Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

# `erf`

Error function

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

## Syntax

```erf(`x`)
```

## Description

`erf(x)` represents the error function $\frac{2}{\sqrt{\pi }}\underset{0}{\overset{x}{\int }}{e}^{-{t}^{2}}dt$.

This function is defined for all complex arguments `x`. For floating-point arguments, `erf` returns floating-point results.

The implemented exact values are: `erf(0) = 0`, ```erf(∞) = 1```, `erf(-∞) = -1`, ```erf(i ∞) = i ∞```, and ```erf(-i ∞) = -i ∞```. For all other arguments, the error function returns symbolic function calls.

For the function call `erf(x) = 1 - erfc(x)` with floating-point arguments of large absolute value, internal numerical underflow or overflow can happen. If a call to `erfc` causes underflow or overflow, this function returns:

• The result truncated to `0.0` if `x` is a large positive real number

• The result rounded to `2.0` if `x` is a large negative real number

• `RD_NAN` if `x` is a large complex number and MuPAD® cannot approximate the function value

The error function `erf(x) = 1 - erfc(x)` returns corresponding values for large arguments. See Example 2.

MuPAD can simplify expressions that contain error functions and their inverses. For real values `x`, the system applies the following simplification rules:

• ```inverf(erf(x)) = inverf(1 - erfc(x)) = inverfc(1 - erf(x)) = inverfc(erfc(x)) = x```

• ```inverf(-erf(x)) = inverf(erfc(x) - 1) = inverfc(1 + erf(x)) = inverfc(2 - erfc(x)) = -x```

For any value `x`, the system applies the following simplification rules:

• `inverf(-x) = -inverf(x)`

• `inverfc(2 - x) = -inverfc(x)`

• `erf(inverf(x)) = erfc(inverfc(x)) = x`

• `erf(inverfc(x)) = erfc(inverf(x)) = 1 - x`

## Environment Interactions

When called with a floating-point argument, the functions are sensitive to the environment variable `DIGITS`, which determines the numerical working precision.

## Examples

### Example 1

You can call the error function with exact and symbolic arguments:

`erf(0), erf(3/2), erf(sqrt(2)), erf(infinity)`

To approximate exact results with floating-point numbers, use `float`:

`float(erf(3/2)), float(erf(sqrt(2)))`

Alternatively, use a floating-point value as an argument:

`erf(-7.2), erf(2.0 + 3.5*I), erfc(3.0, 4), erf(5.5 + 1.0*I)`

### Example 2

For large complex arguments, the error function can return :

`erf(38000.0 + 3801.0*I)`

### Example 3

`diff`, `float`, `limit`, `series`, and other functions handle expressions involving the error function:

`diff(erf(x), x, x, x)`

`limit(x/(1 + x)*erf(x), x = infinity)`

`series(erf(x), x = infinity, 3)`

## Parameters

 `x` Arithmetical expression

## Return Values

Arithmetical expression

## Algorithms

`erf`, `erfc`, and `erfi` are entire functions.