## Differences Between MATLAB and MuPAD Syntax

### Note

To convert a MuPAD notebook file to a MATLAB live script file, see `convertMuPADNotebook`. MATLAB live scripts support most MuPAD functionality, although there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

There are several differences between MATLAB and MuPAD syntax. Be aware of which interface you are using in order to use the correct syntax:

• Use MATLAB syntax in the MATLAB workspace, except for the functions `evalin(symengine,...)` and `feval(symengine,...)`, which use MuPAD syntax.

You must define MATLAB variables before using them. However, every expression entered in a MuPAD notebook is assumed to be a combination of symbolic variables unless otherwise defined. This means that you must be especially careful when working in MuPAD notebooks, since fewer of your typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they differ in MATLAB and MuPAD syntax.

Assignment`:=``=`
List variables`anames(All, User)``whos`
Numerical value of expression`float(expression)``double(expression)`
Suppress output`:``;`
Enter matrix`matrix([[x11,x12,x13], [x21,x22,x23]])``[x11,x12,x13; x21,x22,x23]`
Translate MuPAD set`{a,b,c}``unique([1 2 3])`
Auto-completionCtrl+space barTab
Equality, inequality comparison`=`, `<>``==`, `~=`

The next table lists differences between MATLAB expressions and MuPAD expressions.

`infinity``Inf`
`PI``pi`
`I``i`
`undefined``NaN`
`trunc``fix`
`arcsin`, `arccos` etc.`asin`, `acos` etc.
`numeric::int``vpaintegral`
`normal``simplifyFraction`
`besselJ`, `besselY`, `besselI`, `besselK``besselj`, `bessely`, `besseli`, `besselk`
`lambertW``lambertw`
`Si`, `Ci``sinint`, `cosint`
`EULER``eulergamma`
`conjugate``conj`
`CATALAN``catalan`
`TRUE, FALSE``symtrue, symfalse`

The MuPAD definition of exponential integral differs from the Symbolic Math Toolbox™ counterpart.

Exponential integral

Symbolic Math Toolbox provides two functions to calculate exponential integrals: `expint(x)` and `ei(x)`. The definitions of these two functions are described below.

$\text{expint}\left(x\right)=\underset{x}{\overset{\infty }{\int }}\frac{{e}^{-t}}{t}\text{ }dt\text{.}$

$\text{ei}\left(x\right)=\underset{-\text{ }\infty }{\overset{x}{\int }}\frac{{e}^{t}}{t}\text{\hspace{0.17em}}dt.$

$\text{Ei}\left(x\right)=\underset{-\infty }{\overset{x}{\int }}\frac{{e}^{t}}{t}\text{ }dt.$

$\text{Ei}\left(n,x\right)=\underset{1}{\overset{\infty }{\int }}\frac{{e}^{-xt}}{{t}^{n}}\text{ }dt.$

The definitions of `Ei` extend to the complex plane, with a branch cut along the negative real axis.

#### Mathematical Modeling with Symbolic Math Toolbox

Get examples and videos