Represent roots of polynomial
root(p,x)
root(p,x,k)
root(
returns
a column vector of numbered roots of symbolic polynomial p
,x
)p
with
respect to x
. Symbolically solving a high-degree
polynomial for its roots can be complex or mathematically impossible.
In this case, the Symbolic Math
Toolbox™ uses the root
function
to represent the roots of the polynomial.
Represent the roots of the polynomial using root
.
The root
function returns a column vector. The
elements of this vector represent the three roots of the polynomial.
syms x p = x^3 + 1; root(p,x)
ans = root(x^3 + 1, x, 1) root(x^3 + 1, x, 2) root(x^3 + 1, x, 3)
root(x^3 + 1, x, 1)
represents the first root of p
,
while root(x^3 + 1, x, 2)
represents the second root, and so on. Use this
syntax to represent roots of high-degree polynomials.
When solving a high-degree polynomial, solve
represents
the roots by using root
. Alternatively, you can either return an
explicit solution by using the MaxDegree
option or return a numerical
result by using vpa
.
Find the roots of x^3 + 3*x - 16
.
syms x p = x^3 + 3*x - 16; R = solve(p,x)
R = root(z^3 + 3*z - 16, z, 1) root(z^3 + 3*z - 16, z, 2) root(z^3 + 3*z - 16, z, 3)
Find the roots explicitly by setting the MaxDegree
option to the
degree of the polynomial. Polynomials with a degree greater than 4
do not
have explicit solutions.
Rexplicit = solve(p,x,'MaxDegree',3)
Rexplicit = (65^(1/2) + 8)^(1/3) - 1/(65^(1/2) + 8)^(1/3) 1/(2*(65^(1/2) + 8)^(1/3)) - (65^(1/2) + 8)^(1/3)/2 -... (3^(1/2)*(1/(65^(1/2) + 8)^(1/3) + (65^(1/2) + 8)^(1/3))*1i)/2 1/(2*(65^(1/2) + 8)^(1/3)) - (65^(1/2) + 8)^(1/3)/2 +... (3^(1/2)*(1/(65^(1/2) + 8)^(1/3) + (65^(1/2) + 8)^(1/3))*1i)/2
Calculate the roots numerically by using vpa
to convert
R
to high-precision floating point.
Rnumeric = vpa(R)
RRnumeric = 2.1267693318103912337456401562601 - 1.0633846659051956168728200781301 - 2.5283118563671914055545884653776i - 1.0633846659051956168728200781301 + 2.5283118563671914055545884653776i
If the call to root
contains parameters, substitute the parameters with
numbers by using subs
before calling vpa
.
root
in Symbolic ComputationsYou can use the root
function
as input to Symbolic Math
Toolbox functions such as simplify
, subs
,
and diff
.
Simplify an expression containing root
using
the simplify
function.
syms x r = root(x^6 + x, x, 1); simplify(sin(r)^2 + cos(r)^2)
ans = 1
Substitute for parameters in root
with
numbers using subs
.
syms b subs(root(x^2 + b*x, x, 1), b, 5)
ans = root(x^2 + 5*x, x, 1)
Substituting for parameters using subs
is
necessary before converting root
to numeric form
using vpa
.
Differentiate an expression containing root
with
respect to a parameter using diff
.
diff(root(x^2 + b*x, x, 1), b)
ans = root(b^2*x^2 + b^2*x, x, 1)
Find the inverse Laplace transform of a ratio
of two polynomials using ilaplace
. The inverse
Laplace transform is returned in terms of root
.
syms s G = (s^3 + 1)/(s^6 + s^5 + s^2); H = ilaplace(G)
H = t - symsum(exp(root(s3^4 + s3^3 + 1, s3, k)*t)/... (4*root(s3^4 + s3^3 + 1, s3, k) + 3), k, 1, 4)
When you get the root
function in output,
you can use the root
function as input in subsequent
symbolic calculations. However, if a numerical result is required,
convert the root
function to a high-precision
numeric result using vpa
.
Convert the inverse Laplace transform to numeric form using vpa
.
H_vpa = simplify(vpa(H))
H_vpa = t +... 0.30881178580997278695808136329347*exp(-1.0189127943851558447865795886366*t)*... cos(0.60256541999859902604398442197193*t) -... 0.30881178580997278695808136329347*exp(0.5189127943851558447865795886366*t)*... cos(0.666609844932018579153758800733*t) -... 0.6919689479355443779463355813596*exp(-1.0189127943851558447865795886366*t)*... sin(0.60256541999859902604398442197193*t) -... 0.16223098826244593894459034019473*exp(0.5189127943851558447865795886366*t)*... sin(0.666609844932018579153758800733*t)