold on
plot(omega,abs(Hy),'r','linewidth',2)
xlim([-pi pi])
legend('Original Signal','Upsampled Signal')
xlabel('Radians/Sample')
ylabel('Magnitude')
text(-2,0.5,'\leftarrow Imaging','HorizontalAlignment','center')
text(2,0.5,'Imaging \rightarrow','HorizontalAlignment','center')
hold off

You can see in the preceding figure that the contraction of the spectrum has drawn subsequent periods of the spectrum into the interval $[-\pi,\pi]$.

See Also

| |

Was this topic helpful?