k-Means and k-Medoids Clustering

Cluster by minimizing mean or medoid distance, calculate Mahalanobis distance

k-means and k-medoids clustering partitions data into k number of mutually exclusive clusters. These techniques assign each observation to a cluster by minimizing the distance from the data point to the mean or median location of its assigned cluster, respectively. Mahalanobis distance is a unitless measure computed using the mean and standard deviation of the sample data, and accounts for correlation within the data.


kmeans k-means clustering
kmedoids k-medoids clustering
mahal Mahalanobis distance
Was this topic helpful?